数列高考复习

时间:2019-05-13 09:02:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列高考复习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列高考复习》。

第一篇:数列高考复习

2012届知识梳理—数列

1a(n2k)112n

(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n

4n

1,2,3,(I)求a2,a3;

(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25b3(2n1)bn3.22(Snn)3*

2、(南开二模)已知数列{an}的前n项和为Sn,对于任意的nN,有an

(I)求证:数列{an1}是等比数列,并求{an}的通项公式;(II)求数列{nan}的前n项和Tn3、(和平二模)已知数列{an}满足a1

(I)求{an}的通项公式;

(II)若Tnb12b22(III)设cna11 ,an1ann(nN*),bn2n14an1bn2,求证Tn2; 1,求数列{cn}的前n项和.bnbn

14、(河北一摸)在数列{an}与{bn}中,数列{an}的前n项Sn满足Snn22n,数列{bn}的前n项和Tn

满足3Tnnbn1,且b11,nN*.(I)求{an}的通项公式;

(II)求数列{bn}的通项公式;

(III)设cnbn(an1)2ncos,求数列{cn}的前n项和.n1

3*

5、(南开一摸)设数列{an}满足:nN,an2Sn243,其中Sn为数列{an}的前n项和.数列{bn}满

足bnlog3an.(I)求数列{an}的通项公式;

(II)求数列{cn}满足:cnbnSn,求数列{cn}的前n项和公式.6、(市内六校联考二)已知二次函数f(x)ax2bx的图象过点(4n,0),且f'(0)2n,nN*(I)求f(x)的解析式;(II)设数列满足

1f'(),且a14,求数列{an}的通项公式; anan

(III)记bn

{bn}的前n项和为Tn,求证:Tn2.7、(市内六校联考三)数列{an}的前n项和为Sn,a11,且对于任意的正整数n,点(an1,Sn)在直线

2xy20上.(I)求数列{an}的通项公式;

(II)是否存在实数,使得{Snn

2n

为等差数列?若存在,求出的值,若不存在,说明理由.112n(III)已知数列{bn},bn,bn的前n项和为Tn,求证:Tn.62(an1)(an11)

8、(河东一摸)将等差数列{an}所有项依次排列,并作如下分组:(a1),(a2,a3),(a4,a5,a6,a7),组1项,第二组2项,第三组4项,第n组

2n

1,第一

项.记Tn为第n组中各项和,已知T348,T40.(I)求数列{an}的通项公式;(II)求Tn的通项公式;(III)设{Tn}的前n项的和为Sn,求S8.9、(河西区一摸)已知数列{an}满足a1

(n1)(2ann)

1,an1(nN*)2an4n

ankn

为公差是1的等差数列,求k的值; ann

.1

2(I)求a2,a3,a4;(II)已知存在实数k,使得数列{

(III)记bn

nN*),数列{bn}的前n项和为S

n,求证Sn

10、(和平一摸)在等差数列{an}和等比数列{bn}中,已知a11,a47,b1a11,b4a81(I)分别求出{an},{bn}的通项公式;(II)若{an}的前n项和为Sn,1

1S1S

2

与2的大小; Sn

(III)设Tn

a1a2

b1b2

an*,若Tnc(cN),求c的最小值.bn

2an1(n2k)

11、(红桥区4月)已知数列{an}满足:a11,ann1(kN*),n2,3,4,22an1(n2k1)

2(I)求a3,a4,a5;(II)设bna2n11,n1,2,3,(III)若数列{cn}满足2

2(c11),,求证:数列{bn}是等比数列,并求出其通项公式;

22(c21)

22(cn1)bncn,证明:{cn}是等差数列.12、(河北区二模)已知各项均为正数的数列{an}的前n项和Sn满足6Sn(an1)(an2),且S11(I)求{an}的通项公式;(II)设数列{bn}满足an(2n

b

11)1,记Tn为{bn}的前n项和,求证:3Tn1log2(an3).Sn1Sn2an1,

SnSn1an13、(第二次12校)已知数列{an}的首项a11,a23,前n项和为Sn,且

(nN*,n2),数列bn满足b11,bn1log2(an1)bn。

(Ⅰ)判断数列1{an1}是否为等比数列,并证明你的结论;

n

21),求c1c2c3cn;(II)设cnan(bn2

(Ⅲ)对于(Ⅰ)中数列an,若数列{ln}满足lnlog2(an1)(nN*),在每两个lk与lk1 之间都插入2k1(k1,2,3,kN*)个2,使得数列{ln}变成了一个新的数列{tp},(pN)试问:是否存在正整数m,使得数列{tp}的前m项的和Tm2011?如果存在,求出m的值;如果不存在,说明理由.14、(第一次12校)已知数列{an}的前n项和Sn满足:a(Snan)Sna(a为不为零的常数,aR)

(nN).

(Ⅰ)求{an}的通项公式;(Ⅱ)设cnnan1,求数列{cn}的前n项和Tn;(Ⅲ)当数列{an}中的a2时,求证:

2222232n

1. 15(a11)(a21)(a21)(a31)(a31)(a41)(an1)(an11)

315、(五校联考)在数列an中,a1

a211,an1n,nN 7an

(I)令bn

1,求证:数列bn是等比数列;(II)若dn(3n2)bn,求数列dn的前n项

an2

3

和Sn;(Ⅲ)若cn3nbn(为非零整数,nN)试确定的值,使得对任意nN,都有cn1cn成立.

16.(津南区一模)等比数列{an}为递增数列,且a4(I)求数列{bn}的前n项和Sn及Sn的最小值;

a220*,a3a5,数列bnlog3n(nN)39

2(II)设Tnb1b2b22b2n1,求使Tn5n320成立的n的最小值. 17、(河东二模)已知数列{bn}(nN)是递增的等比数列,且b1b35,b1b3

4(1)求数列{bn}的通项公式;(2)若数列{an}的通项公式是ann2,数列{anbn}的前n项和为sn,求sn

18、(河西二模)已知曲线C:yx2(x0),过C上的点A1(1,1)做曲线C的切线l1交x轴于点B1,再过点

B1作y轴的平行线交曲线C于点A2,再过点A2作曲线C的切线l2交x轴于点B2,再过点B2作y轴的平

行线交曲线C于点A3,……,依次作下去,记点An的横坐标为an(nN)

(1)求数列{an}的通项公式;(2)设数列{an}的前n项和为sn,求证:ansn1;

14n

1(3)求证: 

3i1aisi

n

19.(09天津文)已知等差数列{an}的公差d不为0,设Sna1a2qanqn1

Tna1a2q(1)n1anqn1,q0,nN*

(Ⅰ)若q1,a11,S315 ,求数列{an}的通项公式;(Ⅱ)若a1d,且S1,S2,S3成等比数列,求q的值。(Ⅲ)若q1,证明(1q)S2n19、(2010文)在数列an

2dq(1q2n)*

(1q)T2n,nN2

1q

中,a10,且对任意kN*,a2k1,a2k,a2k1成等差数列,其公差为2k.的通项公式;

(Ⅰ)证明a4,a5,a6成等比数列;(Ⅱ)求数列an

32232n2

(Ⅲ)记Tn……+,证明2nTn2(n2).2a2a3an

20.(2011文)已知数列{an}与{bn}满足bn1anbnan1

3(1)n1

(2)1,bn,nN*,且a12.n

(Ⅰ)求a2,a3的值;(Ⅱ)设cna2n1a2n1,nN*,证明{cn}是等比数列;(Ⅲ)设Sn为{an}的前n项和,证明

S1S2

a1a2

S2n1S2n1

n(nN*).a2n1a2n3

第二篇:数列复习

一、等差数列的判定

1、利用定义法进行判定:数列复习若数列an满足:anan1d,n2,nNan1and,nN*a为等差数列 nn*a为等差数列 例题

1、在数列{an}中,a1=-3,an=2an-1+2n+3(n≥2,且n∈N*).

(1)求a2,a3的值;

an+3(2)设bn=(n∈N*),证明:{bn}是等差数列.

2例题

2、设数列an的前n项和为Sn,a11,an

(1)、求证:数列 an为等差数列;

(2)、求数列an 的通项公式an和前n项和Sn.Sn2n1,nN*, n

第三篇:数列复习4-5

数列复习(4)

主要内容:等比数列的定义、通项公式、性质、前n项和公式

一、等比数列的通项公式

1、(1)已知数列{an}中,a3=2,a2+a4=20/3/求an

(2)a2+a5=18,a3+a6=9,an=1,求n

二、等比数列的判断与证明

2、已知数列{an}的前n项和为Sn,Sn1(an1)(nN),求证数列{an}是等比数列。3

三、等比中项问题

3、等比数列{an}的前三项和为168,a2-a5=42,求a5、a7的等比中项

四、等比数列的性质

4、(1)在等比数列{an}中,若a9=-2,则此数列前17项之积为;

(1)在等比数列{an}中,若a2=2,a6=162,则a10;

(3)在等比数列{an}中,a3a4a5=3, a6a7a8=24,则a9a10a1

1五、等比数列中的基本运算

5、在等比数列{an}中,(1)已知sn=189,q=2,an=96,求a1和n;

(2)若a3a110,a4a65,求a4和s5(3)若q=2,s4=1,求s8 4

六、等比比数列前n项和的性质应用

6、已知等比数列{an}中,前10项和sn=10,前20项和s20=30,求s30.七、等比数列的综合问题

7、数列{an}是等比数列,项数是偶数,各项均为正,它所有项的和等于偶数项和的4倍,且第二项与第四项的积是第三项与第四项和的9倍,则数列{lgan}的前多少项和最大? 练习:

1、是否存在一个等比数列{an},使其满足下列三个条件:①a1+a6=11,且a3a4=③至少存在一个m(m∈N+,m>4),使32;②an+1>an;924am1,a2m,am1依次成等差数列。若存在,请写出39

数列的通项公式;若不存在,请说明理由。

2、已知数列{an}是等比数列,其中a1=1,且a4,a5+1,a6成等差数列。

(1)求数列{an}的通项公式;(2)前n项和记为sn,证明:sn<128

第四篇:数列极限复习

数列极限复习题

姓名

242n1、lim=; n139(3)n

an22n1a2、若lim(2n)1,则=; nbn2b

1an3、如果lim()0,则实数a的取值范围是;n2a

n4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范围是n

___;

a5.已知无穷等比数列n的前n项和

穷等比数列各项的和是;

6、数列an满足a1Sn1a(nN*)n3,且a是常数,则此无1,且对任意的正整数m,n都有amnaman,则数列an的3所有项的和为;

7、无穷等比数列an的首项是某个自然数,公比为单位分数(即形如:数,m为正整数),若该数列的各项和为3,则a1a2;

8、无穷等比数列an的各项和为2,则a1的取值范围是

1的分m



9、无穷等比数列an中,为;

lim(a2a3...an)

n

=1,则a1的取值范围

cosnsinn

10、计算: lim,[0,]

ncosnsinn

222na2n111、若lim2n1,则实数a的取值范围是; 2n

12a

23n2n(1)n(3n2n)

12、若数列{an}的通项公式是an=,n=1,2,„,则

lim(a1a2an)__________;

n

1

1n2012n(n1)

13、若an,Sn为数列an的前n项和,求limSn____;

n

31n2013n1

214、等差数列an,bn的前n项和分别为Sn,Tn且

an

 nbn

Sn2n

,则Tn3n

1lim15、设数列an、bn都是公差不为0的等差数列,且lim

lim

b1b2b3n

na4n

an

3,则bn16、已知数

列为等差数列,且,则

a117、设等比数列{an}的公比为q,且lim1qn),则a1的取值范围是

n1q

2__________;

18、已知等比数列{an}的首项a11,公比为q(q0),前n项和为Sn,若

lim

Sn

11,则公比q的取值范围是.;

nSn19、已知数列{an}的各项均为正数,满足:对于所有nN*,有4Sn(an1)2,n

()其中Sn表示数列{an}的前n项和.则limnan

A.0B.1C.D.

220、下列命题正确的是 „„„„„„„„„„„„„„„„„„„„„„„„„()

(A)limanA, limbnB则lim

n

n

anA

(bn0,nN)

nbBn

(B)若数列{an}、{bn}的极限都不存在,则{anbn}的极限也不存在(C)若数列{an}、{anbn}的极限都存在,则{bn}的极限也存在(D)设Sna1a2an,若数列{an}的极限存在,则数列{Sn}的极限也存在21、用记号“○+”表示求两个实数a与b的算术平均数的运算, 即a○+b=已知数列{xn}满足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),则limxn等于()

n

ab

.2A.2

3B.12

C.0D.122、连结ABC的各边中点得到一个新的A1B1C1,又A1B1C1的各边中点得到一个新的A2B2C2,如此无限继续下去,得到一系列三角形,A1B1C1,A2B2C2,A3B3C3,, 这一系列三角形趋向于一个点M。已知

A0,0,B3,0,C2,2,则点M的坐标是()

52522A、(,)B、(,1)C、(,1)D、(1,)

3333323、已知数列

lim

{an},{bn}

都是无穷等差数列,其中

a13,b12,b2是a2和a

3的等差中

an1111lim(...)nbn2,求极限a1b1a2b2anbn的值; n项,且

24、设正数数列

lga

lin

1n

an

为一等比数列,且a24,a416,求

lagn2n

2al2ng;

bnlgan,25、数列{an}是由正数组成的数列,其中c为正常数,数列bna1c,成等差数列且公差为lgc(1)求证an是等比数列;(2)an的前n项和为Sn,求lim26、已知f(x)logax(ao且a1),an

nSn

且2,f(a1),f(a2),f(a3),,f(an),2n1,(nN)成等差数列,(1)求数列an的通项公式;

(2)若数列an的前n项和为Sn,当a1时,求lim

Sn

nan

第五篇:数列第二轮复习

数列第二轮复习

考点一:等差、等比数列的概念与性质 例一:

题型一:证明等差数列以及错位相减法 例1:在数列an中,a11,an12an2n.(Ⅰ)设bnan.证明:数列bn是等差数列; 2n1

(Ⅱ)求数列an的前n项和Sn. 在数列an中,a11,an12an2n.(Ⅰ)设bnan.证明:数列bn是等差数列; 2n1

(Ⅱ)求数列an的前n项和Sn. 解:(1)an12an2n,an1an1,2n2n1

bn1bn1,则bn为等差数列,b11,bnn,ann2n1.

(2)Sn120221322(n1)2n2n2n1 2Sn121222323(n1)2n1n2n 两式相减,得

Snn2n12021222n1n2n2n1

下载数列高考复习word格式文档
下载数列高考复习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考数列专题练习(汇总)

    数列综合题1.已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=,求数列的前n项和。2.已知递增的等比数列满足是的等差中项。(Ⅰ)求数列的通项公式;(Ⅱ)若是数列的前项和,求3.等比数列为递增......

    2014年高考考前复习之文科数列(含答案)

    2013年全国各地高考文科数学试题分类汇编5:数列一、选择题 1 .(2013年高考大纲卷(文))已知数列an满足43an1an0,a2,则an的前10项和等于3A.-61-3-10 B.191-3-10 C.31-3-10D.31+3-10【答......

    高考数学数列专题训练

    高考限时训练----数列(45分钟) 一、选择题 1.已知等比数列{a2 n}的公比为正数,且a3·a9=2a5,a2=1,则a1= A. 12B. 22C. 2D.2 2.等差数列a2 n的前n项和为Sn,已知am1am1am0,S2m138,则m......

    高考数学专题-数列求和

    复习课:数列求和一、【知识梳理】1.等差、等比数列的求和公式,公比含字母时一定要讨论.2.错位相减法求和:如:已知成等差,成等比,求.3.分组求和:把数列的每一项分成若干项,使其转化为等差......

    2013高考试题分类——数列[合集]

    (2013上海卷)23.(3 分+6分+9分)给定常数c0,定义函数,数列a1,a2,a3,满足an1f(an),nN* f(x)2|xc4|x|c(1)若a1c2,求a2及a3;(2)求证:对任意nN,an1anc,;(3)是否存在a1,使得a1,a2,an,成等差数列?若存在......

    高考数列试题及答案

    数列试题1.已知等比数列{an}的公比为正数,且a3·a9=2a5,a2=1,则a1= () A.2.已知为等差数列,B。1C. 3D.7 ,则等于() 212B.。C. 222D.2A. -13.公差不为零的等差数列{an}的前n项和为Sn.若a4......

    高考数列核心知识

    广东高考数列必备知识 广东高考涉及数列的题目通常是一“小”一“大”。 1.小题属于中、低档题,主要考查等差(比)的概念、公式以及性质,复习重点应放在“基本量法”(也俗称“知三......

    2013高考试题分类—数列

    2013年高考试题分类汇编——数列2013辽宁(4)下面是关于公差d0的等差数列an的四个命题:p1:数列an是递增数列;ap2:数列nn 是递增数列;ap4:数列an3nd是递增数列; p3:数列n是递增数列;n......