第一篇:高中数学立体几何部分定理
高中数学立体几何部分定理
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3: 过不在同一条直线上的三个点,有且只有一个平面。推论1: 经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条)esp.空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为 [0°,90°]
最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
esp.直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
多面体
棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
Attention:
1、注意建立空间直角坐标系
2、空间向量也可在无坐标系的情况下应用
多面体欧拉公式:V(角)+F(面)-E(棱)=
2正多面体只有五种:正四、六、八、十二、二十面体。
球
attention:
1、球与球面积的区别
2、经度(面面角)与纬度(线面角)
3、球的表面积及体积公式
4、球内两平行平面间距离的多解性
cool2009-01-29 15:44
两点确定一直线,两直线确定一平面。
一条直线a与一个平面o垂直,则该直线与平面o内任何一条直线垂直。
一条直线a与一平面o内两条相交直线都垂直,则该直线与该平面垂直。若直线a在平面y内,则平面y与平面o垂直。
平面o与平面y相交,相交直线为b,若平面o内衣直线a与直线b垂直,则平面o与平面y垂直。
一条直a与平面o内任何一条直线平行,则直线a与平面o平行。
直线a与平面o以及平面y都垂直,则平面o与平面y平行。
第二篇:高中数学立体几何模块公理定理
高中数学立体几何模块公理定理汇编
Hzoue/2009-12-12
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内)
公理2 过不在一条直线上的三个点,有且只有一个平面.(作用:确定平面)推论 ①直线与直线外一点确定一个平面.
②两条相交直线确定一个平面.
③两条平行直线确定一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. Pα,且Pβαβ=l,且Pl.(作用:证明三点/多点共线)
公理4平行于同一条直线的两条直线互相平行.(平行线的传递性)空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 线面平行判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 面面平行判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行. 线面平行性质定理 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行. 面面平行性质定理 如果两个平行平面同时和第三个平面相交,则它们的交线平行. 线面垂直判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行. 三垂线定理 如果平面内一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直. 逆定理 如果平面内一条直线与平面的一条斜线垂直,则它和这条直线的射影垂直. 射影定理 从平面外一点出发的所有斜线段中,若斜线段长度相等则射影相等,斜线段较长则射影较长,斜线段较短则射影较短. 面面垂直判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.
线面垂直性质定理1 如果一条直线垂直于一个平面,则它垂直于平面内的所有直线. 线面垂直性质定理2 垂直于同一个平面的两条直线平行.
面面垂直性质定理1 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直性质定理2 两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.
第三篇:高中数学相关定理
2013年普通高等学校招生统一考试数学(文)复习资料2013.5.26
高中数学相关定理、公式及结论证明
(一)三角函数部分。
一、两角和(差)的余弦公式证明。
内容:cos()coscossinsin,cos()coscossinsin
证明:
①如图(1),在单位圆中设P(cos,sin),Q(cos,-sin)
则:OPOQ)cos()OPOQcoscossinsin
cos()coscossinsin图(1)
②如图(2),在单位圆中设P(cos,sin),Q(cos,sin)
则:OPOQ)cos()OPOQcoscossinsin
cos()coscossinsin图(2)
二、两角和(差)的正弦公式证明。
内容:sin()sincoscossin,sin()sincoscossin
证明:
sin()cos[
2()]cos[(
2)]cos(
2)cossin(
2)sin
sincoscossin
sin()cos[
2()]cos[(
2)]cos(
2)cossin(
2)sin
sincoscossin
三、两角和(差)的正切公式证明。内容:tan()
证明: tantan1tantan,tan()tantan1tantan
sincos
tan()
sin()cos()
sincoscossincoscossinsin
coscoscoscoscoscos
cossincoscossinsincoscos
tantan1tantan
sincos
tan()
sin()cos()
sincoscossincoscossinsin
coscoscoscoscoscos
cossincoscossinsincoscos
tantan1tantan
四、半角公式证明。内容:sin
2
1cos,cos
2
1cos,tan
2
1cos1cos
2sin1cos
1cos2sin
cos212sin
证明:由二倍角公式 2
cos22cos
12cos12sin2
用代替2,得,得sin2
cos2cos212
sincos
cos,cos
2
cos
2
tan
2
sincos
2
2cos2cos
2
2
2
2
2sin1cos,tan
2
sincos
2
sincos
2
2sin2sin
2
2
2
2
1cos2sin
五、正弦定理证明。
内容:在ABC中,a,b,c分别为角A,B,C的对边,则证明:①如图(3),在RtABC中,sinA
asinAbc,
bsinB
csinC
.ac,sinB
asinA
bsinB
c,C90,sinC1.
asinA
bsinB
csinC
.图(3)
②如图(4),在锐角ABC中,以B为原点,BC所在直线为x轴,建立直角坐标系,作ACy轴于点C,易知BA和CA在轴上的射影均为BC
CbsinC
2B)csinB,bsinB
csinC,同理
asinA
bsinB
asinA
bsinB
csinC
.图(4)
③如图(5),在钝角ABC中,以C为原点,BC所在直线为x轴,建立直角坐标系,作ACy轴于点C,易知BA和CA在轴上的射影均为CC
BcsinBC
2)bsinC,bsinBasinA
csinCbsinB,同理
c
asinA
bsinB
sinC
.图(5)
六、余弦定理证明。
a2b2c22bccosA
2ABC内容:在中,a,b,c分别为角A,B,C的对边,则ba2c22accosB
222
cab2abcosC
证明:如图(6),在ABC中,aaBC
(ACAB)(ACAB)
2ACAB
2
2ACABcosA2
bc2bccosA图(6)
222
abc2bccosA
同理可证:2 22
cab2abcosC
(二)平面向量部分。
一、平面向量基本定理。
内容:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任意一向量a,存在唯一一对 实数1,2,使得a1e12e2.证明:如图(7),过平面内一点O,作OAe1,OBe2,OCa,过点C分别作直 线OA和直线OB的平行线,交OA于点M,交OB于点N,有且只有一组实数,使
得OM1OA,ON2OB图(7)
OCOMONOC1OA2OB
即a1e12e2.二、共线向量定理。
内容:如图(8),A,B,C为平面内的三点,且A,B不重合,点P为平面内任一点,若C在直线AB上,则有
PCPA(1)PB
证明:由题意,BC与BA共线,BCBA
BCPCPB,BAPAPBPCPB(PAPB)
图(8)
化简为:PCPA(1)PB
三、平行向量定理。
内容:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例;若两个向量相对应的坐标成比例,则两向量平行。
证明:设a,b是非零向量,且a(x1,y1),b(x2,y2)若a//b,则存在实数使ab,且由平面向量基本定理可知
x1iy1j(x2iy2j)x2iy2j.x1x2①,y1y2②
①y2②x2得:x1y2x2y10
若y10,y20(即向量a,b不与坐标轴平行)则
x1y
1x2y
2(三)立体几何部分。
一、三垂线定理及其逆定理。
内容:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
证明:已知:如图(9),直线l与平面相交与点A,l在上的射影OA垂直于a,a
求证:l⊥a
证明:过P作PO垂直于
∵PO⊥α∴PO⊥a
又a⊥OA,PO∩OA=O ∴a⊥平面POA
∴a⊥l图(9)
(四)解析几何部分。
一、点到直线距离公式证明。
内容:已知直线l:AxByC0,直线外一点M(x0,y0).则其到直线l的距离为d
Ax
ByA
C。
B
证明:如图(10),设直线l:AxByC0,直线外一点M(x0,y0).直线上一点P(x,y).可得直线的 一个方向向量为v(B,A),设其法向量为n(s,t)则vnBsAt0,可得直线一法向量为n(A,B),n的单位向量为n0
(AA
B,A
B
B)图(10)
由题意,点M到直线的距离为PM在n0上的射影,所以,d
A(x0x)B(y0y)
A
B
Ax
By
0
2(AxBy)B
②
A
因为点P(x,y)在直线上,所以C(AxBy)①
Ax
ByA
所以,把①代入②中,得d
00
C
B
(五)数列部分
一、等差数列前n项和公式证明。
内容:an是等差数列,公差为d,首项为a1,Sn为其n前项和,则Sna1n证明:由题意,Sna1(a1d)(a12d).......(a1(n1)d)① 反过来可写为:Snan(and)(an2d).......(an(n1)d)②
①+②得:2Sna1na1n.......a1n
n个
n(n1)
d
n(a1an)
所以,Sn
n(a1an)
③,把ana1(n1)d代入③中,得Sna1n
二、等比数列前n项和公式证明。
n(n1)
d
n(a1an)
na1,(q1)
n
内容:an是等比数列,公比为q,首项为a1,Sn为其n前项和,则Sn=a1anq a1(1q)
,(q1)
1q1q
证明:Sna1a1qa1q.......a1qqS
n
2n
1①
n
a1qa1q
a1q
.......a1q②
n
①—②得:(1q)Sna1a1q,当q1时,Sn
a1a1q1q
n
a1(1q)1q
n
③
把ana1q
n1
代入③中,得Sn
a1anq1q
当q1时。很明显Snna1
na1,(q1)
n
所以,Sn=a1anq a1(1q)
,(q1)
1q1q
(六)函数和导数部分
一、换底公式证明。内容:log
N
loglog
aa
Nb
b
(N,a,b0;a,b1)
证明:设log
a
NX,log
a
bY,则ba,Na
YX
log
b
Nlog
a
Y
a
X
XY
log
a
a
XY
loglog
aa
Nb
第四篇:万全高中数学2---1立体几何基本定理与公式
万全高中数学基本公式
知识要点
1.经过不在同一条直线上的三点确定一个面.2.两个平面可将平面分成部分.3.过三条互相平行的直线可以确定.4.三个平面最多可把空间分成部分.空间直线.1.空间直线位置分三种:相交、平行、异面.相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内
2.异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)
3.平行公理:平行于同一条直线的两条直线互相平行.4.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围0,180)(直线与直线所成角0,90)
121(斜线与平面成角0,90)
2(直线与平面所成角0,90)
方向相同方向不相同(向量与向量所成角[0,180])
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5.两异面直线的距离:公垂线的长度.一、直线与平面平行、直线与平面垂直.1.空间直线与平面位置分三种:相交、平行、在平面内.2.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)
3.直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)
4.直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平
P面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥,a⊥AO,得a⊥PO(三垂线定理),O
A得不出⊥PO.因为a⊥PO,但PO不垂直OA. 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.5.⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影..
相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线
1段射影较长;③垂线段比任何一条斜线段短.⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上
一、平面平行与平面垂直.1.空间两个平面的位置关系:相交、平行.2.平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行,面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3.两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)
4.两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)
注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5.两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.
五、棱锥、棱柱.1.棱柱.O⑴①直棱柱侧面积:SCh(C为底面周长,h是高)
②斜棱住侧面积:SC1l(C1是斜棱柱直截面周长,l是斜棱柱的侧棱长)
⑵{四棱柱}{平行六面体}{直平行六面体}{长方体}{正四棱柱}{正方体}.{直四棱柱}{平行六面体}={直平行六面体}.⑶棱柱具有的性质:
①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱........柱的各个侧面都是全等的矩形......
②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形...
③过棱柱不相邻的两条侧棱的截面都是平行四边形.(直棱柱定义):棱柱有一条侧棱和底面垂直.⑷平行六面体:
定理一:平行六面体的对角线交于一点,并且在交点处互相平分..............
[注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以V棱柱Sh3V棱柱.正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i.正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)
ii.正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等
iii.正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相
等);底面为正多边形.正棱锥的侧面积:S1Ch'(底面周长为C,斜高为h')
2⑵棱锥具有的性质:
①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它
叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧
棱在底面内的射影也组成一个直角三角形.3.球:⑴球的截面是一个圆面.4①球的表面积公式:S4R2.②球的体积公式:VR3.31②圆锥体积:Vr2h(r为半径,h为高)3
1③锥形体积:VSh(S为底面积,h为高)3
六.空间向量.1(1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.(2)共线向量定理:对空间任意两个向量a,b(b0),a ∥b的充要条件是存在实数(具
有唯一性),使ab.(3)共面向量:若向量a使之平行于平面或a在内,则a与的关系是平行,记作a∥.(4)①共面向量定理:如果两个向量a,b不共线,则向量P与向量a,b共面的充要条件是存
在实数对x、y使Pxayb.②空间任一点、B、C,则OPxOAyOBzOC(xyz1)是PABC四...O.和不共线三点......A.....点共面的充要条件.(简证:OP(1yz)OAyOBzOCAPyABzACP、A、B、C四点共面)
注: 是证明四点共面的常用方法.2.空间向量基本定理:如果三个向量,那么对空间任一向量P,存在一个唯一....a,b,c不共面...的有序实数组x、y、z,使pxaybzc.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使 xyz(这里隐含x+y+z≠1).注:设四面体ABCD的三条棱,ABb,ACc,ADd,其
B
1中Q是△BCD的重心,则向量()用
3D
3.(1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标).①令a=(a1,a2,a3),b(b1,b2,b3),则
(a1b1,a2b2,a3b3)a(a1,a2,a3)(R)aba1b1a2b2a3b3a∥ba1b1,a2b2,a3b3(R)
a12a22a32a1a2a3aba1b1a2b2a3b30
b1b2b3(aa)
a1b1a2b2a3b3ab cosa,b222222|a||b|a1a2a31b2b3
②空间两点的距离公式:d(x2x1)2(y2y1)2(z2z1)2.(2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量.(3)用向量的常用方法:
①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中A,则点B到平面②利用法向量求二面角的平面角定理:设n1,n2分别是二面角l中平面,的法向量,则1,n2所成的角就是所求二面角的平面角或其补角大小(1,n2方向相同,1,n2反方,则为其夹角).③证直线和平面平行定理:已知直线a平面,ABa,CD,且CDE三点不共线,则a∥的充要条件是存在有序实数对使ABCDCE.(常设ABCDCE求解,若,存在即证毕,若,不存在,则直线AB与平面相交).
第五篇:高中数学知识点--立体几何
【高中数学知识点】立体几何学习的几点建议.txt
一 逐渐提高逻辑论证能力
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
二 立足课本,夯实基础
直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。(2)培养空间想象力。
(3)得出一些解题方面的启示。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
三 “转化”思想的应用
我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。
以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
四 培养空间想象力
为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位臵关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
五 总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。六 典型结论的应用
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。