第一篇:数列发散的定义
数列发散和数列收敛是相对的.收敛的意思是这样的:当数列an满足n→无穷,an→一定值.严格定义用到了ε-N语言,如果一个数列不满足这个条件,就是发散.用数学语言描述数列发散就是这样的:
注意与收敛定义的区别.
第二篇:数列极限的定义
Xupeisen110高中数学
教材:数列极限的定义(N)
目的:要求学生掌握数列极限的N定义,并能用它来说明(证明)数列的极限。过程:
一、复习:数列极限的感性概念
二、数列极限的N定义
1n
3.小结:对于预先给定的任意小正数,都存在一个正整数N,使得只要nN 就
有an0<
4.抽象出定义:设an是一个无穷数列,a是一个常数,如果对于预先给定的任
意小的正数,总存在正整数N,使得只要正整数nN,就有ana<,那么就说数列an以a为极限(或a是数列an的极限)
Xupeisen110高中数学
记为:limana 读法:“”趋向于“n” n无限增大时
n
注意:①关于:不是常量,是任意给定的小正数
②由于的任意性,才体现了极限的本质
③关于N:N是相对的,是相对于确定的,我们只要证明其存在④ana:形象地说是“距离”,an可以比a大趋近于a,也可以比a小趋近于
例四1.lim
n
证明
证明2:设是任意给定的小正数
要使3n13 只要
2n1
12n1
n
54
取N51当nN时,3n13恒成立
422n12
第三篇:数列极限的定义
第十六教时
教材:数列极限的定义
目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋
近”,然后初步学会用N语言来说明数列的极限,从而使学生在学习数学中的“有限”到“无限”来一个飞跃。过程:
一、实例:1当n无限增大时,圆的内接正n边形周长无限趋近于圆周长
2在双曲线xy1中,当x时曲线与x轴的距离无限趋近于0
二、提出课题:数列的极限考察下面的极限
1 数列1:
110,111
102,103,,10
n,①“项”随n的增大而减少②但都大于0
③当n无限增大时,相应的项1
n可以“无限趋近于”常数0
2 数列2:123n
2,3,4,,n1,
①“项”随n的增大而增大②但都小于1
③当n无限增大时,相应的项n
n1可以“无限趋近于”常数1
3 数列3:1,11(1)n
2,3,,n,①“项”的正负交错地排列,并且随n的增大其绝对值减小
②当n无限增大时,相应的项(1)n
n
可以“无限趋近于”常数
引导观察并小结,最后抽象出定义:
一般地,当项数n无限增大时,无穷数列an的项an无限地趋近于某
个数a(即ana无限地接近于0),那么就说数列an以a为极限,或者说a是数列an的极限。(由于要“无限趋近于”,所以只有无穷数列才有极限)
数列1的极限为0,数列2的极限为1,数列3的极限为0
三、例一(课本上例一)略
注意:首先考察数列是递增、递减还是摆动数列;再看这个数列当n无限
增大时是否可以“无限趋近于”某一个数。
练习:(共四个小题,见课本)
四、有些数列为必存在极限,例如:an(1)n
或ann都没有极限。例二下列数列中哪些有极限?哪些没有?如果有,极限是几?
1.a1(1)n1(1)n
n22.an2
3.anan(aR)
n
4.a1)n135
n(n5.an5 3
解:1.an:0,1,0,1,0,1,„„不存在极限
2.a2,0,22
n:3,0,5,0,极限为0
3.an:a,a2,a3,不存在极限
4.a,33
n:32,14,极限为0
5.an
5525n:先考察,, 无限趋近于0 3:
392781∴ 数列an的极限为5
五、关于“极限”的感性认识,只有无穷数列才有极限
六、作业:习题1
补充:写出下列数列的极限:1 0.9,0.99,0.999,„„2 a1
n
2n
3
(1)n113456111n4 2,3,4,5,5 an1242n
第四篇:数列极限的定义教案
第十七教时
教材:数列极限的定义(N)
目的:要求学生掌握数列极限的N定义,并能用它来说明(证明)数列的极限。过程:
一、复习:数列极限的感性概念
二、数列极限的N定义
n
1.以数列(1)n为例
a111n:1,,234 0 观察:随n的增大,点越来越接近
2只要n充分大,表示点a(1)n即:n与原点的距离an0n01n可以充分小 进而:就是可以小于预先给定的任意小的正数 n
2.具体分析:(1)如果预先给定的正数是
1(1)10,要使an0n01n<110 只要n10即可 即:数列(1)nn的第10项之后的所有项都满足
(2)同理:如果预先给定的正数是1103,同理可得只要n103即可(3)如果预先给定的正数是
110k(kN*),同理可得:只要n10k即可
3.小结:对于预先给定的任意小正数,都存在一个正整数N,使得只要nN
就有an0<
4.抽象出定义:设an是一个无穷数列,a是一个常数,如果对于预先给定的任意小的正数,总存在正整数N,使得只要正整数nN,就有ana<,那么就说数列an以a为极限(或a是数列an的极限)
记为:limnana 读法:“”趋向于
“n” n无限增大时
注意:①关于:不是常量,是任意给定的小正数
②由于的任意性,才体现了极限的本质
③关于N:N是相对的,是相对于确定的,我们只要证明其存在
④ana:形象地说是“距离”,an可以比a大趋近于a,也可以比a小趋近于
a,也可以摆动趋近于a
三、处理课本 例
二、例
三、例四
例三:结论:常数数列的极限是这个常数本身
例四 这是一个很重要的结论
四、用定义证明下列数列的极限:
1.lim2n1n2
2.lim3n1n1
n2n132 证明1:设是任意给定的小正数
2n12n111n12n要使2n 即:2
两边取对数 nlog1
取 N12log2
„„„„介绍取整函数 2n12n当nN时,2n1恒成立
∴lim1n2n1
证明2:设是任意给定的小正数
要使
3n11512n132 只要
2n15
n42 取N513n1342
当nN时,2n12恒成立
∴lim3n1n2n132
第五篇:关于数列极限的两个定义
关于数列极限的两个定义
定义1.设有数列an,a 是有限常数。若对任意0N,对任意正整
数nN,有 ana,则称数列an的极限是 a。
定义2.设有数列an,a 是有限常数。若对任意0,对任意正整数
nN,有 ana,则称数列an的极限是 a
定义1 是课本第46面的原文,定义2 是我讲课时用的。这两个定义的区别只在对N的要求:定义1 要求N是正整数,而定义2只要求N是实数,这是很低的要求,故定义2比定义1较便于应用。
由于两个定义对N的要求不同,易使人误认为两个定义界定的对象不一样,即:两个定义不等价。实际上,这两个定义完全是等价的!为说明这两个定义的等价性,我们需要两个显然的命题:
命题1.对于任意实数r均存在正整数n,使得nr。
命题2.对于任意实数r,若正整数n,成立nr,则对于每一个正整数m均有nmr。要证明定义1与定义2等价,我们只需证明这两个定义界定的极限一样即可。证明:设有数列an。
(1)若有限常数a是定义1 界定的极限,由于正整数N是实数,因此,常数a也
是定义2 界定的极限。
(2)若有限常数a是定义2 界定的极限,由定义2,对任意0,存在实数N,对任意正整数nN,有 ana;对于实数N,必有正整数M使得MN(命题1);当nM时,必有nN;故对于正整数M,当nM时必有ana。因此,常数a也是定义1 界定的极限。
说明:(2)中的正整数M即是定义1 中的N。极限证明中关键是由 nN 保证
ana,而不是N是否是正整数。
另,请大家注意课本p.55 的第1题,这个题对于帮助大家深入理解数列极限定义是有很大作用的。