2013高考试题——数列大题

时间:2019-05-13 09:02:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013高考试题——数列大题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013高考试题——数列大题》。

第一篇:2013高考试题——数列大题

2013年高考试题分类汇编——数列

x2x3xn

2013安徽(20)(13分)设函数fn(x)1x22...2(xR,nN),证明:

23n

2(1)对每个n∈N+,存在唯一的xn[,1],满足fn(xn)0;

3(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0xnxnp2013北京(20)(本小题共13分)

.n

已知an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2的最小值记为Bn,dnAnBn.

(Ⅰ)若an为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意nN*,an4an),写出d1,d2,d3,d4的值;

(Ⅱ)设d是非负整数,证明:dndn1,2,3的充分必要条件为an是公差为d的等差数列;

(Ⅲ)证明:若a12,dn1n1,2,3,,则an的项只能是1或者2,且有无穷多项为1.2正项数列{an}的前项和{an}满足:sn(n2n1)sn(n2n)0

(1)求数列{an}的通项公式an;(2)令bn都有Tn

n1*

nN,数列{b}的前项和为。证明:对于任意的,Tnnn22

(n2)a6

42013全国大纲17.(本小题满分10分)

等差数列an的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求an的通项

式.2013四川16.(本小题满分12分)在等差数列{an}中,a2a18,且a4为a2和a3的等比中项,求数列{an}的首项、公差及前n项和. 2013天津(19)(本小题满分14分)已知首项为的等比数列{an}不是递减数列, 其前n项和为Sn(nN*), 且S3 + a3, S5 + a5, S4 + a4成等差数列.(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设TnSn1(nN*), 求数列{Tn}的最大项的值与最小项的值.Sn

322013陕西17.(本小题满分12分)

设{an}是公比为q的等比数列.(Ⅰ)导{an}的前n项和公式;

(Ⅱ)设q≠1, 证明数列{an1}不是等比数列.2013湖北

18、已知等比数列an满足:a2a310,a1a2a3125。(I)求数列an的通项公式;

(II)是否存在正整数m,使得11a1a211?若存在,求m的最小值;am

若不存在,说明理由。

2013江苏19.(本小题满分16分)

设{an}是首项为a,公差为d的等差数列(d0),Sn是其前n项和.记bnnSn,2nc

nN*,其中c为实数.

(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);

(2)若{bn}是等差数列,证明:c0.

2013浙江18.(本小题满分14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列

(Ⅰ)求d,an;

(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.

第二篇:2013高考试题分类——数列

(2013上海卷)23.(3 分+6分+9分)给定常数c0,定义函数,数列a1,a2,a3,满足an1f(an),nN* f(x)2|xc4|x|c

(1)若a1c2,求a2及a3;(2)求证:对任意nN,an1anc,;

(3)是否存在a1,使得a1,a2,an,成等差数列?若存在,求出所有这样的a1,若不

存在,说明理由.(2013四川卷)16.(本小题满分12分)在等差数列{an}中,a2a18,且a4为a2和a3的等比中项,求数列{an}的首项、公差及前n项和.

(2013上海春季卷)27.(本题满分8分)

已知数列{an}的前n项和为Snnn,数列{bn}满足bn22an*,求lim(b1b2bn)。n

(2013上海春季卷)30.(本题满分13分)本题共有2个小题,第一小题满分4分,第二小题满分9分。

在平面直角坐标系xOy中,点A在y轴正半轴上,点Pn在x轴上,其横坐标为xn,且{xn}

是首项为

1、公比为2的等比数列,记PnAPn1n,nN。

(1)若3arctan1,求点A的坐标; 3,求n的最大值及相应n的值。(2)若点A的坐标

为(0

(2013北京卷)20.(本小题共13分)

已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2,…的最小值记为Bn,dn=An-Bn。

(I)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an4an),写出d1,d2,d3,d4的值;

(II)设d为非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列;(III)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.(2013湖北卷)18.已知等比数列an满足:a2a310,a1a2a3125。(I)求数列an的通项公式;(II)是否存在正整数m,使得

1?若存在,求m的最小值;若不存在,a1a2am

说明理由。

(2013广东卷)19.(本小题满分14分)

设数列an的前n项和为Sn.已知a11,(Ⅰ)求a2的值;

(Ⅱ)求数列an的通项公式;(Ⅲ)证明:对一切正整数n,有

(2013大纲卷)17.(本小题满分10分)等差数列an的前n项和为Sn,已知S3=a2,2Sn12

an1n2n,nN*.n33

1117

.a1a2an4

且S1,S2,S4成等比数列,求an的通项式。

18.(2013浙江卷)在公差为d的等差数列{an}中,已知a110,且a1,2a22,5a3成等

比数列。

(1)求d,an;(2)若d0,求|a1||a2||a3||an|.(2013天津卷)19.(本小题满分14分)已知首项为的等比数列{an}不是递减数列, 其前n2

项和为Sn(nN*), 且S3 + a3, S5 + a5, S4 + a4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设TnSn

(nN*), 求数列{Tn}的最大项的值与最小项的值.Sn

(2013陕西卷)17.(本小题满分12分)设{an}是公比为q的等比数列.(Ⅰ)导{an}的前n项和公式;

(Ⅱ)设q≠1, 证明数列{an1}不是等

比数列.(2013山东卷)20.(本小题满分12分)设等差数列an的前n项和为Sn,且S44S2,a2n2an1.(Ⅰ)求数列an的通项公式;(Ⅱ)设数列bn前n项和为Tn,且 Tn

求数列cn的前n项和Rn。

(2013江西卷)17.(本小题满分12分)正项数列{an}的前项和{an}满足:

2sn(n2n1)snn(2n)0

an1

.令cnb2n(nN*).(为常数)n

(1)求数列{an}的通项公式an;(2)令bn

(2013江苏卷)19.本小题满分16分。设{an}是首项为a,公差为d的等差数列(d0),n15*

T,数列{b}的前项和为。证明:对于任意的,都有 nNTnnnn

(n2)2a264

Sn是其前n项和。记bn

nSn*,其中c为实数。nN2

nc

(1)若c0,且b1,b2,b4成等比数列,证明:SnknSk(k,nN);(2)若{bn}是等差数列,证明:c0。(2013江苏卷)23.本小题满分10分。

k个



1k-1

1,-2,-2,3,,3-,,3-,4-,4-,4,设数列an:(-4)1k-k,,(-)1k,即当

*

(k1)k(kk1)k1

kN时,an(-1)k,记Sna1a2annN,n22

对于lN,定义集合PlnSn是an的整数倍,nN,且1nl

(1)求集合P11中元素的个数;(2)求集合P2000中元素的个数。

(2013上海春季卷)11.若等差数列的前6项和为23,前9项和为57,则数列的前n项和

Sn=。

(2013安徽卷)14.如图,互不-相同的点A1,A2,Xn,和B1,B2,Bn,分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn1An1的面积均相等。设OAnan.若

a11,a22,则数列an的通项公式是_________。

(2013北京卷)10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q;前n项和Sn(2013福建卷)9.已知等比数列{an}的公比为q,记bnam(n1)1am(n1)2...am(n1)m,cnam(n1)1am(n1)2...am(n1)m(m,nN*),则以下结论一定正确的是()

A.数列{bn}为等差数列,公差为qB.数列{bn}为等比数列,公比为qC.数列{cn}为等比数列,公比为q

m2m

2m

D.数列{cn}为等比数列,公比为q

mm

(2013大纲卷)6.已知数列an满足3an1an0,a2,则an的前10项和等于 3

10

10

613(A)

10

31331+3(B13(C)(D)

10

a11,Sn为其前n项和,(2013重庆卷)12.已知an是等差数列,公差d0,若a1,a2,a5

成等比数列,则S8_____

(2013课标卷Ⅱ)3.等比数列an的前n项和为Sn,已知S3a210a1,a59,则a1

(A)

(B)3

(C)

(D)9

(2013课标卷Ⅰ)14.若数列{an}的前n项和为Sn=

an,则数列{an}的通项公式是33

an=______.

第三篇:高考数列试题及答案

数列试题

1.已知等比数列{an}的公比为正数,且a3·a9=2a5,a2=1,则a1=()A.2.已知

为等差数列,B。1C.3D.7,则等于()212B.。C.222D.2A.-1

3.公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项, S832,则S10等于()

A.18B.24C。60D.90

4.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于()

A.13B.35C。49D. 63

5.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于()

A.1B

6.已知an为等差数列,且a7-2a4=-1, a3=0,则公差d=

(A)-2(B)。-

5C。-2D 3 311(C)(D)2 22

7.设等比数列{ an}的前n 项和为Sn,若

S6S

=3,则9 = S3S6

(A)2(B)。

(C)(D)3 33

8.等比数列an的前n项和为sn,且4a1,2a2,a3成等差数列。若a1=1,则s4=(A)7(B)8(c)。15(4)16

9.等差数列an的前n项和为Sn,已知am1am1am0,S2m138,则m

(A)38(B)20(C)。10(D)9

本题注意:因为an是等差数列,所以,am1am12am

10.(本小题满分14分)设an是公差不为零的等差数列,Sn为其前n项和,满足

a22a32a42a52,S77。求数列an的通项公式及前n项和Sn;

11。已知等差数列{an}中,a3a716,a4a60求{an}前n项和sn.n1

12。已知数列an的前n项和Snan()2(n为正整数),令bn2nan,12

求证数列bn是等差数列,并求数列an的通项公式;

13。.设数列an的前n项和为Sn,对任意的正整数n,都有an5Sn1成立,记

bn

4an

(nN*)。1an

(I)求数列an与数列bn的通项公式;

(II)设数列bn的前n项和为Rn,是否存在正整数k,使得Rn4k成立?若存在,找出一个正整数k;若不存在,请说明理由;

14 设数列{an}的前n项和为Sn, 已知a11,Sn14an2

(I)设bnan12an,证明数列{bn}是等比数列(II)求数列{an}的通项公式。

15 等比数列{an}的前n 项和为sn,已知S1,S3,S2成等差数列(1)求{an}的公比q;(2)求a1-a3=3,求sn

1’a22,an+2=16。已知数列an}满足,a1=

anan1,nN*.2

(Ⅱ)求an}的通项公式。

令bnan1an,证明:{bn}是等比数列;

17。已知a11,a24,an24an1an,bn

an1,nN. an

(Ⅰ)求b1,b2,b3的值;(Ⅱ)设cnbnbn1,Sn为数列cn的前n项和,求证:Sn17n

答案:12在Snan()

n1

2中,令n=1,可得S1an12a1,即a11

2,anSnSn1anan1()n1,2

当n2时,Sn1an1()

n2

2anan1()n1,即2nan2n1an11.bn2nan,bnbn11,即当n2时,bnbn11.又b12a11,数列bn是首项和公差均为1的等差数列.

n.n21

13(I)当n1时,a15S11,a1

于是bn1(n1)1n2an,an

n

又an5Sn1,an15Sn11

an1an5an1,即

11an11

∴数列an是首项为a1,公比为q的等比数

44an4

1n

4()1n列,∴an(),bn(nN*)

1()n

14()n

54(II)不存在正整数k,使得Rn4k成立。证明由(I)知bnn

n(4)11()4

55201516k40

b2k1b2k88kk8k8.k

(4)2k11(4)2k1161164(161)(164)

∴当n为偶数时,设n2m(mN)

∴Rn(b1b2)(b3b4)(b2m1b2m)8m4n 当n为奇数时,设n2m1(mN)

∴Rn(b1b2)(b3b4)(b2m3b2m2)b2m18(m1)48m44n ∴对于一切的正整数n,都有Rn4k

∴不存在正整数k,使得Rn4k成立。

14解由a11,及Sn14an2,有a1a2a4,12a23a125,b1a22a13

由Sn14an2,...①则当n2时,有Sn4an12.....② ②-①得an14an4an1,an12an2(an2an1)

又bnan12an,bn2bn1{bn}是首项b13,公比为2的等比数列.(II)由(I)可得bnan12an32n1,数列{

an1an3

n n1

224

an13

}是首项为,公差为的等比数列.

242n

a1331(n1nn,an(3n1)2n2n22444

15解:(Ⅰ)依题意有a1(a1a1q)2(a1a1qa1q2)

由于 a10,故 2q2q0 又q0,从而q-

((Ⅱ)由已知可得a1a1)3故a14

1n

(41())

81n从而Sn1())

1321()

16(1)证b1a2a11, 当n2时,bnan1an所以bn是以1为首项,

an1an11

an(anan1)bn1, 222

为公比的等比数列。2

1n1

(2)解由(1)知bnan1an(),当n2时,ana1(a2a1)(a3a2)(anan1)11()()

1212

n2

11()n1

215211[1()n2]()n1, 1

323321()

52111

当n1时,()1a1。

332521n1*

所以an()(nN)。

332

.17。解:(Ⅰ)a24,a317,a472,所以b14.b2(Ⅱ)由an24an1an得

1772,b3 417

an2a1

4n即bn14 an1an1bn

所以当n≥2时,bn4于是c1b1,b217,cnbnbn14bn117所以Snc1c2cn17n

(n≥2)

第四篇:2013高考试题分类—数列

2013年高考试题分类汇编——数列

2013辽宁(4)下面是关于公差d0的等差数列an的四个命题:

p1:数列an是递增数列;ap2:数列nn 是递增数列;

a

p4:数列an3nd是递增数列; p3:数列n是递增数列;

n

其中的真命题为

(A)p1,p2(B)p3,p4(C)p2,p3(D)p1,p4 2013辽宁(14)已知等比数列an是递增数列,Sn是an的前n项和.若a1,a3是方程

x25x40的两个根,则S6

2013湖南15.设Sn为数列{an}的前n项和,Sn(1)nan(1)a3(2)S1S2S100

1,则 nNn

22013安徽(8)函数y=f(x)的图象如图所示, 在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…, xn ,使得

f(xn)f(x1)f(x2)

...,则nx1x2xn的取值范围是

(A){3,4}(B){2,3,4}(C){3,4,5}(D){2,3} 2013安徽(20)(13分)设函数

x2x3xn

fn(x)1x22...2(xR,nN),证明:

23n

2(1)对每个n∈N+,存在唯一的xn[,1],满足fn(xn)0;

3(2)对于任意p∈N+,由(1)中xn构成数列{xn}满足0xnxnp

1.n

2013安徽文(7)设Sn为等差数列an的前n项和,S84a3,a72,则a9=(A)6(B)4(C)2(D)2

2013北京(10)若等比数列an满足a2a420,a3a540,则公比q;前n项和Sn

2013北京(20)(本小题共13分)

已知an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2的最小值记为Bn,dnAnBn.

(Ⅰ)若an为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意nN*,写出d1,d2,d3,d4的值;an4an)

(Ⅱ)设d是非负整数,证明:dndn1,2,3的充分必要条件为an是公差为d的等差数列;

(Ⅲ)证明:若a12,dn1n1,2,3,,则an的项只能是1或者2,且有无穷多项为1.(n2n1)sn(n2n)0 正项数列{an}的前项和{an}满足:sn

(1)求数列{an}的通项公式an;(2)令bn都有Tn

n

1,数列{bn}的前n项和为Tn。证明:对于任意的nN*,22

(n2)a6

42013全国大纲17.(本小题满分10分)

等差数列an的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求an的通项式.a2a18,2013四川16.(本小题满分12分)在等差数列{an}中,且a4为a2和a3的等比中项,求数列{an}的首项、公差及前n项和. 2013天津(19)(本小题满分14分)

已知首项为的等比数列{an}不是递减数列, 其前n项和为Sn(nN*), 且S3 + a3, S5 + a5, S4 + a4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设TnSn

(nN*), 求数列{Tn}的最大项的值与最小项的值.Sn

322013陕西14.观察下列等式:12112223 1222326

1222324210 …

照此规律, 第n个等式可为.2013陕西17.(本小题满分12分)设{an}是公比为q的等比数列.(Ⅰ)导{an}的前n项和公式;

(Ⅱ)设q≠1, 证明数列{an1}不是等比数列.2013全国课标

7、设等差数列{an}的前n项和为Sn,Sm1=-2,Sm=0,Sm1=3,则m=()

A、3B、4C、5D、6

2013全国课标

12、设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,… 若b1>c1,b1+c1=2a1,an+1=an,bn+1=

cn+anbn+an

c=n+122,则()

A、{Sn}为递减数列B、{Sn}为递增数列

C、{S2n-1}为递增数列,{S2n}为递减数列D、{S2n-1}为递减数列,{S2n}为递增数列

212013全国课标14、若数列{an}的前n项和为Sn=an,则数列{an}的通项公

3式是an=______.2013湖北

14、古希腊毕达哥拉斯学派的数学家研究过各种多边形数。如三角形数1,3,6,10,…,第n个三角形数为

nn11

21nn。记第n个k边形数为222

Nn,kk3,以下列出了部分k边形数中第n个数的表达式:

三角形数Nn,3

121

nn 22

正方形数Nn,4n2 五边形数Nn,5

321nn 22

六边形数Nn,62n2n

……

可以推测Nn,k的表达式,由此计算N10,24。2013湖北18、已知等比数列an满足:a2a310,a1a2a3125。(I)求数列an的通项公式;(II)是否存在正整数m,使得若不存在,说明理由。

2013江苏14.在正项等比数列{an}中,a5

a1a2ana1a2an的,a6a73,则满足

21111?若存在,求m的最小值;a1a2am

最大正整数n的值为.

2013江苏19.(本小题满分16分)

设{an}是首项为a,公差为d的等差数列(d0),Sn是其前n项和.记

bn

nSn,n2c

nN*,其中c为实数.

(1)若c0,且b1,b2,b4成等比数列,证明:Snkn2Sk(k,nN*);(2)若{bn}是等差数列,证明:c0.

2013浙江18.(本小题满分14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列(Ⅰ)求d,an;

(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|. 2013重庆(12)已知an是等差数列,a11,公差d0,Sn为其前n项和,若a1、a2、a5称等比数列,则S8.

2013全国课标2(16)等差数列{an}的前n项和为Sn,已知S10=0,S15 =25,则nSn 的最小值为________.

第五篇:数列几道大题举例

数列几道大题举例

1.已知数列an的首项a12a1(a是常数,且a1),an2an1n24n2(n2),数列bn的首项b1a,bnann2(n2)。

(1)证明:bn从第2项起是以2为公比的等比数列;

(3)当a>0时,求数列an的最小项。(2)设Sn为数列bn的前n项和,且Sn是等比数列,求实数a的值;

分析:第(1)问用定义证明,进一步第(2)问也可以求出,第(3)问由a的不同而要分类讨论。

解:(1)∵bnann

2∴bn1an1(n1)22an(n1)24(n1)2(n1)2

2an2n22bn(n≥2)

由a12a1得a24a,b2a244a4,∵a1,∴ b20,即{bn}从第2项起是以2为公比的等比数列。

(4a4)(2n11)3a4(2a2)2n(2)Sna2

1Sn(2a2)2n3a43a42当n≥2时,Sn1(2a2)2n13a4(a1)2n13a

4∵{Sn}是等比数列, ∴Sn(n≥2)是常数,Sn1。

3(3)由(1)知当n2时,bn(4a4)2n2(a1)2n,∴3a+4=0,即a

2a1(n1)所以an,n2(a1)2n(n2)

所以数列an为2a+1,4a,8a-1,16a,32a+7,……

显然最小项是前三项中的一项。当a(0,)时,最小项为8a-1; 1

41时,最小项为4a或8a-1; 4

11当a(,)时,最小项为4a; 42

1当a时,最小项为4a或2a+1; 2

1当a(,)时,最小项为2a+1。2当a

点评:本题考查了用定义证明等比数列,分类讨论的数学思想,有一定的综合性。考点二:求数列的通项与求和

2.已知数列an满足a11,an12an1nN 

(Ⅰ)求数列an的通项公式;(Ⅱ)若数列bn满足4(Ⅲ)证明:

b11

4b214b314bn1(an1)bn,证明:bn是等差数列;

1112nN aa3an13 2

分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三

项间的关系;第(3)问关键在如何放缩。解:(1)an12an1,an112(an1)故数列{an1}是首项为2,公比为2的等比数列。

an12n,an2n1

(2)4

b11

4b214b314bn1(an1)bn,4

(b1b2bnn)

2nbn

2(b1b2bn)2nnbn①

2(b1b2bnbn1)2(n1)(n1)bn1②

②—①得2bn12(n1)bn1nbn,即nbn2(n1)bn1③

(n1)bn12nbn2④

④—③得2nbn1nbnnbn1,即2bn1bnbn1 所以数列{bn}是等差数列

11111

n1n1

an21222an111111111111

设S,则S()(S)

a2a3an1a22a2a3ana22an1

21212S

a2an13an13

(3)

点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。

3.已知函数f(x)xln1x,数列an满足0a11,11

an1fan;数列bn满足b1,bn1(n1)bn, nN*.求证:

(Ⅰ)0an1an1;

an2

;(Ⅱ)an12

(Ⅲ)若a1,则当n≥2时,bnann!.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。

解:(Ⅰ)先用数学归纳法证明0an1,nN*.(1)当n=1时,由已知得结论成立;

(2)假设当n=k时,结论成立,即0ak1.则当n=k+1时,1x0,所以f(x)在(0,1)上是增函数.x1x1

又f(x)在0,1上连续,所以f(0)

故当n=k+1时,结论也成立.即0an1对于一切正整数都成立.又由0an1, 得an1ananln1ananln(1an)0,从而an1an.综上可知0an1an1.x2x2

(Ⅱ)构造函数g(x)=-f(x)= ln(1x)x, 0

x2

由g(x)0,知g(x)在(0,1)上增函数.1x

又g(x)在0,1上连续,所以g(x)>g(0)=0.an2an2

因为0an1,所以gan0,即fan>0,从而an1.22

b11n1

(Ⅲ)因为 b1,bn1(n1)bn,所以bn0,n1 ,bn222

bbb1

所以bnnn12b1nn!————① ,bn1bn2b12

an2aaaaaaaaa,知:n1n,所以n=23n12n1 , 由(Ⅱ)an1

22an2a1a1a2an122, n≥2, 0an1an1.a1n2a121a1a2an1

所以 ana1

由①② 两式可知: bnann!.因为a1

点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。

考点四:数列与函数、向量等的联系 4.已知函数f(x)=

52x,设正项数列an满足a1=l,an1fan.

168x

(1)写出a2、a3的值;(2)试比较an与的大小,并说明理由;

4n

51n

(3)设数列bn满足bn=-an,记Sn=bi.证明:当n≥2时,Sn<(2-1).

44i

1分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。

52an7

3解:(1)an1,因为a11,所以a2,a3.168an84(2)因为an0,an10,所以168an0,0an2.5

548(an)an

552an53, an1

4168an432(2an)22an因为2an0,所以an1

与an同号,44

5155550,a20,a30,…,an0,即an.444444

531531

(3)当n2时,bnan(an1)bn1

422an1422an1

31bn12bn1,224

所以bn2bn122bn22n1b12n3,13n(12n)

1111

所以Snb1b2bn(2n1)

421242

因为a1

点评:本题是函数、不等式的综合题,是高考的难点热点。

下载2013高考试题——数列大题word格式文档
下载2013高考试题——数列大题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    江苏省高考试题选讲 数列

    江苏省淮阴中学 高一(18)班 王世杰 高考试题选讲——数列 1【2004江苏】20.设无穷等差数列{an}的前n项和为Sn. 3 (1)若首项a1,公差d1,求满足S2(Sk)2的正整数k; 2k (2)求所有的无......

    2013—2017高考试题归类分析文化大题

    2013—2017高考试题归类分析 文化生活主观题 《文化生活》 第一单元《文化与生活》 1.【2017海南】阅读材料,完成下列问题。 时代楷模李保国教授把科技扶贫作为自己的理想,为山......

    高考数列专题练习(汇总)

    数列综合题1.已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=,求数列的前n项和。2.已知递增的等比数列满足是的等差中项。(Ⅰ)求数列的通项公式;(Ⅱ)若是数列的前项和,求3.等比数列为递增......

    数列高考复习

    2012届知识梳理—数列1a(n2k)112n(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n4n1,2,3,(I)求a2,a3;(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25......

    广东高考大题

    2012. 36.(18分) 图18(a)所示的装置中,小物块A、B质量均为m,水平面上PQ段长为l,与物块间的动摩擦因数为μ,其余段光滑。初始时,挡板上的轻质弹簧处于原长;长为r的连杆位于图中虚线位置......

    高考数学数列专题训练

    高考限时训练----数列(45分钟) 一、选择题 1.已知等比数列{a2 n}的公比为正数,且a3·a9=2a5,a2=1,则a1= A. 12B. 22C. 2D.2 2.等差数列a2 n的前n项和为Sn,已知am1am1am0,S2m138,则m......

    高考数学专题-数列求和

    复习课:数列求和一、【知识梳理】1.等差、等比数列的求和公式,公比含字母时一定要讨论.2.错位相减法求和:如:已知成等差,成等比,求.3.分组求和:把数列的每一项分成若干项,使其转化为等差......

    高考数列核心知识

    广东高考数列必备知识 广东高考涉及数列的题目通常是一“小”一“大”。 1.小题属于中、低档题,主要考查等差(比)的概念、公式以及性质,复习重点应放在“基本量法”(也俗称“知三......