第一篇:高中数学数列递推定理
定理(二阶线性递推数列)
已知数列{an}的项满足an2pan1qan,a1=a,a2=b,nN+,称方程x2pxq0为数列an的特征方程。若x1,x2是特征方程的两个根,则
n1n1
(1)当x1x2时,数列an的通项为anAx1Bx2,其中A,B由
初始值决定;
(2)当x1x2时,数列an的通项为an(A1B1n)x1n1,其中A1,B1由初始值决定。
3122、已知数列a11,a2,且anan1an2(n3,4,5,),求通项公式an。
(略解:二阶线性递推数列,x1x2型!x2x,x1x2,用公式得
1n1
an(n1)()nn)
定理(一次分式递推数列)
已知数列{an}的项满足: a1a且对于nN,都有an1
panq
p、ranh
q、r、hR,且phqr,r0,a1),称方程x
(i)若a1,则数列{an}为常数数列(ii)若a1,则数列{
h
r
(1)当特征方程有两个相同的特征根时,pxq
为数列an特征方程.rxh
为等差数列。an
an1
为等比数列。an2
(2)当特征方程有两个相异的特征根
1、2时,数列
第二篇:高中数学教学情景创设优秀案例15:递推数列教学
递推数列教学情境创设案例
在递推数列教学时,创设有趣的游戏情境,学生喜欢做游戏,简短有趣的游戏也能激发学生的学习兴趣。
案例:
汉诺塔问题
起源传说:相传在盘古开天辟地创造世界之初,便在印度贝纳雷斯的一座寺庙的一块红木板上插了三根钻石棒,并在其中的一根棒上安放了64枚纯金圆盘。有一个婆罗门门徒不休不眠地赶到庙里来,然后又费尽了千心万苦把这64个金灿灿的圆盘移到另一根钻石棒上。等到七七四十九天后,婆罗门门徒终于完成了这项工作,刚要松口气,但只听“轰咙”一声巨响,寺庙、门徒以及世界全都崩溃了!(说得够玄的吧!其实,解开此游戏后,你有的是成功的喜悦和无限的得意)
规则: ①一次只能移一个盘子; ②盘子只能在三个柱子上存放; ③任何时候大盘不能放在小盘上面。递推关系探求 学生自主探求 交流总结
设三根宝石柱分别为:A、B、C,设aE为将A上的铁片按上述规定全部移到C上所需要移动的最少次数,则a1=1,a2=3,a3=7。
当n=3,即A上有3个铁片时,为了能将A上的最下面一个大铁片能移到C上,应先将A上的前2个铁片移到B上。根据n=2时的结论,这样要先移3次,第4次就可将A上的最下面的大铁片移到C上,然后再将B上的2个铁片移到C上,借助A,利用n=2时的结论,又需移动3次,这样一共移了7次,即a3=7。
以此类推,若当A上有n个铁片时,共需要移动an次才能将铁片全部移到C上,则当A上有n+1个铁片时,为了将A上面的n个铁片先移到B上,根据假设为此需移动an次,这样在移动1次就可将A上的最下面的一个大铁片移到C上,然后将B上的n各铁片移到C上,这又需要移动an次,于是一共移动a n1=2an+1,(n∈N)次。(移动圆片的次数)***709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。
第三篇:数列的递推公式教案
数列的递推公式教案
普兰店市第六中学
陈娜
一、教学目标
1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。
2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。
3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。
二、教学重点、难点和关键点
重点:数列的递推定义以及应用数列的递推公式求出通项公式。难点:数列的递推公式求通项公式。关键:同本节难点。
三、教学方法
通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题…… 经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。
四、教学过程
环节1:新课引入
一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把 1
现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马?
通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。环节2:引例探究
(1)1 2
16………
(2)1
cos1
coscos1
cos[cocsos1]
…….(3)0 1 7 10 13 …….通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。递推公式定义:
如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习
例1:已知数列{an}的第1项是1,以后的各项由公式
a n
(n≥2)给出,写出这个给出,写出这个数列的前5项.= 1+an-11解:据题意可知:a1=1, a3=1+
a2=1+1a1=1+1a311=2,23531a21=1+=1+12=35=32,.a4=1+=1+=,a5=1+85a42
an的前五项是3581,2,,235
练习:已知一个数列的首项a1=1, a3=2, an= an-1+ an-2(n≥3)求这个数列的前五项。这个例题和习题是为了让学生进一步体会通过数列的的递推公式来求数列中的项,同时也能让学生感受到如果要是中间有一个环节做错了就会关联到其他的结果也是错误的,因此要培养学生认真的品质。
例2:已知数列{ an}满足a1 =1,an+1 =an +(2n-1)
(1)(2)写出其数列的前五项,归纳出数列的一个通项公式。利用数列的递推公式求其通项公式。
a2a1(2*11)112a3a2(2*21)235解(1)a11,a4a3(2*31)5510,a5a4(2*41)10717 猜想:an=(n-1)2+1(2)a2a12*11
a3a22*21
a4a32*31
…………………
an =an-1 +(2n-3)
an =a1 +2[1+2+3+…+(n-1)]—(n-1)an=1+2*(n1)[1(n1)]2_(n-1), 即an=(n-1)2+1 当n=1时也满足上式。
所设问题中的(1)是起着承上启下的作用,同时也引出了(2)的结论引起学生的兴趣,让学生感受到如何能在数列的递推公式得出数列的通项公式,体会到事物之间的互相转化的思想。
跟踪练习:已知数列{ an }中,a1 =1,an+1= an +
1n(n1),求数列的{ an }的通项公式。
在例2解题过程中从等差数列的通项公式的累和法进行引导,让学生体会到同类问题的知识的迁移过程。同时也引导学生认识到an+1—an=f(n)这样形式的都可以用累和法来求解。
环节4:归纳总结 ① 定义
② 累加法:an+1—an= f(n)环节5:作业:必做与选作
五、板书设计
第四篇:高中数学相关定理
2013年普通高等学校招生统一考试数学(文)复习资料2013.5.26
高中数学相关定理、公式及结论证明
(一)三角函数部分。
一、两角和(差)的余弦公式证明。
内容:cos()coscossinsin,cos()coscossinsin
证明:
①如图(1),在单位圆中设P(cos,sin),Q(cos,-sin)
则:OPOQ)cos()OPOQcoscossinsin
cos()coscossinsin图(1)
②如图(2),在单位圆中设P(cos,sin),Q(cos,sin)
则:OPOQ)cos()OPOQcoscossinsin
cos()coscossinsin图(2)
二、两角和(差)的正弦公式证明。
内容:sin()sincoscossin,sin()sincoscossin
证明:
sin()cos[
2()]cos[(
2)]cos(
2)cossin(
2)sin
sincoscossin
sin()cos[
2()]cos[(
2)]cos(
2)cossin(
2)sin
sincoscossin
三、两角和(差)的正切公式证明。内容:tan()
证明: tantan1tantan,tan()tantan1tantan
sincos
tan()
sin()cos()
sincoscossincoscossinsin
coscoscoscoscoscos
cossincoscossinsincoscos
tantan1tantan
sincos
tan()
sin()cos()
sincoscossincoscossinsin
coscoscoscoscoscos
cossincoscossinsincoscos
tantan1tantan
四、半角公式证明。内容:sin
2
1cos,cos
2
1cos,tan
2
1cos1cos
2sin1cos
1cos2sin
cos212sin
证明:由二倍角公式 2
cos22cos
12cos12sin2
用代替2,得,得sin2
cos2cos212
sincos
cos,cos
2
cos
2
tan
2
sincos
2
2cos2cos
2
2
2
2
2sin1cos,tan
2
sincos
2
sincos
2
2sin2sin
2
2
2
2
1cos2sin
五、正弦定理证明。
内容:在ABC中,a,b,c分别为角A,B,C的对边,则证明:①如图(3),在RtABC中,sinA
asinAbc,
bsinB
csinC
.ac,sinB
asinA
bsinB
c,C90,sinC1.
asinA
bsinB
csinC
.图(3)
②如图(4),在锐角ABC中,以B为原点,BC所在直线为x轴,建立直角坐标系,作ACy轴于点C,易知BA和CA在轴上的射影均为BC
CbsinC
2B)csinB,bsinB
csinC,同理
asinA
bsinB
asinA
bsinB
csinC
.图(4)
③如图(5),在钝角ABC中,以C为原点,BC所在直线为x轴,建立直角坐标系,作ACy轴于点C,易知BA和CA在轴上的射影均为CC
BcsinBC
2)bsinC,bsinBasinA
csinCbsinB,同理
c
asinA
bsinB
sinC
.图(5)
六、余弦定理证明。
a2b2c22bccosA
2ABC内容:在中,a,b,c分别为角A,B,C的对边,则ba2c22accosB
222
cab2abcosC
证明:如图(6),在ABC中,aaBC
(ACAB)(ACAB)
2ACAB
2
2ACABcosA2
bc2bccosA图(6)
222
abc2bccosA
同理可证:2 22
cab2abcosC
(二)平面向量部分。
一、平面向量基本定理。
内容:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任意一向量a,存在唯一一对 实数1,2,使得a1e12e2.证明:如图(7),过平面内一点O,作OAe1,OBe2,OCa,过点C分别作直 线OA和直线OB的平行线,交OA于点M,交OB于点N,有且只有一组实数,使
得OM1OA,ON2OB图(7)
OCOMONOC1OA2OB
即a1e12e2.二、共线向量定理。
内容:如图(8),A,B,C为平面内的三点,且A,B不重合,点P为平面内任一点,若C在直线AB上,则有
PCPA(1)PB
证明:由题意,BC与BA共线,BCBA
BCPCPB,BAPAPBPCPB(PAPB)
图(8)
化简为:PCPA(1)PB
三、平行向量定理。
内容:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例;若两个向量相对应的坐标成比例,则两向量平行。
证明:设a,b是非零向量,且a(x1,y1),b(x2,y2)若a//b,则存在实数使ab,且由平面向量基本定理可知
x1iy1j(x2iy2j)x2iy2j.x1x2①,y1y2②
①y2②x2得:x1y2x2y10
若y10,y20(即向量a,b不与坐标轴平行)则
x1y
1x2y
2(三)立体几何部分。
一、三垂线定理及其逆定理。
内容:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
证明:已知:如图(9),直线l与平面相交与点A,l在上的射影OA垂直于a,a
求证:l⊥a
证明:过P作PO垂直于
∵PO⊥α∴PO⊥a
又a⊥OA,PO∩OA=O ∴a⊥平面POA
∴a⊥l图(9)
(四)解析几何部分。
一、点到直线距离公式证明。
内容:已知直线l:AxByC0,直线外一点M(x0,y0).则其到直线l的距离为d
Ax
ByA
C。
B
证明:如图(10),设直线l:AxByC0,直线外一点M(x0,y0).直线上一点P(x,y).可得直线的 一个方向向量为v(B,A),设其法向量为n(s,t)则vnBsAt0,可得直线一法向量为n(A,B),n的单位向量为n0
(AA
B,A
B
B)图(10)
由题意,点M到直线的距离为PM在n0上的射影,所以,d
A(x0x)B(y0y)
A
B
Ax
By
0
2(AxBy)B
②
A
因为点P(x,y)在直线上,所以C(AxBy)①
Ax
ByA
所以,把①代入②中,得d
00
C
B
(五)数列部分
一、等差数列前n项和公式证明。
内容:an是等差数列,公差为d,首项为a1,Sn为其n前项和,则Sna1n证明:由题意,Sna1(a1d)(a12d).......(a1(n1)d)① 反过来可写为:Snan(and)(an2d).......(an(n1)d)②
①+②得:2Sna1na1n.......a1n
n个
n(n1)
d
n(a1an)
所以,Sn
n(a1an)
③,把ana1(n1)d代入③中,得Sna1n
二、等比数列前n项和公式证明。
n(n1)
d
n(a1an)
na1,(q1)
n
内容:an是等比数列,公比为q,首项为a1,Sn为其n前项和,则Sn=a1anq a1(1q)
,(q1)
1q1q
证明:Sna1a1qa1q.......a1qqS
n
2n
1①
n
a1qa1q
a1q
.......a1q②
n
①—②得:(1q)Sna1a1q,当q1时,Sn
a1a1q1q
n
a1(1q)1q
n
③
把ana1q
n1
代入③中,得Sn
a1anq1q
当q1时。很明显Snna1
na1,(q1)
n
所以,Sn=a1anq a1(1q)
,(q1)
1q1q
(六)函数和导数部分
一、换底公式证明。内容:log
N
loglog
aa
Nb
b
(N,a,b0;a,b1)
证明:设log
a
NX,log
a
bY,则ba,Na
YX
log
b
Nlog
a
Y
a
X
XY
log
a
a
XY
loglog
aa
Nb
第五篇:高中数学求递推数列的通项公式的九种方法
求递推数列的通项公式的九种方法
利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法
例1在数列{a
1n}中,a13,an1an
n(n1),求通项公式an.解:原递推式可化为:a111111
n1annn1则a2a112,a3a22
3a111111
4a334,……,anan1n1n逐项相加得:ana11n.故an4n
.二、作商求和法
例2设数列{a
22n}是首项为1的正项数列,且(n1)an1nanan1an0(n=1,2,3…),则它的通项公式是an=▁▁▁(2000年高考15题)
解:原递推式可化为:
[(n1)aan1n
n1nan](an1an)=0∵ an1an>0,a
n
1n则
a21a32a43an1aa,,,……,n
逐项相乘得:n1,即a1n=.12a23a34an1na1n
n
三、换元法
例3已知数列{a4n},其中a1
3,a1
3129,且当n≥3时,anan13
(an1an2),求通项公式an(1986年高考文科第八题改编).解:设bn1anan1,原递推式可化为:b1n3b,{b是一个等比数列,b134111
n2n}1a2a1939,公比为3.故bn1
b(1)n219(13)n2(13)n.故aa1311
1nn1(3)n.由逐差法可得:an22(3)n3.例4已知数列{an},其中a11,a22,且当n≥3时,an2an1an21,求通项公式an。解 由an2an1an21得:(anan1)(an1an2)1,令bn1anan1,则上式为bn1bn21,因此{bn}是一个等差数列,b1a2a11,公差为1.故bnn.。
由于b1b2bn1a2a1a3a2anan1an1
又bn(n1)
1b2bn1
2所以a1n1
2n(n1),即a1
n2
(n2n2)
四、积差相消法
例5(1993年全国数学联赛题一试第五题)设正数列a0,a1,an…,an,…满足
anan2an1an2=2an1(n2)且a0a11,求{an}的通项公式.解将递推式两边同除以aann1an2整理得:
2a
n1aa1 n1n
2设ban
a
1n=
a,则b1na=1,bn2bn11,故有 10
b22b11⑴b32b21⑵
…………
bn2bn11(n1)
由⑴2
n2
+ ⑵2
n
3+…+(n1)20得b222n1=2n
n121,即
ana=2n
1.n1
逐项相乘得:an=(21)2(221)2(2n1)2,考虑到a01,故 a
n
1(21)(21)
(n0).(21)222n2
(n1)
五、取倒数法
例6已知数列{aan
1n}中,其中a11,,且当n≥2时,an
2a,求通项公式an。
n11
解将aan1n
2a两边取倒数得:1n11
a12,这说明{1
}是一个等差数列,首项
nan1an是
a1,公差为2,所以11(n1)22n1,即a1n.1
an2n1
六、取对数法
例7若数列{aa
2n}中,1=3且an1an(n是正整数),则它的通项公式是an=▁▁▁(2002
年上海高考题).解由题意知an>0,将an1a2
2lgalgan
1n两边取对数得lgan1
n,即
lga2,所以数n
列{lgalga1n1
n}是以lga1=lg3为首项,公比为2的等比数列,lgan12nlg32,即
a2n1
n3.七、平方(开方)法
例8若数列{an}中,a1=2且an3a
2n1(n2),求它的通项公式是an.解将an
a22a22
2n1两边平方整理得ann13。数列{an}是以a1=4为首项,3为公
差的等差数列。a2
na21(n1)33n1。因为an>0,所以ann1。
八、待定系数法
待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,可以少走弯路.其变换的基本形式如下:
1、an1AanB(A、B为常数)型,可化为an1=A(an)的形式.例9若数列{an}中,a1=1,Sn是数列{an}的前n项之和,且SSn
n134S(n1),n
求数列{an}的通项公式是an.解 递推式SSnn1
34S可变形为1n
S3
14(1)
n1Sn设(1)式可化为
1S3(n1
S)(2)n
比较(1)式与(2)式的系数可得2,则有
1S23(1S2)。故数列{1
2}是
n1
nSn
以
11S23为首项,3为公比的等比数列。1
S2=33n13n。所以Snn3n
1。当n2,anSnS132123n
n1
n3n1232n83n
1
2。数列{a
123n(n1)n}的通项公式是an32n83n12
(n2)。
2、an
n1AanBC(A、B、C为常数,下同)型,可化为an1Cn1=A(anCn)的形式.例10在数列{an}中,a11,an12an43n1,求通项公式an。解:原递推式可化为:
an13n2(an3n1)①
比较系数得=-4,①式即是:an143n2(an43n1).则数列{a1n43n}是一个等比数列,其首项a143115,公比是2.∴an43n152n1 即a1n43n52n1.3、an2Aan1Ban型,可化为an2an1(A)(an1an)的形式。例11在数列{an}中,a11,a22,当nN,an25an16an ①求通项公式
an.解:①式可化为:
an2an1(5)(an1an)
比较系数得=-3或=-2,不妨取=-2.①式可化为:
an22an13(an12an)
则{an12an}是一个等比数列,首项a22a1=2-2(-1)=4,公比为3.∴an12a1n43n.利用上题结果有:
an43n152n1.4、an1AanBnC型,可化为an11n2A[an1(n1)2]的形式。例12 在数列{a
3n}中,a1
2,2anan1=6n3① 求通项公式an.解①式可化为:
2(an1n2)an11(n1)2②比较系数可
得:
=-6,29,②式为2bnbn1
1{bn} 是一个等比数列,首项b1a16n9
∴bn
91,公比为.22
91n1
()22
n
即 an6n99()故an9()6n9.九、猜想法
运用猜想法解题的一般步骤是:首先利用所给的递推式求出a1,a2,a3,……,然后猜想出满足递推式的一个通项公式an,最后用数学归纳法证明猜想是正确的。
例13 在各项均为正数的数列{an}中,Sn为数列{an}的前n项和,Sn=通项公式。
n
(an+),求其2an