第一篇:数列极限的运算性质
极限的运算
教学目标
1.熟练运用极限的四则运算法则,求数列的极限.
2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力.
3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想. 教学重点与难点
使用极限四则运算法则及3个常用极限时的条件. 教学过程
(一)运用极限的四则运算法则求数列的极限
师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个常用极限:lim1=0,limC=C,limqn=0(|q|<1)来解决。
nnnn例1:求下列极限:
7n33n2n(1)lim 3n4n1
师:(1)中的式子如何转化才能求出极限.
生:可以分子、分母同除以n3,就能够求出极限.
师:(2)中含有幂型数,应该怎样转化?
师:分子、分母同时除以3n-1结果如何? 生:结果应该一样.
师:分子、分母同时除以2或2,能否求出极限?
n
n-
1(二)先求和再求极限 例2 求下列极限:
由学生自己先做,教师巡视.
判断正误.
生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n→∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的.
师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?
生:用等比数列的求和公式先求出分母的和.
=12. 师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件.
例3求下列极限:
师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策.
生:(1)题是连乘积的形式,可以进行约分变形.
生:(2)题是分数和的形式,可以用“裂项法”变形.
例4设首项为1,公比为q(q>0)的等比数列的前n项和为Sn,师:等比数列的前n项和Sn怎样表示?
师:看来此题要分情况讨论了.
师:综合两位同学的讨论结果,解法如下:
师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化.同
(三)公比绝对值小于1的无穷等比数列前n项和的极限 师:利用无穷等比数列所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于1的无穷等比数列各项和的公式:
例5计算:
题目不难,可由学生自己做. 师:(1)中的数列有什么特点?
师:(2)中求所有奇数项的和实质是求什么?
(1)所给数列是等比数列;(2)公比的绝对值小于1;
(四)利用极限的概念求数的取值范围
师:(1)中a在一个等式中,如何求出它的值. 生:只要得到一个含有a的方程就可以求出来了.
师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程? 生:先求极限.
师:(2)中要求m的取值范围,如何利用所给的等式?
|q|<1,正好能得到一个含有m的不等式,解不等式就能求出m的范围.
解得0<m<4.
师:请同学归纳一下本课中求极限有哪些类型? 生:主要有三种类型:
(1)利用极限运算法则和三个常用极限,求数列的极限;(2)先求数列的前n项和,再求数列的极限;(3)求公比绝对值小于1的无穷等比数列的极限. 师:求数列极限应注意的问题是什么? 生甲:要注意公式使用的条件.
生乙:要注意有限项和与无限项和的区别与联系.
上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充.
(五)布置作业 1.填空题:
2.选择题:
则x的取值范围是[ ]. 的值是[ ].
A.2 B.-2 C.1 D.-1 作业答案或提示
(7)a. 2.选择题:
(2)由于所给两个极限存在,所以an与bn的极限必存在,得方程
以上习题教师可以根据学生的状况,酌情选用. 课堂教学设计说明
1.掌握常用方法,深化学生思维. 数学中对解题的要求,首先是学生能够按部就班地进行逻辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用.例1的设计就是以此为目的的.
2.展示典型错误,培养严谨思维. 第二课时
数列极限的运算性质
教学目标:
1、掌握数列极限的运算性质;会利用这些性质计算数列的极限
2、掌握重要的极限计算公式:lim(1+1/n)n=e 教学过程:
一、数列极限的运算性质
如果liman=A,limbn=B,那么
(1)lim(an+bn)= liman+ limbn =A+B(2)lim(an-bn)= liman-limbn =A-B(3)lim(anbn)= liman limbn =AB(4)lim(an/bn)= liman/ limbn =A/B(B0,bn0)注意:运用这些性质时,每个数列必须要有极限,在数列商的极限中,作为分母的数列的项及其极限都不为零。
数列的和的极限的运算性质可推广为:如果有限个数列都有极限,那么这有限个数列对应各项的和所组成的数列也有极限,且极限值等于这有限个数列的极限的和。类似地,对数列的积的极限的运算性质也可作这样的推广。注意:上述性质只能推广为有限个数列的和与积的运算,不能推广为无限个数列的和与积。
二、求数列极限
1、lim(5+1/n)=5
2、lim(n2-4)/n2=lim(1-4/n2)=1
3、lim(2+3/n)2=4
4、lim[(2-1/n)(3+2/n)+(1-3/n)(4-5/n)]=10
5、lim(3n2-2n-5)/(2n2+n-1)=lim(3-2/n-5/n2)/(2+1/n-1/n2)=3/2 分析:由于lim(3n2-2n-5)及lim(2n2+n-1)都不存在,因此不能直接应用商的极限运算性质进行计算。为了能应用极限的运算性质,可利用分式的性质先进行变形。在变形时分子、分母同时除以分子、分母中含n的最高次数项。
4、一个重要的数列极限
我们曾经学过自然对数的底e2.718,它是一个无理数,它是数列(1+1/n)n的极限。lim(1+1/n)n =e(证明将在高等数学中研究)求下列数列的极限
lim(1+1/n)2n+1 =lim(1+1/n)n (1+1/n)n (1+1/n)=ee1=e2 lim(1+3/n)n =lim[(1+1/(n/3))n/3] 3=e3
分析:在底数的两项中,一项为1,另一项为3/n,其中分子不是1,与关于e的重要极限的形式不相符合,为此需要作变形。其变形的目标是将分子中的3变为1,而不改变分式的值。为此可在3/n的分子、分母中同时除以3,但这样又出现了新的矛盾,即分母中的n/3与指数上的n以及取极限时n不相一致,为此再将指数上的n改成n/33,又因为n与n/3是等价的。
lim(1+1/(n+1))n=lim(1+1/(n+1))(n+1)-1=lim(1+1/(n+1))n+1/lim(1+1/(n+1))=e
练习:计算下列数列的极限
lim(3-1/2n)=3
lim(1/n2+1/n-2)(3/n-5/2)=5
lim(-3n2-1)/(4n2+1)=-3/4 lim(n+3)(n-4)/(n+1)(2n-3)=1/2
lim(1+3/2n)2=1
lim(1+1/3n)2(2-1/(n+1)3=18=8 lim(1+1/n)3n+2=lim[(1+1/n)n] 3(1+1/n)2=e3
lim(1+4/n)n=e4
lim(1+1/(n+2))n+1=e lim[(n+5)/(n+4)]n=lim(1+1/(n+4))n=e
lim(1+2/(n+1))n=e2
lim[(n+5)/(n+2)] n=lim[(1+3/(n+2))(n+2)/3] 3/(1+3/(n+2))2=e3
第二篇:第2讲数列极限及其性质2009
《数学分析I》第2讲教案
第2讲数列极限概念及其性质
讲授内容
一、数列极限概念
数列 a1,a2,,an,,或简单地记为{an},其中an,称为该数列的通项.
关于数列极限,先举二个我国古代有关数列的例子.(1)割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽.n
22园内接正n边形的面积An
Rsin
2n
sin
(n3,4,),当n时,AnR
2nn
R
2
(2)古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.第一天截下
12,第二天截下
n
2,„„,第n天截下
n,„„这样就得到一个数列
22,2,,1,.或n.n22
不难看出,数列{}的通项
n
随着n的无限增大而无限地接近于0.一般地说,对于数列{an},若当n无
限增大时an能无限地接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限.不具有这种特性的数列就不是收敛数列.下面我们给出收敛数列及其极限的精确定义.
定义1设{an}为数列,a为定数.若对任给的正数,总存在正整数N,使得当,n>N时有|ana|则称数列{an收敛于a,定数a称为数列{an}的极限,并记作limana,或ana(n).读作“当n
n
趋于无穷大时,an的极限等于a或an趋于a”.
若数列{an}没有极限,则称{an}为发散数列.下面举例说明如何根据N定义来验证数列极限.
二、根据N定义来验证数列极限
例2证明lim
1n
n
0,这里为正数
,故对任给的>0,只要取N=
1
1,则当nN时,便有
证:由于 |
1n
0|
1n
1n
1N
即|
1n
0|.这就证明了lim
1n
n
0.例3证明lim
3n
n
n33n
3.分析由于|
n
33|
9n3
9n
(n3).因此,对任给的>o,只要
9n
,便有
|
3n
n3
3|,即当n
时,(2)式成立.故应取Nmax{3,
999
证任给0,取Nmax{3,据分析,当nN时有|23|,式成立.于是本题得证.n3
n
例4证明limq=0,这里|q|<1.
n
3n
证若q=0,则结果是显然的.现设0<|q|<1.记h
1|q|
1,则h>0.我们有
|q0||q|
11nh
nn
1(1h)
n,并由(1h)1+nh得到|q|
|q0|,这就证明了limq
n
n
nn
1nh
.对任给的0,只要取N
h,则当nN时,得
n
0.注:本例还可利用对数函数ylgx的严格增性来证明,简述如下:对任给的>0(不妨设<1),为使
n
n
只要nlg|q|lg即n|q0||q|,lglg|q|
(这里0|q|1).于是,只要取N
lglg|q|
即可。
例5证明lim
n
n
a1,其中a>0.
证:(ⅰ)当a1时,结论显然成立.(ⅱ)当a1时,记an1,则0.由 a(1)n1n1n(an1)得
an1
a1n.(1)
任给0,由(1)式可见,当n
a1
N时,就有an1,即|an1|.所以lim
n
a1.(ⅲ)当0a1时,,1
n
-1,则0.由
a
1
1n
(1)1n1n1得 aa1
1a
n
a
1n.a
a
1
1
n.1
(2)
任给0,由(2式可见,当n1
a1
N时,就有1an,即|an1|.所以lim
n
n
a1.关于数列极限的—N定义,应着重注意下面几点:
1.的任意性:尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N,又既
2时任意小的正数,那么,3或等等同样也是任意小的正数,因此定义1中不等式|ana|中的可用
,3或等来代替.
2.N的相应性:一般说,N随的变小而变大,由此常把N写作N(),来强调N是依赖于的;但这并不意味着N是由所唯一确定的.3.从几何意义上看,“当n>N时有|aa|”意味着:所有下标大于N的项an都落在邻域U(a;)内;而在U(a;)之外,数列{an}中的项至多只有N个(有限个).
定义2若liman0,则称{an}为无穷小数列.由无穷小数列的定义,不难证明如下命题:
n
n
定理2.1数列{an}收敛于a的充要条件是:{ana}为无穷小数列.
三、收敛数列的性质
定理2.2(唯一性)若数列{an}收敛,则它只有一个极限.
定理2.3(有界性)若数列{an}收敛,则{an}为有界数列,即存在正数M,使得对一切正整数有|an|M.证:设limana取1,存在正数N,对一切n>N有
n
|ana|1即a1ana1.记Mmax{|a1|,|a2|,|aN|,|a1|,|a1|},则对一切正整数n都有anM.注:有界性只是数列收敛的必要条件,而非充分条件.例如数列1定理2.4(保号性)若limana0
n
n
有界,但它并不收敛.
(a,0
(或<0),则对任何a(0,a)(或a,存在正数N,使
得当nN时有ana(或ana).
证:设a0.取aa(>0),则存在正数N,使得当nN时有aana,即
anaa,这就证得结果.对于a0的情形,也可类似地证明.
注:在应用保号性时,经常取a
a2
.即有an
a2,或an
a2
定理2.5(保不等式性)设an与bn均为收敛数列.若存在正数N0,使得当nN0时,有anbn,则limanlimbn.n
n
请学生思考:如果把定理2.5中的条件anbn换成严格不等式anbn,那么能否把结论换成limanlimbn?,并给出理由.n
n
例1设an0n1,2,.证明:若limana,则lim
n
n
an
a.证:由定理2.5可得a0.若a0,则由liman0,任给0,存在正数N,使得当nN时有an,从而an即
n
an0,故有lim
n
an0.anaan
a
ana
a
若a0,则有
an
a
.任给0,由limana,存在正数N,使得当
n
nN时有ana
a,从而
an
a.故得证.
第三篇:数列极限例题
三、数列的极限
(1)n1}当n时的变化趋势.观察数列{1n问题:
当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:
(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定
11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义
如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为
limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:
N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:
a2axN2x2x1xN1ax3x
当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证
注意到xn1 nn任给0, 若要xn1, 只要
11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn
重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;
n(1)n11”的详细推理
(2)逻辑“取 N[], 则当nN时, 就有
n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得
1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就
n是成立
n(1)n111.xn1=
nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证
任给0(要求ε<1)若q0, 则limqlim00;
nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n
说明:当作公式利用:limq
n1, q1,不存在,q1.
第四篇:数列极限教案
数列的极限教案
授课人:###
一、教材分析
极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。
二、教学重点和难点
教学重点:数列极限概念的理解及数列极限N语言的刻画。
教学难点:数列极限概念的理解及数列极限N语言的刻画,简单数列的极限进行证明。
三、教学目标
1、通过学习数列以及数列极限的概念,明白极限的思想。
2、通过学习概念,发现不同学科知识的融会贯通,从哲学的量变到质变的思想的角度来看待数列极限概念。
四、授课过程
1、概念引入
例子一:(割圆术)刘徽的割圆术来计算圆的面积。
.........内接正六边形的面积为A1,内接正十二边形的面积为A2......内接正62n1形的面积为An.A1,A2,A3......An......圆的面积S.用圆的内接正六n边形来趋近,随着n的不断增加,内接正六n边形的面积不断
1接近圆的面积。
例子二:庄子曰“一尺之锤,日取其半,万世不竭”。
第一天的长度1第二天的剩余长度 第二天的剩余长度
第四天的剩余长度 8
.....第n天的剩余长度n1.......2
随着天数的增加,木杆剩余的长度越来越短,越来越接近0。
这里蕴含的就是极限的概念。
总结:极限是变量变化趋势结果的预测。例一中,内接正六n边形的边数不断增加,多边形的面积无限接近圆面积;例二中,随着天数的不断增加,木杆的剩余长度无限接近0.在介绍概念之前看几个具体的数列:
1111(1): 1,,......; 23nn
1n1111:1,,,......;(2)n2345
(3)n2:1,4,9,16,......;
(4)1:1,1,1,1,......,1,......; nn
我们接下来讨论一种数列xn,在它的变化过程中,当n趋近于时,xn不断接近于某一个常数a。如随着n的增大,(1),(2)中的数列越来越接近0;(3)
(4)中的数列却没有这样的特征。
此处“n趋近于时”,“xn无限接近于数a”主要强调的是“一个过程”和一种“接近”程度。
可是只凭定性的描述和观察很难做到准确无误,所以需要精确的,定量的数学语言来刻画数列的概念。本节课的重点就是将数列的这样一个特征用数学语言刻画出来,并引入数列极限的概念。
2、内容讲授
(定义板书)设xn是一个数列,a是实数。如果对于任意给定的数0,总存在一个正整数N,当nN时,都有xna,我们称a是数列x
n的极限,或者说数列xn收敛且收敛于数a。
写作:limxna或xnan。
n
如果数列没有极限,就说数列是发散的。
注意:(1)理解定义中的“任意给定”:是代表某一个正数,但是这个数在选取时是任意的,选定以后就是固定的。不等式xna是表示xn与a的接近程度,所以可以任意的小。
(2)N的选取是与任意给定的有关的。11以数列为例,欲若取,则存在N100,当nNxna; 100n
若取1,则存在N1000,当nN时,xna。1000
数列极限的N语言:
limx
nna0,N,nNxna.数列极限的几何解释:
3、例题讲解
n211。例题1用数列极限的定义证明limnnn
n21证明:设xn,因为 nn
n21212xn1nnnnn
0,欲使xn,只要22即n,n
2我们取N1,当nN时,
n2122.nnNn
n21所以lim1.nnn
2注:N的取法不是唯一的,在此题中,也可取N10等。
例题2 设xnC(C为常数),证明limxnC。n
证明:任给的0,对于一切正整数n,xnCCC0,所以limxnC。n
小结:用定义证数列极限存在时,关键是任意给定寻找N,但不必要求最小的N.五、课后作业
第五篇:数列极限复习
数列极限复习题
姓名
242n1、lim=; n139(3)n
an22n1a2、若lim(2n)1,则=; nbn2b
1an3、如果lim()0,则实数a的取值范围是;n2a
n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n
___;
a5.已知无穷等比数列n的前n项和
穷等比数列各项的和是;
6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;
7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;
8、无穷等比数列an的各项和为2,则a1的取值范围是
1的分m
9、无穷等比数列an中,为;
lim(a2a3...an)
n
=1,则a1的取值范围
cosnsinn
10、计算: lim,[0,]
ncosnsinn
222na2n111、若lim2n1,则实数a的取值范围是; 2n
12a
23n2n(1)n(3n2n)
12、若数列{an}的通项公式是an=,n=1,2,„,则
lim(a1a2an)__________;
n
1
1n2012n(n1)
13、若an,Sn为数列an的前n项和,求limSn____;
n
31n2013n1
214、等差数列an,bn的前n项和分别为Sn,Tn且
an
nbn
Sn2n
,则Tn3n
1lim15、设数列an、bn都是公差不为0的等差数列,且lim
lim
b1b2b3n
na4n
an
3,则bn16、已知数
列为等差数列,且,则
a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是
n1q
2__________;
18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若
lim
Sn
11,则公比q的取值范围是.;
nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n
()其中Sn表示数列{an}的前n项和.则limnan
A.0B.1C.D.
220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()
(A)limanA, limbnB则lim
n
n
anA
(bn0,nN)
nbBn
(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()
n
ab
.2A.2
3B.12
C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知
A0,0,B3,0,C2,2,则点M的坐标是()
52522A、(,)B、(,1)C、(,1)D、(1,)
3333323、已知数列
lim
{an},{bn}
都是无穷等差数列,其中
a13,b12,b2是a2和a
3的等差中
an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且
24、设正数数列
lga
lin
1n
an
为一等比数列,且a24,a416,求
lagn2n
2al2ng;
bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an
nSn
且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;
(2)若数列an的前n项和为Sn,当a1时,求lim
Sn
nan