第一篇:关于数列极限的两个定义
关于数列极限的两个定义
定义1.设有数列an,a 是有限常数。若对任意0N,对任意正整
数nN,有 ana,则称数列an的极限是 a。
定义2.设有数列an,a 是有限常数。若对任意0,对任意正整数
nN,有 ana,则称数列an的极限是 a
定义1 是课本第46面的原文,定义2 是我讲课时用的。这两个定义的区别只在对N的要求:定义1 要求N是正整数,而定义2只要求N是实数,这是很低的要求,故定义2比定义1较便于应用。
由于两个定义对N的要求不同,易使人误认为两个定义界定的对象不一样,即:两个定义不等价。实际上,这两个定义完全是等价的!为说明这两个定义的等价性,我们需要两个显然的命题:
命题1.对于任意实数r均存在正整数n,使得nr。
命题2.对于任意实数r,若正整数n,成立nr,则对于每一个正整数m均有nmr。要证明定义1与定义2等价,我们只需证明这两个定义界定的极限一样即可。证明:设有数列an。
(1)若有限常数a是定义1 界定的极限,由于正整数N是实数,因此,常数a也
是定义2 界定的极限。
(2)若有限常数a是定义2 界定的极限,由定义2,对任意0,存在实数N,对任意正整数nN,有 ana;对于实数N,必有正整数M使得MN(命题1);当nM时,必有nN;故对于正整数M,当nM时必有ana。因此,常数a也是定义1 界定的极限。
说明:(2)中的正整数M即是定义1 中的N。极限证明中关键是由 nN 保证
ana,而不是N是否是正整数。
另,请大家注意课本p.55 的第1题,这个题对于帮助大家深入理解数列极限定义是有很大作用的。
第二篇:数列极限的定义
第十六教时
教材:数列极限的定义
目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋
近”,然后初步学会用N语言来说明数列的极限,从而使学生在学习数学中的“有限”到“无限”来一个飞跃。过程:
一、实例:1当n无限增大时,圆的内接正n边形周长无限趋近于圆周长
2在双曲线xy1中,当x时曲线与x轴的距离无限趋近于0
二、提出课题:数列的极限考察下面的极限
1 数列1:
110,111
102,103,,10
n,①“项”随n的增大而减少②但都大于0
③当n无限增大时,相应的项1
n可以“无限趋近于”常数0
2 数列2:123n
2,3,4,,n1,
①“项”随n的增大而增大②但都小于1
③当n无限增大时,相应的项n
n1可以“无限趋近于”常数1
3 数列3:1,11(1)n
2,3,,n,①“项”的正负交错地排列,并且随n的增大其绝对值减小
②当n无限增大时,相应的项(1)n
n
可以“无限趋近于”常数
引导观察并小结,最后抽象出定义:
一般地,当项数n无限增大时,无穷数列an的项an无限地趋近于某
个数a(即ana无限地接近于0),那么就说数列an以a为极限,或者说a是数列an的极限。(由于要“无限趋近于”,所以只有无穷数列才有极限)
数列1的极限为0,数列2的极限为1,数列3的极限为0
三、例一(课本上例一)略
注意:首先考察数列是递增、递减还是摆动数列;再看这个数列当n无限
增大时是否可以“无限趋近于”某一个数。
练习:(共四个小题,见课本)
四、有些数列为必存在极限,例如:an(1)n
或ann都没有极限。例二下列数列中哪些有极限?哪些没有?如果有,极限是几?
1.a1(1)n1(1)n
n22.an2
3.anan(aR)
n
4.a1)n135
n(n5.an5 3
解:1.an:0,1,0,1,0,1,„„不存在极限
2.a2,0,22
n:3,0,5,0,极限为0
3.an:a,a2,a3,不存在极限
4.a,33
n:32,14,极限为0
5.an
5525n:先考察,, 无限趋近于0 3:
392781∴ 数列an的极限为5
五、关于“极限”的感性认识,只有无穷数列才有极限
六、作业:习题1
补充:写出下列数列的极限:1 0.9,0.99,0.999,„„2 a1
n
2n
3
(1)n113456111n4 2,3,4,5,5 an1242n
第三篇:数列极限的定义
Xupeisen110高中数学
教材:数列极限的定义(N)
目的:要求学生掌握数列极限的N定义,并能用它来说明(证明)数列的极限。过程:
一、复习:数列极限的感性概念
二、数列极限的N定义
1n
3.小结:对于预先给定的任意小正数,都存在一个正整数N,使得只要nN 就
有an0<
4.抽象出定义:设an是一个无穷数列,a是一个常数,如果对于预先给定的任
意小的正数,总存在正整数N,使得只要正整数nN,就有ana<,那么就说数列an以a为极限(或a是数列an的极限)
Xupeisen110高中数学
记为:limana 读法:“”趋向于“n” n无限增大时
n
注意:①关于:不是常量,是任意给定的小正数
②由于的任意性,才体现了极限的本质
③关于N:N是相对的,是相对于确定的,我们只要证明其存在④ana:形象地说是“距离”,an可以比a大趋近于a,也可以比a小趋近于
例四1.lim
n
证明
证明2:设是任意给定的小正数
要使3n13 只要
2n1
12n1
n
54
取N51当nN时,3n13恒成立
422n12
第四篇:数列极限的定义教案
第十七教时
教材:数列极限的定义(N)
目的:要求学生掌握数列极限的N定义,并能用它来说明(证明)数列的极限。过程:
一、复习:数列极限的感性概念
二、数列极限的N定义
n
1.以数列(1)n为例
a111n:1,,234 0 观察:随n的增大,点越来越接近
2只要n充分大,表示点a(1)n即:n与原点的距离an0n01n可以充分小 进而:就是可以小于预先给定的任意小的正数 n
2.具体分析:(1)如果预先给定的正数是
1(1)10,要使an0n01n<110 只要n10即可 即:数列(1)nn的第10项之后的所有项都满足
(2)同理:如果预先给定的正数是1103,同理可得只要n103即可(3)如果预先给定的正数是
110k(kN*),同理可得:只要n10k即可
3.小结:对于预先给定的任意小正数,都存在一个正整数N,使得只要nN
就有an0<
4.抽象出定义:设an是一个无穷数列,a是一个常数,如果对于预先给定的任意小的正数,总存在正整数N,使得只要正整数nN,就有ana<,那么就说数列an以a为极限(或a是数列an的极限)
记为:limnana 读法:“”趋向于
“n” n无限增大时
注意:①关于:不是常量,是任意给定的小正数
②由于的任意性,才体现了极限的本质
③关于N:N是相对的,是相对于确定的,我们只要证明其存在
④ana:形象地说是“距离”,an可以比a大趋近于a,也可以比a小趋近于
a,也可以摆动趋近于a
三、处理课本 例
二、例
三、例四
例三:结论:常数数列的极限是这个常数本身
例四 这是一个很重要的结论
四、用定义证明下列数列的极限:
1.lim2n1n2
2.lim3n1n1
n2n132 证明1:设是任意给定的小正数
2n12n111n12n要使2n 即:2
两边取对数 nlog1
取 N12log2
„„„„介绍取整函数 2n12n当nN时,2n1恒成立
∴lim1n2n1
证明2:设是任意给定的小正数
要使
3n11512n132 只要
2n15
n42 取N513n1342
当nN时,2n12恒成立
∴lim3n1n2n132
第五篇:函数与数列极限的定义区别
导读:极限是研究函数最基本的方法,它描述的是当自变量变化时函数的变化趋势.要由数列极限的定义自然地过渡到函数极限的定义,关键在于搞清楚 数列也是函数这一点.数列可看作一个定义域为自然数集的函数,其解析表达式为an=f(n).关键词:极限,数列,函数 极限概念是数学分析中
最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、方法等问题.数列极限的ε-N定义是极限理论的重点与核心.数列极限1.定义
设有数列{an}与常数A,如果对于任意给定的正数ε(不论它有多么小),总存在正整数N,使得当n>N时,不等式|an-A|<ε 都成立,那么就称常数A是数列{ an }的极限,或者称数列{an}收敛于A,记作
读作“当n趋于无穷大时,an的极限等于A或an趋于A”。数列极限存在,称数列{an}为收敛数列,否则称为发散数列.上述定义的几何意义是:对于任何一个以A为中心,ε为半径的开区间(A-ε,A+ε),总可以在数列{an}中找到某一项aN,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{an}的有限项(N项).对于正整数N 应该注意两点:其一,N是随着ε而存在的,一般来讲,N随着ε的减小而增大,但N不是唯一存在的;其二,定义中只强调了正整数N的存在性,而并非找到最小的N,我们只关注第N项以后的各项均能保持与常数a的距离小于给定的任意小正数ε即可.2.性质 收敛数列有如下性质:(1)极限唯一性;(2)若数列{an}收敛,则{an}为有界数列;
(3)若数列{an}有极限A,则其任一子列{ank}也有极限A;
(4)保号性,即若极限A>0,则存在正整数N1,n>N1时an>0;
(5)保序性,即若,且AN1时an (1)自变量趋于有限值时函数的极限:- [论文网 ]函数f(x)在点x0的某一去心邻域内有定义,如果对于任意给定的正数ε(无论它多么小),总存在正数δ,使得对于满足不等式的一切x,对应的函数值f(x)都满足不等式,则常数A为函数f(x)在x→x0时的极限,记作 上述定义的几何意义是:将极限定义中的四段话用几何语言表述为 1对:任意以两直线为边界的带形区域; 2总:总存在(以点x0位中心的)半径; 3当时:当点x位于以点x0位中心的δ空心邻域内时; 4有:相应的函数f(x)的图像位于这个带形区域之内.(2)自变量趋于无穷大时函数的极限:设函数f(x)在|x|大于某一正数时有定义,如果任给ε>0,总存在着正数Χ,使得对于适合不等式|x|>Χ的一切x,对应的函数值f(x)都满足不等式|f(x)-A|<ε,则称常数A为函数f(x)当x→∞时的极限,记作 并称y=A为函数y=f(x)的图形的水平渐近线.2.性质(1)极限唯一性;(2)局部有界性 若存在,则存在δ1>0,使得f(x)在去心邻域内是有界的,当x趋于无穷大时,亦成立; (3)局部保号性 若,则存在δ1>0,使得时,f(x)>0,当x趋于无穷大时,亦成立; (4)局部保序性 若,且A0,使得时f(x) 利用定义证明极限下面介绍用“ε-δ(或N)”证明极限的一般步骤.1.极限值为有限的情形: (1)给定任意小正数ε; (2)解不等式或,找δ或N; (3)取定δ或N; (4)令或,由或成立,推出或.2.极限值为无穷大的情形(仅以极限为+∞与自变量为例): (1)给定任意大正数G;(2)解不等式;(3)取定;(4)令,由成立,推出.利用极限的定义证明问题关键是步骤(2),应该非常清楚从哪一种形式的不等式推起,最后得到一个什么形式的式子,由此即可找到所需要的(或N).极限存在准则1.夹逼准则(1)数列极限的夹逼准则 如果数列{an},{bn}及{cn}满足下列条件: 1存在N,n>N时,bn≤an≤cn; 则数列{an}的极限存在,且.(2)函数极限的夹逼准则 (以x→x0和x→∞为例)如果 1(或|x|>M)时,有 2(或),则(或) (3)一个重要不等式 时,2.单调有界数列必有极限 3.柯西(Cauchy)极限存在准则 数列{an}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m,n>N时,有|xn-xm|<ε.数列极限与函数极限的联系数列可看作一个定义域为自然数集的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值, 其解析表达式为an=f(n);函数是连续的,数列相当于一个函数中的一些独立的点,表现在图形上数列是无数的点,而函数是一段曲线;把数列中的n用x来替换后如果函数f(x)存在极限则数列也必定有极限,但是反之不成立。 数列{an}的极限一般都是指n的变化使得极限值的产生,而n是一个正整数,函数的极限中自变量x可以趋向任何值,由此可知函数的极限更广泛。 计算极限的常用方法1.利用洛必达法则 三这是最常用的方法,主要针对未定型极限: 注意与其他工具(无穷小代换、变量代换、不定式因子的分离、各种恒等变形、泰勒公式等)相结合.2.利用已知极限 „„ 3.利用泰勒公式 4.利用迫敛性 5.利用定积分求和式极限 6.利用数列的递推关系计算极限 7.利用级数的收敛性计算极限 8.利用积分中值定理计算极限 计算数列和函数极限的关键是综合运用各种计算极限的方法,并不断总结,才能较好地掌握计算极限的方法.极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出- [论文网 ]发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、方法等问题.数列极限的ε-N定义是极限理论的重点与核心.数列极限1.定义 设有数列{an}与常数A,如果对于任意给定的正数ε(不论它有多么小),总存在正整数N,使得当n>N时,不等式|an-A|<ε 都成立,那么就称常数A是数列{ an }的极限,或者称数列{an}收敛于A,记作 读作“当n趋于无穷大时,an的极限等于A或an趋于A”。大全,函数。大全,函数。数列极限存在,称数列{an}为收敛数列,否则称为发散数列.上述定义的几何意义是:对于任何一个以A为中心,ε为半径的开区间(A-ε,A+ε),总可以在数列{an}中找到某一项aN,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{an}的有限项(N项).对于正整数N 应该注意两点:其一,N是随着ε而存在的,一般来讲,N随着ε的减小而增大,但N不是唯一存在的;其二,定义中只强调了正整数N的存在性,而并非找到最小的N,我们只关注第N项以后的各项均能保持与常数a的距离小于给定的任意小正数ε即可.2.性质 收敛数列有如下性质: (1)极限唯一性; (2)若数列{an}收敛,则{an}为有界数列; (3)若数列{an}有极限A,则其任一子列{ank}也有极限A; (4)保号性,即若极限A>0,则存在正整数N1,n>N1时an>0; (5)保序性,即若,且AN1时an (1)自变量趋于有限值时函数的极限:函数f(x)在点x0的某一去心邻域内有定,如果对于任意给定的正数(无论它多么小),总存在正数,使得对于满足不等式的一切x,对应的函数值f(x)都满足不等式,则常数A为函数f(x)在xx0时的极限,记作 上述定义的几何意义是:将极限定义中的四段话用几何语言表述为 1对:任意以两直线为边界的带形区域; 2总: 总存在(以点x0位中心的)半径; 3当时:当点x位于以点x0位中心的δ空心邻域内时; 4有:相应的函数f(x)的图像位于这个带形区域之内.(2)自变量趋于无穷大时函数的极限:设函数f(x)在|x|大于某一正数时有定义,如果任给ε>0,总存在着正数Χ,使得对于适合不等式|x|>Χ的一切x,对应的函数值f(x)都满足不等式|f(x)-A|<ε,则称常数A为函数f(x)当x→∞时的极限,记作 并称y=A为函数y=f(x)的图形的水平渐近线.2.性质 (1)极限唯一性; (2)局部有界性 若存在,则存在δ1>0,使得f(x)在去心邻域内是有界的,当x趋于无穷大时,亦成立; (3)局部保号性 若,则存在δ1>0,使得时,f(x)>0,当x趋于无穷大时,亦成立; (4)局部保序性 若,且A0,使得时f(x) 利用定义证明极限下面介绍用“ε-δ(或N)”证明极限的一般步骤.1.极限值为有限的情形: (1)给定任意小正数ε; (2)解不等式或,找δ或N; (3)取定δ或N; (4)令或,由或成立,推出或.2.极限值为无穷大的情形(仅以极限为+∞与自变量为例): (1)给定任意大正数G; (2)解不等式; (3)取定δ; (4)令,由成立,推出.利用极限的定义证明问题关键是步骤(2),应该非常清楚从哪一种形式的不等式推起,最后得到一个什么形式的式子,由此即可找到所需要的δ(或N).极限存在准则1.夹逼准则 (1)- [论文网 ]数列极限的夹逼准则 如果数列{an},{bn}及{cn}满足下列条件: 1存在N,n>N时,bn≤an≤cn; 2 则数列{an}的极限存在,且.(2)函数极限的夹逼准则 (以x→x0和x→∞为例)如果 1(或|x|>M)时,有 2(或),则(或) (3)一个重要不等式 时,2.单调有界数列必有极限 3.柯西(Cauchy)极限存在准则 数列{an}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m,n>N时,有|xn-xm|<ε.数列极限与函数极限的联系数列可看作一个定义域为自然数集的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值, 其解析表达式为an=f(n);函数是连续的,数列相当于一个函数中的一些独立的点,表现在图形上数列是无数的点,而函数是一段曲线;把数列中的n用x来替换后如果函数f(x)存在极限则数列也必定有极限,但是反之不成立。大全,函数。 数列{an}的极限一般都是指n的变化使得极限值的产生,而n是一个正整数,函数的极限中自变量x可以趋向任何值,由此可知函数的极限更广泛。 计算极限的常用方法1.利用洛必达法则 三这是最常用的方法,主要针对未定型极限: 注意与其他工具(无穷小代换、变量代换、不定式因子的分离、各种恒等变形、泰勒公式等)相结合.2.利用已知极限 „„ 3.利用泰勒公式 4.利用迫敛性 5.利用定积分求和式极限 6.利用数列的递推关系计算极限 7.利用级数的收敛性计算极限 8.利用积分中值定理计算极限 计算数列和函数极限的关键是综合运用各种计算极限的方法,并不断总结,才能较好地掌握计算极限的方法.