高中数学立体几何模块公理定理

时间:2019-05-12 17:22:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学立体几何模块公理定理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学立体几何模块公理定理》。

第一篇:高中数学立体几何模块公理定理

高中数学立体几何模块公理定理汇编

Hzoue/2009-12-12

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内)

公理2 过不在一条直线上的三个点,有且只有一个平面.(作用:确定平面)推论 ①直线与直线外一点确定一个平面.

②两条相交直线确定一个平面.

③两条平行直线确定一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. Pα,且Pβαβ=l,且Pl.(作用:证明三点/多点共线)

公理4平行于同一条直线的两条直线互相平行.(平行线的传递性)空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 线面平行判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 面面平行判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行. 线面平行性质定理 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行. 面面平行性质定理 如果两个平行平面同时和第三个平面相交,则它们的交线平行. 线面垂直判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行. 三垂线定理 如果平面内一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直. 逆定理 如果平面内一条直线与平面的一条斜线垂直,则它和这条直线的射影垂直. 射影定理 从平面外一点出发的所有斜线段中,若斜线段长度相等则射影相等,斜线段较长则射影较长,斜线段较短则射影较短. 面面垂直判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.

线面垂直性质定理1 如果一条直线垂直于一个平面,则它垂直于平面内的所有直线. 线面垂直性质定理2 垂直于同一个平面的两条直线平行.

面面垂直性质定理1 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直性质定理2 两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.

第二篇:高中数学立体几何部分定理

高中数学立体几何部分定理

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3: 过不在同一条直线上的三个点,有且只有一个平面。推论1: 经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

由此得直线和平面所成角的取值范围为 [0°,90°]

最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

esp.直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

多面体

棱柱

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp: a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

Attention:

1、注意建立空间直角坐标系

2、空间向量也可在无坐标系的情况下应用

多面体欧拉公式:V(角)+F(面)-E(棱)=

2正多面体只有五种:正四、六、八、十二、二十面体。

attention:

1、球与球面积的区别

2、经度(面面角)与纬度(线面角)

3、球的表面积及体积公式

4、球内两平行平面间距离的多解性

cool2009-01-29 15:44

两点确定一直线,两直线确定一平面。

一条直线a与一个平面o垂直,则该直线与平面o内任何一条直线垂直。

一条直线a与一平面o内两条相交直线都垂直,则该直线与该平面垂直。若直线a在平面y内,则平面y与平面o垂直。

平面o与平面y相交,相交直线为b,若平面o内衣直线a与直线b垂直,则平面o与平面y垂直。

一条直a与平面o内任何一条直线平行,则直线a与平面o平行。

直线a与平面o以及平面y都垂直,则平面o与平面y平行。

第三篇:高二数学 立体几何的概念、公理、定理

立体几何的概念、公理、定理

王 春 老师 编辑 2007-12-20

一.写出以下公理、定理,并根据图形写出它们的条件与结论。

(一)立体几何三公理

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。A∈a,B∈aA∈a,B∈a

公理

2a?bA耷ab=a,A a aÌa a

公理3:经过不在同一直线上的三点,有且只有一个平面。

A、B、C不在同一直线上

Þ有且只有一个平面α,使A∈α,B∈α,C∈α

推论

1:经过一条直线和这条直线外的一点,有且只有一个平面。

∈a AÏa Þ有且只有一个平面a,使 Ìa

推论2:经过两条相交直线,有且只有一个平面。

a∩b=AÞÌa 有且只有一个平面a,使Ìa

推论3:经过两条平行直线,有且只有一个平面。

a∥b=AÞ有且只有一个平面a,使Ìa Ìa

(二)空间直线

公理4 :平行于同一条直线的两条直线互相平行。c

a

b a∥Þb∥a//c 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

AB//A/B/

?BAC B/A/C/

//AC//ACÞ

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。

用心 爱心 专心116号编辑

Zishi2007-12-20

异面直线判定定理:用平面内一点与平面外一点的直线,A∈a

PÏa l与a异面 aÌa

(三)直线和平面

Þ

直线和平面平行的判定定理:如果平面外一条直线和 这个平面内的一条直线平行,那么这条直线和这个平面平行。

l

ab

a//b bÌa aËa

Þ

a//a

aÌa

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

ab

a//aa?bbaÌb

Þ

a//b

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么

baa烫a,ba

a//b a?bOb^a轣cab^b c^a,c^

Þ

定理 :如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直这个平面。

a

定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

α∥βl⊥α

l⊥β

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

a

b

a^a

b^

b

Þ

a//b

射影定理:从平面外一点向这个平面所引的垂线段和斜线段中,(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。

三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

Zishi2007-12-20

用心 爱心 专心116号编辑

PA^aPA^a

aaÌa定理:aÌ

轣POa逆定理:

AO^a

PO^a

轣AOa

(四)平面与平面

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

推论:如果一个平面内有两条相交直线分别平行另一个平面的两条相交直线,那么这两个平面平行。

a烫a,baa?b

O

a//b,b//b

定理Þa//b

b///推论

a?bO

a烫a,baa/烫b,b/

a//a/,b//b/a?bO

Þa//b

/

b

/

定理:垂直于同一直线的两个平面平行。定理:平行于同一平面的两个平面平行。

a

a^a a^b

Þ

a//b

a//b

g//b

Þa//g

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

a//b

a?gaÞa//bb?gb

两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面

互相垂直。

a^aaÌb

Þ

a

a^b

两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直

线垂直于另一个平面。a^b

a?b CD

轣ABb ABÌa

AB^CD

定理:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内。a^b PÎa

尢aaPÎa

a^b

Zishi2007-12-20

用心 爱心 专心116号编辑

二、概念与性质

(一)空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、异面直线的定义:不同在任何一个平面内的两条直线。

(二)直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

1、直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

2、直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面 的垂线,平面叫做直线a的垂面。

(三)两个平面的位置关系:平行、相交

1、两个平面互相平行的定义:空间两平面没有公共点。

2、两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。

(四)角

1.两异面直线所成的角:过空间任意一点引两条直线分别平行

ba

b'a'

(或重合)于两条异面直线,它们所成的锐角(或直角)。范围为(0°,90°]

2、直线与平面所成的角:平面的一条斜线和它在这个平面内的射影 所成的锐角。

所成的角为0°角。直线和平面所成角的取值范围为 [0°,90°]

(2)最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。

(3)若斜线与平面所成的角为α,其在此平面内的射影与平面内的一 条直线所成的为β,斜线与这条直线所成的角为γ则cosγ=cosα·cosβ

3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(1)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(2)直二面角:平面角是直角的二面角叫做直二面角。

(五)距离

1、两点的距离:连结两点的线段的长度。

B

A

a(1)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,2、平行平面间距离:两条平行线中,一条直线上任意一点到另一条直线的距离。

3、两异面直线间距离: 两条异面直线的公垂线在这两条异面直线间的线段的长度。

4、两异面直线上两点的距离:若两条异面直线a、b所成的角为θ,它们的公垂线段AA'的长度为d.在直线a、b上分别取点E、F,设,A'E=m,AF=n,则

Zishi2007-12-20

用心 爱心 专心116号编辑

5、点到平面的距离.从平面外一点引一个平面的垂线,这个点和垂足间的距离。

6、平行直线和平面的距离:直线上任意一点到平面的距离。

(六)棱柱

1、棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

2、棱柱的性质

(1)侧棱都相等,侧面是平行四边形

(2)两个底面与平行于底面的截面是全等的多边形

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形

(七)棱锥

1、棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

2、棱锥的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

3、正棱锥

(1)正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。(2)正棱锥的性质:

①各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。②多个特殊的直角三角形

4、a、相对棱互相垂直的正三棱锥的顶点在底面的射影为底面三角形的垂心。b、侧棱相等的棱锥的顶点在底面的射影为底面三角形的外心。

c、侧面与底面所成的二面角相等的棱锥的顶点在底面的射影为底面三角形的内心。

(八)多面体欧拉公式:V(角)+F(面)-E(棱)=

2(九)正多面体只有五种:正四、六、八、十二、二十面体。

(十)球

1、球面:到定点的距离等于定长的点的轨迹。

2、球体:与定点的距离等于或小于定长的点的集合.

3、经度:某地点的经度就是经过这点的经线和地轴确定的半平面与本初子午线与地轴确定的半平面所成二面角的平面角的度数.

4、纬度:某地的纬度就是经过这点的球半径和赤道平面所成的角度.

5、两点的球面距离:球面上两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度。

6、定理:球心与小圆的圆心的连线与小圆所在的平面垂直。

437、球的表面积:S球面=4pR8、体积公式:V球=pR9、V圆锥=

Zishi2007-12-20

133

pRV圆柱=pR333

用心 爱心 专心116号编辑

第四篇:高中数学相关定理

2013年普通高等学校招生统一考试数学(文)复习资料2013.5.26

高中数学相关定理、公式及结论证明

(一)三角函数部分。

一、两角和(差)的余弦公式证明。

内容:cos()coscossinsin,cos()coscossinsin

证明:

①如图(1),在单位圆中设P(cos,sin),Q(cos,-sin)

则:OPOQ)cos()OPOQcoscossinsin

cos()coscossinsin图(1)

②如图(2),在单位圆中设P(cos,sin),Q(cos,sin)

则:OPOQ)cos()OPOQcoscossinsin

cos()coscossinsin图(2)

二、两角和(差)的正弦公式证明。

内容:sin()sincoscossin,sin()sincoscossin

证明:

sin()cos[

2()]cos[(

2)]cos(

2)cossin(

2)sin

sincoscossin

sin()cos[

2()]cos[(

2)]cos(

2)cossin(

2)sin

sincoscossin

三、两角和(差)的正切公式证明。内容:tan()

证明: tantan1tantan,tan()tantan1tantan

sincos

tan()

sin()cos()

sincoscossincoscossinsin

coscoscoscoscoscos



cossincoscossinsincoscos

tantan1tantan

sincos

tan()

sin()cos()

sincoscossincoscossinsin

coscoscoscoscoscos



cossincoscossinsincoscos

tantan1tantan

四、半角公式证明。内容:sin

2

1cos,cos

2

1cos,tan

2

1cos1cos

2sin1cos

1cos2sin

cos212sin

证明:由二倍角公式 2

cos22cos

12cos12sin2

用代替2,得,得sin2

cos2cos212

sincos

cos,cos

2



cos

2

tan

2

sincos

2

2cos2cos

2

2

2

2

2sin1cos,tan

2

sincos

2

sincos

2

2sin2sin

2

2

2

2

1cos2sin

五、正弦定理证明。

内容:在ABC中,a,b,c分别为角A,B,C的对边,则证明:①如图(3),在RtABC中,sinA

asinAbc,

bsinB

csinC

.ac,sinB

asinA

bsinB

c,C90,sinC1.

asinA

bsinB

csinC

.图(3)

②如图(4),在锐角ABC中,以B为原点,BC所在直线为x轴,建立直角坐标系,作ACy轴于点C,易知BA和CA在轴上的射影均为BC

CbsinC

2B)csinB,bsinB

csinC,同理

asinA

bsinB

asinA

bsinB

csinC

.图(4)

③如图(5),在钝角ABC中,以C为原点,BC所在直线为x轴,建立直角坐标系,作ACy轴于点C,易知BA和CA在轴上的射影均为CC

BcsinBC

2)bsinC,bsinBasinA



csinCbsinB,同理

c

asinA

bsinB

sinC

.图(5)

六、余弦定理证明。

a2b2c22bccosA

2ABC内容:在中,a,b,c分别为角A,B,C的对边,则ba2c22accosB

222

cab2abcosC

证明:如图(6),在ABC中,aaBC

(ACAB)(ACAB)

2ACAB

2

2ACABcosA2

bc2bccosA图(6)

222

abc2bccosA

同理可证:2 22

cab2abcosC

(二)平面向量部分。

一、平面向量基本定理。

内容:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任意一向量a,存在唯一一对 实数1,2,使得a1e12e2.证明:如图(7),过平面内一点O,作OAe1,OBe2,OCa,过点C分别作直 线OA和直线OB的平行线,交OA于点M,交OB于点N,有且只有一组实数,使

得OM1OA,ON2OB图(7)

OCOMONOC1OA2OB

即a1e12e2.二、共线向量定理。

内容:如图(8),A,B,C为平面内的三点,且A,B不重合,点P为平面内任一点,若C在直线AB上,则有

PCPA(1)PB

证明:由题意,BC与BA共线,BCBA

BCPCPB,BAPAPBPCPB(PAPB)

图(8)

化简为:PCPA(1)PB

三、平行向量定理。

内容:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例;若两个向量相对应的坐标成比例,则两向量平行。

证明:设a,b是非零向量,且a(x1,y1),b(x2,y2)若a//b,则存在实数使ab,且由平面向量基本定理可知

x1iy1j(x2iy2j)x2iy2j.x1x2①,y1y2②

①y2②x2得:x1y2x2y10

若y10,y20(即向量a,b不与坐标轴平行)则

x1y

1x2y

2(三)立体几何部分。

一、三垂线定理及其逆定理。

内容:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

证明:已知:如图(9),直线l与平面相交与点A,l在上的射影OA垂直于a,a

求证:l⊥a

证明:过P作PO垂直于

∵PO⊥α∴PO⊥a

又a⊥OA,PO∩OA=O ∴a⊥平面POA

∴a⊥l图(9)

(四)解析几何部分。

一、点到直线距离公式证明。

内容:已知直线l:AxByC0,直线外一点M(x0,y0).则其到直线l的距离为d

Ax

ByA

C。

B

证明:如图(10),设直线l:AxByC0,直线外一点M(x0,y0).直线上一点P(x,y).可得直线的 一个方向向量为v(B,A),设其法向量为n(s,t)则vnBsAt0,可得直线一法向量为n(A,B),n的单位向量为n0

(AA

B,A

B

B)图(10)

由题意,点M到直线的距离为PM在n0上的射影,所以,d

A(x0x)B(y0y)

A

B

Ax

By

0

2(AxBy)B

A

因为点P(x,y)在直线上,所以C(AxBy)①

Ax

ByA

所以,把①代入②中,得d

00

C

B

(五)数列部分

一、等差数列前n项和公式证明。

内容:an是等差数列,公差为d,首项为a1,Sn为其n前项和,则Sna1n证明:由题意,Sna1(a1d)(a12d).......(a1(n1)d)① 反过来可写为:Snan(and)(an2d).......(an(n1)d)②

①+②得:2Sna1na1n.......a1n



n个

n(n1)

d

n(a1an)

所以,Sn

n(a1an)

③,把ana1(n1)d代入③中,得Sna1n

二、等比数列前n项和公式证明。

n(n1)

d

n(a1an)

na1,(q1)

n

内容:an是等比数列,公比为q,首项为a1,Sn为其n前项和,则Sn=a1anq a1(1q)

,(q1)

1q1q

证明:Sna1a1qa1q.......a1qqS

n

2n

1①

n

a1qa1q

a1q

.......a1q②

n

①—②得:(1q)Sna1a1q,当q1时,Sn

a1a1q1q

n

a1(1q)1q

n

把ana1q

n1

代入③中,得Sn

a1anq1q

当q1时。很明显Snna1

na1,(q1)

n

所以,Sn=a1anq a1(1q)

,(q1)

1q1q

(六)函数和导数部分

一、换底公式证明。内容:log

N

loglog

aa

Nb

b

(N,a,b0;a,b1)

证明:设log

a

NX,log

a

bY,则ba,Na

YX

log

b

Nlog

a

Y

a

X

XY

log

a

a

XY

loglog

aa

Nb

第五篇:万全高中数学2---1立体几何基本定理与公式

万全高中数学基本公式

知识要点

1.经过不在同一条直线上的三点确定一个面.2.两个平面可将平面分成部分.3.过三条互相平行的直线可以确定.4.三个平面最多可把空间分成部分.空间直线.1.空间直线位置分三种:相交、平行、异面.相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内

2.异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)

3.平行公理:平行于同一条直线的两条直线互相平行.4.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围0,180)(直线与直线所成角0,90)

121(斜线与平面成角0,90)

2(直线与平面所成角0,90)

方向相同方向不相同(向量与向量所成角[0,180])

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5.两异面直线的距离:公垂线的长度.一、直线与平面平行、直线与平面垂直.1.空间直线与平面位置分三种:相交、平行、在平面内.2.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)

3.直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)

4.直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平

P面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥,a⊥AO,得a⊥PO(三垂线定理),O

A得不出⊥PO.因为a⊥PO,但PO不垂直OA. 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)

直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.5.⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影..

相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线

1段射影较长;③垂线段比任何一条斜线段短.⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上

一、平面平行与平面垂直.1.空间两个平面的位置关系:相交、平行.2.平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行,面面平行”)

推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3.两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)

4.两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)

注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5.两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.

五、棱锥、棱柱.1.棱柱.O⑴①直棱柱侧面积:SCh(C为底面周长,h是高)

②斜棱住侧面积:SC1l(C1是斜棱柱直截面周长,l是斜棱柱的侧棱长)

⑵{四棱柱}{平行六面体}{直平行六面体}{长方体}{正四棱柱}{正方体}.{直四棱柱}{平行六面体}={直平行六面体}.⑶棱柱具有的性质:

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱........柱的各个侧面都是全等的矩形......

②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形...

③过棱柱不相邻的两条侧棱的截面都是平行四边形.(直棱柱定义):棱柱有一条侧棱和底面垂直.⑷平行六面体:

定理一:平行六面体的对角线交于一点,并且在交点处互相平分..............

[注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以V棱柱Sh3V棱柱.正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i.正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)

ii.正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等

iii.正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相

等);底面为正多边形.正棱锥的侧面积:S1Ch'(底面周长为C,斜高为h')

2⑵棱锥具有的性质:

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它

叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧

棱在底面内的射影也组成一个直角三角形.3.球:⑴球的截面是一个圆面.4①球的表面积公式:S4R2.②球的体积公式:VR3.31②圆锥体积:Vr2h(r为半径,h为高)3

1③锥形体积:VSh(S为底面积,h为高)3

六.空间向量.1(1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.(2)共线向量定理:对空间任意两个向量a,b(b0),a ∥b的充要条件是存在实数(具

有唯一性),使ab.(3)共面向量:若向量a使之平行于平面或a在内,则a与的关系是平行,记作a∥.(4)①共面向量定理:如果两个向量a,b不共线,则向量P与向量a,b共面的充要条件是存

在实数对x、y使Pxayb.②空间任一点、B、C,则OPxOAyOBzOC(xyz1)是PABC四...O.和不共线三点......A.....点共面的充要条件.(简证:OP(1yz)OAyOBzOCAPyABzACP、A、B、C四点共面)

注: 是证明四点共面的常用方法.2.空间向量基本定理:如果三个向量,那么对空间任一向量P,存在一个唯一....a,b,c不共面...的有序实数组x、y、z,使pxaybzc.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使 xyz(这里隐含x+y+z≠1).注:设四面体ABCD的三条棱,ABb,ACc,ADd,其

B

1中Q是△BCD的重心,则向量()用

3D

3.(1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标).①令a=(a1,a2,a3),b(b1,b2,b3),则

(a1b1,a2b2,a3b3)a(a1,a2,a3)(R)aba1b1a2b2a3b3a∥ba1b1,a2b2,a3b3(R)

a12a22a32a1a2a3aba1b1a2b2a3b30

b1b2b3(aa)

a1b1a2b2a3b3ab cosa,b222222|a||b|a1a2a31b2b3

②空间两点的距离公式:d(x2x1)2(y2y1)2(z2z1)2.(2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量.(3)用向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中A,则点B到平面②利用法向量求二面角的平面角定理:设n1,n2分别是二面角l中平面,的法向量,则1,n2所成的角就是所求二面角的平面角或其补角大小(1,n2方向相同,1,n2反方,则为其夹角).③证直线和平面平行定理:已知直线a平面,ABa,CD,且CDE三点不共线,则a∥的充要条件是存在有序实数对使ABCDCE.(常设ABCDCE求解,若,存在即证毕,若,不存在,则直线AB与平面相交).

下载高中数学立体几何模块公理定理word格式文档
下载高中数学立体几何模块公理定理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学知识点--立体几何

    【高中数学知识点】立体几何学习的几点建议.txt 一 逐渐提高逻辑论证能力 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证......

    高中数学“立体几何”教学研究

    高中数学“立体几何”教学研究 一 . “立体几何”的知识能力结构 高中的立体几何是按照从局部到整体的方式呈现的,在必修2中,先从对空间几何体的整体认识入手,主通过直观感知、......

    真命题与公理、定理

    真命题与公理、定理 初学几何的同学,对真命题、公理、定理之间的区别与联系容易混淆。现作如下辨析,供同学们参考。 真命题就是正确的命题,即如果命题的题设成立,那么结论一定成......

    证明、公理、平行线性质定理(合集)

    证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理基础知识1.证明:2.公理:3.定理:4.等量代换:公理:5.平行线的判定定理:定理:公理6.平行线的性质定理定理:基础习......

    立体几何判定定理及性质定理汇总

    立体几何判定定理及性质定理汇总 一线面平行 线面平行判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 线面平行性质定理 一条直线与一个平面平行,......

    高中立体几何常用结论、定理

    立体几何中的定理、公理和常用结论 一、定理 1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 若A∈l,B∈l,A∈,B∈,则l⊂. 2.公理2如果两个平面有......

    高中数学定理[推荐五篇]

    高中数学 复数1. 定义:z=a+bi. (a、b∈R) ,a叫做复数z的实部,b叫做复数z的虚部。1b=0, ○2z²≥0 2. 复数为实数的条件:○1a=0且b≠0○2z²3. 复数为纯虚数的条件:○<01a+bi=c+di(a,......

    高中数学常用公式定理汇总

    2011年高考数学资料整理高中数学常用公式定理汇总集合类:ABAABABBAB逻辑关系类:对数类:logaM+logaN=logaMNlogMaM-logaN=logaNlogaMN=NlogaM logabMN=NblogaMloga1=0logaa=1log......