高中数学“立体几何”教学研究

时间:2019-05-12 23:56:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学“立体几何”教学研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学“立体几何”教学研究》。

第一篇:高中数学“立体几何”教学研究

高中数学“立体几何”教学研究

一.“立体几何”的知识能力结构

高中的立体几何是按照从局部到整体的方式呈现的,在必修2中,先从对空间几何体的整体认识入手,主通过直观感知、操作确认,获得空间几何体的性质,此后,在空间几何体的点、直线和平面的学习中,充分利用对模型的观察,发现几何体的几何性质并通过简单的“推理”得到一些直线和平面平行、垂直的几何性质,从微观上为进一步深入研究空间几何体做了必要的准备.在选修2-1中,首先引入空间向量,在必修2的基础上完善了几何论证的理论基础,在此基础上对空间几何体进行了深入的研究.首先安排的是对空间几何体的整体认识,要求发展学生的空间想像能力,几何直观能力,而没有对演绎推理做出要求.在“空间点、直线、平面之间的位置关系”的研究中,以长方体为模型,通过说理(归纳出判定定理,不证明)或简单推理进行论证(归纳并论证明性质定理),在“空间向量与立体几何”的学习中,又以几何直观、逻辑推理与向量运算相结合,完善了空间几何推理论证的理论基础,并对空间几何中较难的问题进行证明.可见在立体几何这三部分中,把空间想像能力,逻辑推理能力,适当分开,有所侧重地、分阶段地进行培养,这一编排有助于发展学生的空间观念、培养学生的空间想象能力、几何直观能力,同时降低学习立体几何的门槛,同时体现了让不同的学生在数学上得到不同的发展的课标理念.二.“立体几何”教学内容的重点、难点

1.重点:

空间几何体的结构特征:柱、锥、台、球的结构特征的概括; 空间几何体的三视图与直观图:几何体的三视图和直观图的画法;

空间几何体的表面积与体积:了解柱、锥、台、球的表面积与体积的计算公式; 空间点、直线、平面的位置关系:空间直线、平面的位置关系; 直线、平面平行的判定及其性质:判定定理和性质定理的归纳; 直线、平面垂直的判定及其性质:判定定理和性质定理的归纳.2.难点:

空间几何体结构特征的概括:柱、锥、台球的结构特征的概括; 空间几何体的三视图与直观图:识别三视图所表示的几何体; 空间点、直线、平面的位置关系:三种语言的转化; 直线、平面平行的判定及其性质:性质定理的证明; 直线、平面垂直的判定及其性质:性质定理的证明.三.空间几何体的教学要与空间想象能力培养紧密结合

空间几何体的教学要注意加强几何直观与空间想象能力的培养,在立体几何的入门阶段,建立空间观念,培养空间想象能力是学习的一个难点,要注重培养空间想象能力的途径,例如:

①注重模型的作用,让学生动手进行模型制作,培养利用模型解决问题的意识与方法.②培养学生的画几何图形能力,画图不是描字模(只模仿),而是要边画边思考所画图与实际几何体的对应关系.③空间想象不是简单的观察、空想,应与概念思辨相结合(前面已经谈到).④发挥三视图与直观图培养空间想象能力的作用,利用空间几何体的三视图与直观图的转化过程,可以使学生认识到:空间图形向平面图形的转化有利于分析和表示较为复杂的空间图形;变换观察视角对空间几何体进行观察可以更容易理解较为复杂的空间图形,把握空间图形中元素之间的关系.四.加强对概念、定理的理解与把握的教学

①用图形辅助理解概念、定理和性质

例如,我们可以按照推理的类别,用图形刻画几何元素的关系,可以避免死记硬背文字和符号的机械式学习,更容易理解公理、定理、性质等的几何本质,发现问题图形中的元素关系关系.让学生对照图形叙述相关定理或性质,特别要求对定理或性质的使用条件加以说明.例如,用图形表示平行关系

例如,用图形表示垂直关系

②强化证明的言必有据

所谓“言必有据”,是指每一步推理的根据(即三段论推理的大前提)必须是课本中给出的公理、定义、定理,不可以自造理由,不可以随意将习题的结论作为根据,不可以把平面几何结论在立体几何中不加证明地随意使用.不仅在文字语言和符号语言的推理中,要言必有据,在几何作图中也是如此,因为几何作图是几何推理的特珠形式.立体几何作图也必须步步有据.③梳理推理依据

例如,从确定平行、垂直关系梳理推理依据(如图),在解决问题时由图形中寻找依据.把推理依据转化为系列图形纳入立体几何的学习中,用图形归纳立体几何知识,串联立体几何推理的思路,形成对图思考,以图交流,使得逻辑推理与几何直观有机整合,提高了学生的空间想象能力和推理论证能力.五.总结《课程标准》与高考对“立体几何初步专题”的要求 《课程标准》对“立体几何初步专题”的要求

(1)空间几何体

①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图.③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式.④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、线、面之间的位置关系

①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.◆公理2:过不在一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线平行.◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定.通过直观感知、操作确认,归纳出以下判定定理:

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.◆一个平面过另一个平面的垂线,则两个平面垂直.通过直观感知、操作确认,归纳出以下性质定理,并加以证明:

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行.◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.◆垂直于同一个平面的两条直线平行.◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用已获得的结论证明一些空间位置关系的简单命题.高考对“立体几何初步专题”的要求(1)空间几何体

①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系

①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.

第二篇:高中数学知识点--立体几何

【高中数学知识点】立体几何学习的几点建议.txt

一 逐渐提高逻辑论证能力

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

二 立足课本,夯实基础

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。(2)培养空间想象力。

(3)得出一些解题方面的启示。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

三 “转化”思想的应用

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

四 培养空间想象力

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位臵关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

五 总结规律,规范训练

立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。六 典型结论的应用

在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。

第三篇:高中数学立体几何初步知识点

高中数学立体几何初步知识点

高中几何是高中的一个难点。大家只要记住下面这几点相信你成绩一定会突飞猛进的!立体几何初步:①柱、锥、台、球及其简单组合体等内容是立体几何的基础,也是研究空间问题的基本载体,是高考考查的重要方面,在学习中应注意这些几何体的概念、性质以及对面积、体积公式的理解和运用。②三视图和直观图是认知几何体的基本内容,在高考中,对这两个知识点的考查集中在两个方面,一是考查三视图与直观图的基本知识和基本的视图能力,二是根据三视图与直观图进行简单的计算,常以选择题、填空题的形式出现。③几何体的表面积和体积,在高考中有所加强,一般以选择题、填空、简答等形式出现,难度不大,但是常与其他问题一起考查④平面的基本性质与推理主要包括平面的有关概念,四个公理,等角定理以及异面直线的有关知识,是整个立体几何的基础,学习时应加强对有关概念、定理的理解。⑤平行关系和垂直关系是立体几何中的两种重要关系,也是解决立体几何的重要关系,要重点掌握。跟几何说886吧,只要用心去学,相信成绩上不会再因为几何而丢大量的分数!

第四篇:高中数学立体几何部分定理

高中数学立体几何部分定理

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3: 过不在同一条直线上的三个点,有且只有一个平面。推论1: 经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为 [0°,90°]

最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

esp.直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

多面体

棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

Attention:

1、注意建立空间直角坐标系

2、空间向量也可在无坐标系的情况下应用

多面体欧拉公式:V(角)+F(面)-E(棱)=

2正多面体只有五种:正四、六、八、十二、二十面体。

attention:

1、球与球面积的区别

2、经度(面面角)与纬度(线面角)

3、球的表面积及体积公式

4、球内两平行平面间距离的多解性

cool2009-01-29 15:44

两点确定一直线,两直线确定一平面。

一条直线a与一个平面o垂直,则该直线与平面o内任何一条直线垂直。

一条直线a与一平面o内两条相交直线都垂直,则该直线与该平面垂直。若直线a在平面y内,则平面y与平面o垂直。

平面o与平面y相交,相交直线为b,若平面o内衣直线a与直线b垂直,则平面o与平面y垂直。

一条直a与平面o内任何一条直线平行,则直线a与平面o平行。

直线a与平面o以及平面y都垂直,则平面o与平面y平行。

第五篇:高中数学立体几何模块公理定理

高中数学立体几何模块公理定理汇编

Hzoue/2009-12-12

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内)

公理2 过不在一条直线上的三个点,有且只有一个平面.(作用:确定平面)推论 ①直线与直线外一点确定一个平面.

②两条相交直线确定一个平面.

③两条平行直线确定一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. Pα,且Pβαβ=l,且Pl.(作用:证明三点/多点共线)

公理4平行于同一条直线的两条直线互相平行.(平行线的传递性)空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 线面平行判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 面面平行判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行. 线面平行性质定理 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行. 面面平行性质定理 如果两个平行平面同时和第三个平面相交,则它们的交线平行. 线面垂直判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行. 三垂线定理 如果平面内一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直. 逆定理 如果平面内一条直线与平面的一条斜线垂直,则它和这条直线的射影垂直. 射影定理 从平面外一点出发的所有斜线段中,若斜线段长度相等则射影相等,斜线段较长则射影较长,斜线段较短则射影较短. 面面垂直判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.

线面垂直性质定理1 如果一条直线垂直于一个平面,则它垂直于平面内的所有直线. 线面垂直性质定理2 垂直于同一个平面的两条直线平行.

面面垂直性质定理1 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直性质定理2 两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.

下载高中数学“立体几何”教学研究word格式文档
下载高中数学“立体几何”教学研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学立体几何证明公式

    线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个......

    高中数学教学研究工作计划

    高中数学教学研究工作计划 一.指导思想及工作思路 坚持以学生的全面发展为本的教研理念,全面落实科学发展观。依照济南市教育局关于追求教研工作发展的“潜绩”,深入分析和研......

    高中数学立体几何常考证明题汇总

    新课标立体几何常考证明题1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成......

    高中数学立体几何常考证明题汇总 - 副本

    立体几何常考证明题汇总答案1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD......

    高中数学立体几何:垂直关系五篇范文

    高中数学立体几何:直线与平面垂直、平面与平面垂直高考要求1理解直线和平面垂直的概念 掌握直线和平面垂直的判定定理;2掌握三垂线定理及其逆定理3掌握直线和平面垂直的判定定......

    聋人高中数学有效教学研究

    《聋人高中数学有效教学研究》实验报告 《聋人高中数学有效教学研究》实验报告 一、研究背景近年来,随着我国特殊教育事业的不断发展,进一步提高聋教育办学层次和办学水平,使广......

    高中数学分层教学研究5篇

    【摘 要】数学是培养学生养成良好思维习惯和缜密思维方式的重要课程,而分层教学对于全面贯彻和落实素质教育、关注每个学生的发展具有重要意义。本文根据笔者的经验,对高中数......

    基于IPad的高中数学教学研究

    基于IPad的高中数学教学研究 [摘 要] 移动设备的普及和数学课程的整合为IPad在高中数学教学中的应用提供了可能.本文首先以椭圆及其标准方程这节课为例,探讨如何利用IPad技术......