数列、极限、数学归纳法·数学归纳法

时间:2019-05-12 17:06:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列、极限、数学归纳法·数学归纳法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列、极限、数学归纳法·数学归纳法》。

第一篇:数列、极限、数学归纳法·数学归纳法

数列、极限、数学归纳法·数学归纳法·教案

教学目标

1.了解归纳法的意义,培养学生观察、归纳、发现的能力.

2.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤. 3.抽象思维和概括能力进一步得到提高. 教学重点与难点

重点:归纳法意义的认识和数学归纳法产生过程的分析. 难点:数学归纳法中递推思想的理解. 教学过程设计

(一)引入

师:从今天开始,我们来学习数学归纳法.什么是数学归纳法呢?应该从认识什么是归纳法开始.

(板书课题:数学归纳法)

(二)什么是归纳法(板书)

师:请看下面几个问题,并由此思考什么是归纳法,归纳法有什么特点.

问题1:这里有一袋球共十二个,我们要判断这一袋球是白球,还是黑球,请问怎么办?(可准备一袋白球、问题用小黑板或投影幻灯片事先准备好)生:把它倒出来看一看就可以了.

师:方法是正确的,但操作上缺乏顺序性.顺序操作怎么做? 生:一个一个拿,拿一个看一个. 师:对.问题的结果是什么呢?(演示操作过程)

第一个白球,第二个白球,第三个白球,„„,第十二个白球,由此得到:这一袋球都是白球.

特点吗?

生:归纳法是由一些特殊事例推出一般结论的推理方法. 特点是由特殊→一般(板书).

师:很好!其实在中学数学中,归纳法我们早就接触到了.例如,给出数列的前四项,求它的一个通项公式用的是归纳法,确定等差数列、等比数列通项公式用的也是归纳法,今后的学习还会看到归纳法的运用.

在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.

还应该指出,问题1和问题2运用的归纳法还是有区别的.问题1中,一共12个球,全看了,由此而得到了结论.这种把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.对于问题2,由于自然数有无数个,用完全归纳法去推出结论就不可能,它是由前4项体现的规律,进行推测,得出结论的,这种归纳法称为不完全归纳法.

(三)归纳法的认识(板书)

归纳法分完全归纳法和不完全归纳法(板书). 师:用不完全归纳法既然要推测,推测是要有点勇气的,请大家鼓起勇气研究问题3.

资料1(事先准备好,由学生阅读)

费马(Fermat)是17世纪法国著名的数学家,他是解析几何的发明者之一,是对微积分的创立作出贡献最多的人之一,是概率论的创始者之一,他对数论也有许多贡献. 但是,费马曾认为,当n∈N时,22n+1一定都是质数,这是他对n=0,1,2,3,4作了验证后得到的.

18世纪伟大的瑞士科学家欧拉(Euler)却证明了225+1=4 294 967 297=6 700 417×641,从而否定了费马的推测.

师:有的同学说,费马为什么不再多算一个数呢?今天我们是无法回答的.但是要告诉同学们,失误的关键不在于多算一个上!再请看数学史上的另一个资料(仍由学生阅读):

师:算了39个数不算少了吧,但还不行!我们介绍以上两个资料,不是说世界级大师还出错,我们有错就可以原谅,也不是说归纳法不行,不去学了,而是要找出运用归纳法出错的原因,并研究出对策来. 师:归纳法为什么会出错呢? 生:完全归纳法不会出错.

师:对!但运用不完全归纳法是不可避免的,它为什么会出错呢? 生:由于用不完全归纳法时,一般结论的得出带有猜测的成份. 师:完全同意.那么怎么办呢? 生:应该予以证明.

师:大家同意吧?对于生活、生产中的实际问题,得出的结论的正确性,应接受实践的检验,因为实践是检验真理的唯一标准.对于数学问题,应寻求数学证明.

(四)归纳与证明(板书)

师:怎么证明呢?请结合以上问题1思考.

生:问题1共12个球,都看了,它的正确性不用证明了.

师:也可以换个角度看,12个球,一一验看了,这一一验看就可以看作证明.数学上称这种证法为穷举法.它体现了分类讨论的思想.

师:如果这里不是12个球,而是无数个球,我们用不完全归纳法得到,这袋球全是白球,那么怎么证明呢?

(稍作酝酿,使学生把注意力更集中起来)

师:这类问题的证明确不是一个容易的课题,在数学史上也经历了多年的酝酿.第一个正式研究此课题的是意大利科学家莫罗利科.他运用递推的思想予以证明. 结合问题1来说,他首先确定第一次拿出来的是白球. 然后再构造一个命题予以证明.命题的条件是:“设某一次拿出来的是白球”,结论是“下一次拿出来的也是白球”.

这个命题不是孤立地研究“某一次”,“下一次”取的到底是不是白球,而是研究若某一次是白球这个条件能保证下一次也是白球的逻辑必然性. 大家看,是否证明了上述两条,就使问题得到解决了呢?

生:是.第一次拿出的是白球已确认,反复运用上述构造的命题,可得第二次、第三次、第四次、„„拿出的都是白球.

师:对.它使一个原来无法作出一一验证的命题,用一个推一个的递推思想得到了证明. 生活上,体现这种递推思想的例子也是不少的,你能举出例子来吗? 生:一排排放很近的自行车,只要碰倒一辆,就会倒下一排. 生:再例如多米诺骨牌游戏.(有条件可放一段此种游戏的录相)

师:多米诺骨牌游戏要取得成功,必须靠两条:

(1)骨牌的排列,保证前一张牌倒则后一张牌也必定倒;(2)第一张牌被推倒.

用这种思想设计出来的,用于证明不完全归纳法推测所得命题的正确性的证明方法就是数学归纳法.

(五)数学归纳法(板书)

师:用数学归纳法证明以上问题2推测而得的命题,应该证明什么呢? 生:先证n=1时,公式成立(第一步);

再证明:若对某个自然数(n=k)公式成立,则对下一个自然数(n=k+1)公式也成立(第二步). 师:这两步的证明自己会进行吗?请先证明第一步.

师:于是由上述两步,命题得到了证明.这就是用数学归纳法进行证明的基本要求. 师:请小结一下用数学归纳法作证明应有的基本步骤. 生:共两步(学生说,教师板书):(1)n=1时,命题成立;

(2)设n=k时命题成立,则当n=k+1时,命题也成立.

师:其实第一步一般来说,是证明开头者命题成立.例如,对于问题3推测得的命

(若有时间还可讨论此不等关系证明的第二步,若无时间可布置学生课下思考)

(六)小结

师:把本节课内容归纳一下:

(1)本节的中心内容是归纳法和数学归纳法.

(2)归纳法是一种由特殊到一般的推理方法.分完全归纳法和不完全归纳法二种.(3)由于不完全归纳法中推测所得结论可能不正确,因而必须作出证明,证明可用数学归纳法进行.(4)数学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的操作步骤必须是二步.

数学归纳法在数学中有广泛的应用,将从下节课开始学习.

(七)课外作业

(1)阅读课本P112~P115的内容.(2)书面作业P115练习:1,3. 课堂教学设计说明

1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.

数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束. 把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试. 2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.

3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.

第二篇:高数极限习题

第二章 导数与微分

典型例题分析

客观题

例 1 设f(x)在点x0可导,a,b为常数,则limf(x0ax)f(x0bx)xabx0()

f(x0)Aabf(x0)

B(ab)f(x0)

C(ab)f(x0)

D

答案 C

f(x0ax)f(x0bx)limx0x[f(x0ax)f(x0)][f(x0bx)f(x0)]lim x0x

f(x0bx)f(x0)f(x0ax)f(x0)blim

alim

x0x0bxax

(ab)f(x0)

例2(89303)设f(x)在xa的某个邻域内有定义,则f(x)在xa处可导的一个充分条件是()1f(a2h)f(ah)(A)limhfaf(a)存在(B)lim存在h0hhh(C)limf(ah)f(ah)2hh0存在(D)limf(a)f(ah)h存在h0答案 D

解题思路

(1)对于答案(A),不妨设

1hx,当h时,x0,则有

1f(ax)f(a)limhfaf(a)lim存在,这只表明f(x)在xa处hx0hx右导数存在,它并不是可导的充分条件,故(A)不对.(2)对于答案(B)与(C),因所给极限式子中不含点a处的函数值f(a),因此与导数概念不相符和.例如,若取

1,xaf(x)

0,xa则(B)与(C)两个极限均存在,其值为零,但limf(x)0f(a)1,从而f(x)在xaxa处不连续,因而不可导,这就说明(B)与(C)成立并不能保证f(a)存在,从而(B)与(C)也不对.(3)记xh,则x0与h0是等价的,于是 limf(a)f(ah)hh0limf(ah)f(a)hh0limf(ah)f(a)h

h0x所以条件D是f(a)存在的一个充分必要条件.例3(00103)设f(0)0,则f(x)在点x0可导的充要条件为()x0limf(ax)f(a)f(a)(A)lim1h1h2h0f(1cosh)存在(B)lim1h1hh0f(1e)存在

h(C)limh02f(hsinh)存在(D)limh0f(2h)f(h)存在

答案 B

解题思路

(1)当h0时, 1coshhh02limf(1cosh)h2h0lim2f(1cosh)f(0)h21.所以如果f(0)存在,则必有

limf(1cosh)f(0)1coshh0lim1coshh2h0若记u1cosh,当h0时,u0,所以

f(1cosh)f(0)f(u)f(0)limlimf(0)h0h01coshu于是

limf(1cosh)h2h012f(0)

1h2这就是说由f(0)存在能推出limh0f(1cosh)存在.h0,而不是u0,因此 但是由于当h0时,恒有u1cos1f(x)f(0)f(0)limlim2f(1cosh)存在只能推出存在,而不能推出f(0)h0hx0x存在.

(2)当h0时, 1eho(h),于是

hlimf(1e)hhh0limf(ho(h))f(0)hh0limf(ho(h))f(0)ho(h)

h0 由于当h0时, ho(h)既能取正值,又能取负值,所以极限limf(ho(h))f(0)ho(h)h0存在与limf(h)f(0)hh0f(0)存在是互相等价的.因而

极限lim1hh0hf(1e)存在与f(0)存在互相等价.(3)当h0时, 用洛比塔法则可以证明limlimf(hsinh)h2h0,所以 6hf(hsinh)f(0)hsinhlimlimh 3h0h0hsinhhh03hsinh1由于h0,于是由极限limf(hsinh)f(0)hsinhh0limhsinhh3h0h存在未必推出hsinh(4)f(x)在点x0可导一定有(D)存在,但(D)存在不一定f(x)在点x0可导.h0limf(hsinh)f(0)也存在,因而f(0)未必存在.例 4(98203)函数f(x)(xx2)|xx|有()个不可导点

(A)0(B)1(C)2(D)3

答案 C

解题思路 当函数中出现绝对值号时,不可导的点就有可能出现在函数的零点,因为函数零点是分段函数的分界点.因此需要分别考察函数在点x00,x11,x21考察导数的存在性.解 将f(x)写成分段函数:

23(x22(xf(x)2(x(x2x2)x(1x),x2)x(x1),x2)x(1x),x2)x(x1),2222x1,1x0,0x1,1x.(1)在x00附近,f(x)写成分段函数:

22x(xx2)(x1),x023 f(x)(xx2)|xx|22x(xx2)(1x),x0容易得到

f(x)f(0)22f(0)limlim(xx2)(x1)2

x0x0xf(x)f(0)22f(0)limlim(xx2)(1x)2

x0x0x由于f(0)f(0),所以f(0)不存在.(2)在x11附近,f(x)写成分段函数:

2x(1x)(xx2)(1x),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1f(x)f(1)2f(1)limlimx(1x)(xx2)4

x1x1x1由于f(1)f(1),所以f(1)不存在.(3)在x21附近,f(x)写成分段函数:

2x(1x)(xx2)(x1),x123f(x)(xx2)|xx|

2x(1x)(xx2)(x1),x1f(1)limf(x)f(1)x1x0x1由于f(1)f(1)0,所以f(1)存在.x1f(1)limx1f(x)f(1)limx1x(x1)(x22x2)0

limx(x1)(xx2)0

综合上述分析,f(x)有两个不可导的点.例5(95103)设f(x)具有一阶连续导数,F(x)f(x)(1|sinx|),则f(0)0是F(x)在x0处可导的()

(A)必要但非充分条件

(B)充分但非必要条件

(C)充分且必要条件

(D)既非充分也非必要条件

答案 C

分析 从F(x)在x0的导数定义着手.将F(x)f(x)(1|sinx|)f(x)f(x)|sinx| 解

F(x)F(0)f(x)f(0)f(x)|sinx|f(0)|sin0|limlimF(0)lim

x0x0x0x0x0x0

f(0)f(0)

f(x)f(0)f(x)|sinx|f(0)|sin0|F(x)F(0)limlimF(0)lim

x0x0x0x0x0x0f(0)f(0)

于是推知F(0)F(0)的充分必要条件是f(0)0. 例6(92103)设函数f(x)3xx|x|,则使f32(n)(0)存在的最高阶数n().(A)0

(B)1(C)

2(D)3

答案 C

解题思路 应先去掉f(x)中的绝对值,将f(x)改写为分段函数

2x3 f(x)3xx|x|34x32x0x0x0x0

2x3 解 由f(x)3xx|x|34x32

6x2得f(x)212xx0x0

12x且f(x)24x又f(0)limx012 f(x)x024x0x0x0

f(x)f(0)x0limx02x03x00,f(0)limf(x)f(0)x0x0limx04x03x020

所以f(0)存在.f(0)limf(x)f(0)x0x0limx06x0x012x0 00 f(0)limf(x)f(0)x02limx0x0x0所以f(0)存在.f(0)limf(x)f(0)x0x0limx012x0x012

x0即f(0)f(0).因而使fx0f(0)limf(x)f(0)24

x0(n)(0)存在的最高阶数是2.x0lim24x0

例7 f(x)cos|x|x2|x|存在的最高阶导数的阶数等于()

A

0

B 1

C 2

D 3 答案 C 解题思路 注意cos|x|cosx,所以只需考察x|x|在点x0的情况.例8(96203)设0,f(x)在区间(,)内有定义,若当x(,)时,恒有f(x)x,则x0必是f(x)的()

(A)间断点,(B)连续而不可导的点,(C)可导的点,且2f'(0)0

(D)可导的点,且f'(0)0

答案

C

解 由题目条件易知f(0)0,因为

|所以由夹逼定理

f(x)f(0)x||f(x)xf(x)x||x2x|

2lim|x0f(x)f(0)x|lim|x0|lim|x0xx|0

于是f(0)0.1ex,x0, 则f(0)为()

例9(87103)设f(x)x0,x0.

1(A)0

(B)

(C)1

(D)1

2答案

(C)

解题思路

因f(x)为分段函数,故它在分段点处的导数应按导数的定义,又由于是未定式,可用洛必达法则求极限.200型解

1e f(0)limx2f(x)f(0)x0ulimx0x0xx00lim1exx2x02x

2当u0时,e 1与u是等价无穷小,所以当x0时,1e与x是等价无穷小.因而

2lim1exx2x021

12,则x0时,f(x)在x0处的微分dy与

例10(88103)设f(x)可导且f(x0)x比较是()的无穷小.(A)等价(B)同阶(C)低阶(D)高阶

答案 B

解题思路

根据yf(x)在xx0处的微分的定义:dyf(x0)x.x12 解 limlim,可知dy与x是同阶的无穷小.x0xx0x21xsin,x0

例11(87304)函数f(x)在x0处()xx00,dy

(A)连续,且可导

(B)连续,不可导

(C)不连续

(D)不仅可导,导数也连续

答案 B

解题思路

一般来说,研究分段函数在分段点处的连续性时,应当分别考察函数的左右极限;在具备连续性的条件下,为了研究分段函数在分界点处可导性,应当按照导数定义,或者分别考察左右导数来判定分段函数在分段点处的导数是否存在.因此,本题应分两步:(1)讨论连续性;(2)讨论可导性.解(1)讨论函数在点x0处的连续性

10f(0),可知函数f(x)在点x0处是连续的.由于limf(x)limxsinx0x0x

(2)讨论函数在点x0处的可导性

1xsin0f(x)f(0)1xlimlimsin

由于lim不存在,所以,函数f(x)在点

x0x0x0x0xxx0处不可导.x

例12 设f(x)p必须满足()p1sin01x,x0,x0 在点x0可导,但是f(x)导数在点x0不连续,则

A0p1

B1p2

C0p2

D1p答案 B

解题思路

(1)当p1时,下述极限不存在: x因此f(0)不存在.当p1时, x0limf(x)f(0)xsinlimx0p1xlimxp1sin1

x0xxx所以f(0)0.x0limf(x)f(0)xsinlimx0p1xlimxp1sin10

x0xx这就是说,只有当p1时, f(0)才存在,所以选项A,C可以被排除.(2)当p1时

0,x0 f(x)11p1p2sinxcos,x0pxxx当且仅当p20,即p2时,limf(x)0f(0),所以当且仅当1p2时,x0f(x)在点x0可导,但是f(x)在点x0不连续.例13(95403)设f(x)可导,且满足条件limf(1)f(1x)2x12x01,则曲线yf(x)在(1,f(1))处的切线斜率为()(A)2,(B)2,(C),(D)1

答案 B

解 记ux,则有

f(1)f(1x)1f(1u)f(1)1limlimf(1)x02x2u0u2

例1

4设yln(12x),则y

(A)(10)()

9!(12x)10

(B)9!(12x)10

(C)10!2910(12x)

(D)9!21010(12x)

答案 D

解题思路

求高阶导数的一般方法是: 先求出一阶、二阶、三阶导数;找出规律,即可写出高阶导数.2y, 12x21y(2)(1)(2)(1)(2)

22(12x)(12x)y(2)(1)(2)(2)2(12x)3

y(10)9!21010(12x).例17

(90103)设函数f(x)有任意阶导数,且f(x)f(x),则f(n)(x)(n1),(n2).n1(A)n!f(x)(B)nf(x)(C)f2n(x)(D)n!f2n(x)

答案 A

解题思路 这是一个求高阶导数的问题,涉及到求抽象函数的导数.解

由f(x)有任意阶导数且f(x)f(x),可知

2f(x)f(x)32f(x)f(x)2f(x)ff(x)2f(x)32f(x)f(x)3!f2(n)n12(x)2f(x),(x)

34依此由归纳法可知 f(x)n!f(x)

注意(1)当n1,n2时虽然(B)也正确,但当n2就不正确了,所以将(B)排除之;

222(2)在求导数f(x)时,可将函数f(x)看成是由yt与tf(x)复合而成的,(t)f(x)2tf(x)2f(x)f(x).(初学者可能会这样做:f(x)2f(x),后面丢掉一个因子f(x).则根据复合函数的求导法则,故f(x)222

例18(91303)若曲线yxaxb和2y1xy在点(1,1)处相切,其中

23a,b是常数,则()(A)a0,b

2(B)a1,b3

(C)a3,b

1(D)a1,b1

答案 D

解题思路

两曲线在某点相切就是指两曲线在此公共点处共一条切线,从而两曲线的斜率也应相等.解

曲线yxaxb在点(1,1)处的斜率是

2k1(xaxb)2x1(2xa)x132a

另一条曲线是由隐函数2y1xy确定,该曲线在点(1,1)处的斜率可以由隐函数求导数得到: 对于方程2y1xy两边求导得到2y3xyyy,解出y得到此曲线在点(1,1)处的斜率为

k2yx1y1323y3223xy1

x1y12令k1k2,立即得到a1.再将a1,x1,y1代入yxaxb中得出b1.例19设f(x),g(x)定义在(1,1),且都在x0处连续,若g(x)x0f(x)x,则()x02(A)limg(x)0且g'(0)0,(B)limg(x)0且g'(0)1

x0x0(C)limg(x)1且g'(0)0

(D)limg(x)0且g'(0)2

x0x0 答案 D

解题思路 分析函数f(x)的表达式,并运用f(x)在x0处连续这一关键条件.解 既然f(x)在x0处连续,于是必有limf(x)limx0g(x)xx02,于是必有limg(x)0.于是又有g(0)limx0g(x)g(0)xx0limg(x)xx02.1cosx 例 20(99103)设f(x)x2xg(x)x0x0 其中g(x)是有界函数,则f(x)在x0处()(A)极限不存在(B)极限存在,但不连续

(C)连续,但不可导(D)可导

答案 D

解题思路

若能首先判定f(x)在x0处可导,则(A)、(B)、(C)均可被排除.解

x f(0)lim21f(x)f(0)x0x0x2limx01cosx3limx023limx0x2x)

2x220

(x0时1cosx~ f(0)lim2f(x)f(0)x0xx0由于f(x)在x0点的左导数等于右导数,因而 f(x)在x0处可导.x0x0limxg(x)2limxg(x)0(g(x)是有界函数)

 例21 设f(x)sinx,则(f(f(x)))()A.cos(sinx)cosx B.sin(sinx)cosx C.cos(cosx)sinx D.sin(cosx)sinx

答案 A

例 22 设f(x)是可导函数,则()A.若f(x)为奇函数,则f(x)为偶函数B.若f(x)为单调函数C.若f(x)为奇函数,则f(x)为奇函数D.若f(x)为非负函数 答案 A

解题思路 根据导数定义,利用函数的奇性.解 由于f(u)f(u),所以 ,则f(x)为单调函数 ,则f(x)为非负函数

f(x)limlimf(xx)f(x)xf[x(x)]f(x)x0limf(xx)f(x)x

x0x因此f(x)为偶函数.x0f(x)例23 设yesinsin22x,则dy()sin2 B.2eA.esinx C.2e 答案 D

解题思路 运用复合函数微分法

例 24 设f(0)存在,lim(1x0xxsin2xsincosx D.e2xsin2x

1cosf(x)sinx1)xe,则f(0)()A.0 B.1 C.答案 C

解 由 C.e

lim(1x01cosf(x)sinx1)xe

可以知道当x0时,有

lim(参阅第一章1.5的例2)

x011cosf(x)1 xsinxf2当x0时,sinx与x是等价无穷小,1cosf(x)与

(x)2是等价无穷小.于是

f(x)11cosf(x)1limlim1 2x0xx0sinx2x又因为f(0)存在,所以此式又推出 f(0)limf(x)xx022.1,x0arctan 例 25 设f(x) 在点x0可导,则()xaxb,x0A.a1,b2 B.a1,b0 C.a1,b2 D.a1,b2

答案D

解题思路 先考察函数在点x0左右极限,确定连续性,再考察左右导数.由可微性最终确定a,b.解

1,所以b.(1)limf(x)lim(axb)b,limf(x)limarctanx0x0x22x0x0于是f(0)2.(2)f(0)a,f(0)limx0f(x)f(0)arctanlimx01xx2

xarctan1xx2: 以下需要用洛比塔法则求极限limx0

arctanlimx01x2lim(arctan1xx2)limx01x2xx0于是由f(0)f(0)推出a1

11

例26.(93303)若f(x)f(x),且在(0,)内f(x)0,f(x)0,则f(x)在(,0)内必有

(A)f(x)0,f(x)0(B)f(x)0,f(x)0

(C)f(x)0,f(x)0(D)f(x)0,f(x)0 答案 C

解体思路 所给函数显然是奇函数,因此f(x)是偶函数,f(x)是奇函数.解 由f(x)0,x(0,)知f(x)0,x(,0);由f(x)0,x(0,)知f(x)0,x(,0).

第三篇:高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么 极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致 极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)

必须是 函数的导数要存在!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)

必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况 0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

(从网上发现,谢谢总结者)

第四篇:数列极限例题

三、数列的极限

(1)n1}当n时的变化趋势.观察数列{1n问题:

当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:

(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定

11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义

如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为

limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:

N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:

a2axN2x2x1xN1ax3x

当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证

注意到xn1 nn任给0, 若要xn1, 只要

11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn

重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;

n(1)n11”的详细推理

(2)逻辑“取 N[], 则当nN时, 就有

n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得

1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就

n是成立

n(1)n111.xn1=

nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证

任给0(要求ε<1)若q0, 则limqlim00;

nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n

说明:当作公式利用:limq

n1, q1,不存在,q1.

第五篇:数列极限教案

数列的极限教案

授课人:###

一、教材分析

极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。

二、教学重点和难点

教学重点:数列极限概念的理解及数列极限N语言的刻画。

教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。

三、教学目标

1、通过学习数列以及数列极限的概念,明白极限的思想。

2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。

四、授课过程

1、概念引入

例子一:(割圆术)刘徽的割圆术来计算圆的面积。

.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断

1接近圆的面积。

例子二:庄子曰“一尺之锤,日取其半,万世不竭”。

第一天的长度1第二天的剩余长度 第二天的剩余长度

第四天的剩余长度 8

.....第n天的剩余长度n1.......2

随着天数的增加,木杆剩余的长度越来越短,越来越接近0。

这里蕴含的就是极限的概念。

总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:

1111(1): 1,,......; 23nn

1n1111:1,,,......;(2)n2345

(3)n2:1,4,9,16,......;

(4)1:1,1,1,1,......,1,......; nn

我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)

(4)中的数列却没有这样的特征。

此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。

可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。

2、内容讲授

(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x

n的极限,或者说数列xn收敛且收敛于数a。

写作:limxna或xnan。

n

如果数列没有极限,就说数列是发散的。

注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。

(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n

若取1,则存在N1000,当nN时,xna。1000

数列极限的N语言:

limx

nna0,N,nNxna.数列极限的几何解释:

3、例题讲解

n211。例题1用数列极限的定义证明limnnn

n21证明:设xn,因为 nn

n21212xn1nnnnn

0,欲使xn,只要22即n,n

2我们取N1,当nN时,

n2122.nnNn

n21所以lim1.nnn

2注:N的取法不是唯一的,在此题中,也可取N10等。

例题2 设xnC(C为常数),证明limxnC。n

证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n

小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业

下载数列、极限、数学归纳法·数学归纳法word格式文档
下载数列、极限、数学归纳法·数学归纳法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列极限复习

    数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范......

    数列等差证明2010江西理数

    数列等差证明2010江西理数 2010江西理数)22. (本小题满分14分) 证明以下命题: (1) 对任一正整a,都存在整数b,c(b......

    高数课件-函数极限和连续范文合集

    一、函数极限和连续自测题 1,是非题 (1)无界变量不一定是无穷大量 (2)若limf(x)a,则f(x)在x0处必有定义 xx012x(3)极限lim2sinxlimx0 xx33x2,选择题 (1)当x0时,无穷小量1x1x是x的 A.......

    高数复习方案(函数和极限)

    计算机科学与技术09级学生工作委员会—学习部函数与极限1. 集合:具有某种特性定性质的事物的总体成为集合组成集合的事物叫做元素设元素为a集合为M那么aM交集,子集,属于,不属于......

    学法心得体会

    学法心得体会 法律知识,主要学习的法律有:《中华人民共和国宪法》、《中华人民共和国治安管理法》、《中华人民共和国国旗法》、《中华人民共和国反分裂法》、《中华人民共和......

    学法征文

    学法守法、执法用法 促进依法行政南庄财税所李灵武 一、财政法制工作的中心任务和主要职责 财政法制工作的中心任务是:全面推进依法理财,加快建设法治财政。主要任务概括起来......

    学法心得体会

    学法心得体会普法工作是依法治国的基础性工程,是一项系统性、社会性、全局性活动,是一项提高干部和广大人民群众法律意识的“民心工程”,是一项长期而艰巨的任务,需要长期不懈地......

    学法心得体会

    学法心得体会 篇一:2015年学法心得 今年是我国“六五”普法的收官之年,经过多年的法治宣传教育,广大人民群众的法治观念、法治意识和法律素质得到了显著提高。然而在当前社会......