定义 定理 公理 定律的区别

时间:2019-05-12 05:27:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《定义 定理 公理 定律的区别》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《定义 定理 公理 定律的区别》。

第一篇:定义 定理 公理 定律的区别

/ 2

定义、定理、定律和定则

表面上看定义、定理和定律都是由一些文字性的叙述加上数学表达式所组成,形式上确实差别不大,而老师上课往往会注重了它们在应用方面的讲授,忽略了其内在的区别和联系,造成很多学生从初中到高中甚至大学,尽管会用其去解决问题,但对三者之间的区别依然一知半解;甚至有部分教师在课堂教学中对此也存在着模糊的认识,滥用定义;误把定律当定理或者定理当定律的事情都常有发生。下面笔者结合自己的体会,谈谈在高中物理教学中应如何讲清它们的一些特点和联系。

对于每一个概念,我们不妨先从词典里对它的解释入手来看问题,然后再辨析一下与它相近的概念,便于对比和理解。

1.定义:定义是对于一种事物的本质特征或一个概念的内涵和外延的确切而简要的说明。如果用通俗的说法,对某个概念的“定义”告诉我们的是:“什么是”这个量,而我们常见的“物理意义”告诉我们的是:这个量“是什么”。举个最常见的例子,如速度,定义:速度表示单位时间内通过的位移,物理意义:速度表示物体运动的快慢。

在物理学中,定义是有实际用处的,定义一个量,表面上似乎有一些任意性,但如果是为了解决生产实际的问题,那就要求定义出来的量有意义,有实际用处。所以没有人随便找几个物理量来乘乘除除,起个名字,创造个新的物理量出来。假设我们定义一个质点的动能和动量分别为Ek =

mv3和P =,如果撇开动能定理和动量定理来说它是否正确,就没

因为离开了用到它的场合,就等于失去了检验它的标准,而成为没有实际意有什么意义了,义的游戏。而动能和动量为什么是我们熟知的Ek =mv2和P =mv呢?原因在于我们

可以通过这样的定义,寻找到某种等量关系,即动能定理和动量定理,并可以运用它来帮助

我们解决实际问题。

其次定义的另一个特点在于简化公式或定理,使定理的文字叙述和公式表达更易于理解和便于记忆,也使定理的物理意义更加明确。例如:定义冲量等于力乘以力所作用时间的乘积,即I = f·t,又定义动量是物体的质量与物体速度的乘积,即P = mv,而动量定理正是I = P2 –P1,这样动量定理的表述就更加简洁明了。

定义某个物理量时,都有对应的表达式,或称其为定义式,在定义式中,被定义的量是不能独立地确定的,而要靠其他物理量来确定。如:真空中点电荷Q的电场强度,我们可以定义为的形式。因为F和q可以独立地确定,但E却不能,它就是由来

确定的。

并不是什么物理量都有定义的,例如最常见的力,“力是物体之间的相互作用”,显然不是对力的定义,充其量只是一种说明。还有我们熟悉的“能”的概念,具有做功本领的物体就具有能,这也不是对“能”的定义。

2.定理:定理是建立在公理和假设基础上,经过严格的推理和证明得到的,它能描述事物之间内在关系,定理具有内在的严密性,不能存在逻辑矛盾。比如:勾股定理,隐含公理是平直的欧几里得空间,假设是直角三角形。

要明白定理的来源,首先我们必须了解公理,公理是不证自明的真理,是建立科学的基础,欧几里得《几何原本》就是建立在五条公理基础上严密的逻辑体系。公理和定理的区别主要在于:公理的正确性不需要用逻辑推理来证明,而定理的正确性需要逻辑推理来证明。

在物理学中而定理是通过数学工具(如微积分)推理得来的,如动能定理;定律是由实验得出或验证的,如机械能守恒定律。/ 2

原理与定理极其近似但又稍有区别,原理只要求用自然语言表达(当然并不排除数学表达),定理则着重于反映原理的数学性。因此,在表达时一定要用数学式来阐明,如“帕斯卡原理”:在密闭容器内,液体向各个方向传递的压强相等。再如“动能定理”,其表达式为:。3.定律:定律是通过大量具体的客观事实归纳而成的结论,是描述客观世界变化规律的表达式或者文字。

定律是一种理论模型,它用以描述特定情况、特定尺度下的现实世界,在其它尺度下可能会失效或者不准确。没有任何一种理论可以描述宇宙当中的所有情况,也没有任何一种理论可能完全正确。比如:牛顿运动定律只能在经典力学适用;热力学第二定律不能推广到整个宇宙等。由于定律是针对客观世界,所以可以近似或者不完全囊括整个物理世界。

定律和规律的区别:

①规律是客观的,它的存在和发生作用不以人的意志为转移,规律既不能被创造,也不能被消灭,具有不可抗拒性;定律则是主观的,它是人的认识能力达到一定水平才得出的正确认识,可以不断地深化、扩展和向前推移。

②规律是事物本身固有的,它们在人的意识之外独立地存在着,不管人们是否承认它、喜欢它,它都客观地存在并起着作用;定律则是人们对某种客观规律的认识,人们只有通过实践,才能发现规律,获得定律。只有学习和掌握规律,才能利用对规律的认识即定律去指导实践活动,定律的作用才能发挥出来。

规律和定律的联系:定律是人们对某种客观规律的概括,反映事物在一定条件下发生一定变化过程的必然联系,定律离不开规律,没有规律也就没有定律。可见,定律不是规律,规律是定律的内容,定律是某种客观规律的主观映象。

4.定则:定则反映的是各有关概念之间的普遍关系,并经过人为认定且使用的一些规则。为了表述方便,往往加入人为的假定规则,以便概念间的关系变得形象鲜明,便于理解和记忆。

定则是人为规定的,比如左、右手定则、安培定则等,都有一定的主观性,关键就是要让定则简便直观,易于学习和理解。如果是一个失去双手的人,用双脚来代替左、右手判定也未免不是一个好方法。笔者就曾看到有老师在应用安培定则判断通电螺线管的极性和电流方向关系的教学中,不少学生因为螺线管的缠绕方式和电流方向变化的组合改变,不能正确按照“让四指弯向螺线管中电流方向”的要求摆出手形,遇到学习障碍。教师采用“以直代曲”的方式,通过对安培定则手形加以改进,取得良好的教学效果。这些都说明定则是为了方便梳理各概念之间的关系而人为建立的。

第二篇:定理定律定则区别

定理是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。

定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。

定律是对客观事实的一种表达形式,通过大量具体的客观事实归纳而成的结论。定律是一种理论模型,它用以描述特定情况、特定尺度下的现实世界,在其它尺度下可能会失效或者不准确。没有任何一种理论可以描述宇宙当中的所有情况,也没有任何一种理论可能完全正确。

公理是一个不证自明的真理,其他知识必须依靠它们,而且其他知识从它们而建造。在这种情况下的一个公理可以在你知道任何其他命题之前就知道。不是所有知识论学者认可任何这个意义上的公理存在。在逻辑和数学中,公理不必须是不证自明的真理,而是用在演绎中生成进一步结果的一个形式逻辑表达式。要公理化一个知识系统就是证实所有它的主张都可以从一个相互独立的句子的小集合推导出来。这不暗示着它们可以独立的获知;并且典型的有多种方式来公理化一个给定的知识系统(比如算术)。数学家区别两种类型的公理: 逻辑公理和非逻辑公理。

所谓公理,也就是经过人们长期实践检验、不需要证明同时也无法去证明的客观规律。

定则是人们为了描述某一事物而假定的规则,或许从英文单词的不同可以理解以下他们的区别:

定义·定则·定理·定律,公理的英文分别是:

Definition· Formula· Theorem· Law,axiom

第三篇:高中数学立体几何模块公理定理

高中数学立体几何模块公理定理汇编

Hzoue/2009-12-12

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

Al,Bl,且Aα,Bαlα.(作用:证明直线在平面内)

公理2 过不在一条直线上的三个点,有且只有一个平面.(作用:确定平面)推论 ①直线与直线外一点确定一个平面.

②两条相交直线确定一个平面.

③两条平行直线确定一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. Pα,且Pβαβ=l,且Pl.(作用:证明三点/多点共线)

公理4平行于同一条直线的两条直线互相平行.(平行线的传递性)空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 线面平行判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 面面平行判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行. 线面平行性质定理 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行. 面面平行性质定理 如果两个平行平面同时和第三个平面相交,则它们的交线平行. 线面垂直判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行. 三垂线定理 如果平面内一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直. 逆定理 如果平面内一条直线与平面的一条斜线垂直,则它和这条直线的射影垂直. 射影定理 从平面外一点出发的所有斜线段中,若斜线段长度相等则射影相等,斜线段较长则射影较长,斜线段较短则射影较短. 面面垂直判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.

线面垂直性质定理1 如果一条直线垂直于一个平面,则它垂直于平面内的所有直线. 线面垂直性质定理2 垂直于同一个平面的两条直线平行.

面面垂直性质定理1 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直性质定理2 两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.

第四篇:真命题与公理、定理

真命题与公理、定理

初学几何的同学,对真命题、公理、定理之间的区别与联系容易混淆。现作如下辨析,供同学们参考。

真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立。如: ①两条平行线被第三条直线所截,内错角相等。

②如果a>b,b>c那么a>c。

③对顶角相等。

公理是人们在长期实践中总结出来的、正确的命题,它不需要用其他的方法来证明,初一几何中我们过的主要公理有:

①经过两点有一条直线,并且只有一条直线。

②经过直线外一点有且只有一条直线与这条直线平行。

③同位角相等,两直线平行。

④两直线平行,同位角相等。

公理的正确性是在实践中得以证实的,是被大家公认的,不再需要其他的证明,并且它可以作为证明其他真命题的依据。如应用公理③可以推导出“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

定理是根据公理或已知的定理推导出来的真命题。这些真命题都是最基本的和常用的,所以被人们选作定理。还有许多经过证明的真命题没有被选作定理。所以,定理都是真命题,而真命题不都是定理。例如:“若∠1=∠2,∠2=∠3,那么∠1=∠3”,这就是一个真命题,但不能说是定理。

总之,公理和定理都是真命题,但有的真命题既不是公理。也不是定理。公理和定理的区别主要在于:公理的正确性不需要用推理来证明,而定理需要证明。

第五篇:证明、公理、平行线性质定理

证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理

基础知识1.证明:

2.公理:3.定理:

4.等量代换:公理:

5.平行线的判定定理:定理:公理

6.平行线的性质定理定理:基础习题 1.下列说法正确的是()

A.所有的定义都是命题B.所有的定理都是命题

C.所有的公理都是命题D.所有的命题都是定理 22.若P(P5)是一个质数,而P1除以24没有余数,则这种情况()

A.绝不可能B.只是有时可能

C.总是可能D.只有当P=5时可能

3.下列关于两直线平行的叙述不正确的是()

A.同位角相等,两直线平行;B.内错角相等,两直线平行毛

C.同旁内角不互补,两直线不平行;D.如果a∥b,b⊥c,那么a∥c 14.如左图,下列说法错误的是()lllll3A、∵∠1=∠2,∴3∥4B、∵∠3=∠4,∴3∥4 lllll4C、∵∠1=∠3,∴3∥4D、∵∠2=∠3,∴1∥2 ll55.已知:如图,下列条件中,不能判断直线1∥2的()l1A、∠1=∠3B、∠2=∠

3C、∠2=∠4D、∠4+∠5=180 6.若两条平行线被第三条直线所截,则下列说法错误的()l

2A、一对同位角的平分线互相平行B、一对内错角的平分线互相平行

C、一对同旁内角的平分线互相平行D、一对同旁内角的平分线互相垂直

7.如图,AB∥CD,∠α=()BAA、50°B、80°C、85°D、95° C8.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=()AB

A、50°B、130°C、100°D、50°或130° 9.如图,AB∥CD,AD、BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()A、31°B、35° C、41°D、76°

填空

10.如图,(1)如果AB∥CD,必须具备条件∠______=∠________,D根据是____________________。(2)要使AD∥BC,必须具备条件∠______=∠________,根据是

4____________________。B

11.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是________。

D12.如图,已知∠1=30°,∠B=60°,AB⊥AC。(1)计算:∠DAB+∠B=

(2)AB与CD平行吗?()AD与BC平行吗?()B

简答题:

13.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE 证明:∵DF平分∠ADE(已知)A 1∴________=∠ADE()

2∵∠ADE=60°(已知)D∴_________________=30°()

∵∠1=30°(已知)

∴____________________()BC∴____________________()

14.已知:如图,∠B=∠C.(1)若AD∥BC,求证:AD平分∠EAC;

(2)AD平分∠EAC,求证:AD∥BC.15、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.能力提升

16.(1)如图(1),AB∥EF.求证:(1)∠BCF=∠B+∠F.(2)当点C在直线BF的右侧时,如

图(2),若AB∥EF,则∠BCF与∠B,∠F的关系如何?请说明理由.D

BC

下载定义 定理 公理 定律的区别word格式文档
下载定义 定理 公理 定律的区别.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一数学中的公理定理

    (一)学过的公理: 1、直线公理:两点确定一条直线。 2、线段公理:两点之间,线段最短。 3、垂线公理:过一点有且只有一条直线与已知直线垂直。 4、平行公理:过直线外一点,有且只有一条直......

    高中物理基本概念、定理、定律、公式大全

    高中物理基本概念、定理、定律、公式 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=S/t (定义式)2.有用推论Vt2 -Vo2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/......

    高二数学 立体几何的概念、公理、定理

    立体几何的概念、公理、定理王 春 老师 编辑 2007-12 -20一.写出以下公理、定理,并根据图形写出它们的条件与结论。(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那......

    命题与证明之公理定理[推荐阅读]

    公理和定理教学要求:1 了解公理与定理到概念,以及他们之间的内在联系;2 了解公理与定理都是真命题,它们都是推理论证的依据;3 掌握教材十条公理和已学过的定理。重点难点十条公理......

    经典命题逻辑公理系统定理证明算法设计

    Http://logic.zsu.edu.cn/journal.htm 逻辑与认知 Vol.2, No.4, 2004---收稿日期:2004-11-25;作者简介:杜国平,1965 年生,男,汉族,江苏盱眙人,南京大学副教授。基金项目:国家社科基金......

    初中几何证明的所有公理和定理

    初中几何证明的所有公理和定理 1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直 6 直......

    初三数学证明及相关公理、定理、推论(共5篇)

    第一次课:证明及相关公理、定理、推论一、考点、热点回顾1、《证明(一)》知识点回顾:全等三角形的四个公理和一个推论公理三遍对应相等的两个三角形全等。(SSS)公理两边及其夹角......

    备战2014年数学中考————初中平面几何定理公理总结

    初中平面几何定理公理总结 一、线与角 1、两点之间,线段最短 2、经过两点有一条直线,并且只有一条直线 3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等 4、经过直线......