数列综合复习课教案

时间:2019-05-13 09:02:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数列综合复习课教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数列综合复习课教案》。

第一篇:数列综合复习课教案

数列综合复习课教案2007.12.6文卫星

例1 填空题

(1)在各项都为正数的等比数列an中,首项a1=3,前三项和为21,则a3a4a5=___ ;

(2)设Sn是等差数列an的前n项和,已知S636,Sn324,Sn6144(n6),则n=__;

(3)Sn为等差数列{an}的前n项和,若a2n

an

4n12n

1,则S2n=。

Sn

例2 已知由正数组成的等比数列{an},若前2n项之和等于它前2n项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{an}的通项公式.1

an

2

a1n

4n为偶数

例3设数列an的首项a1a≠

14,且an1,n为奇数

记bna2n1

14,n=l,2,3,…·

(1)求a2,a3(2)判断数列{bn}是否为等比数列,并证明你的结论;(3)求lim(b1b2b3bn).n



例4设向量a=(x,2),b=(x+n,2x-1)(n为正整数),函数y=ab在0,1上的9

最大值与最小值的和为an,又数列bn满足:b1+2b2++(n-1)bn-1+nbn= 10(1)求an和bn的表达式;

n-1

.(2)若cn=-nanbn,试问数列cn中,是否存在正整数k,使得对于任意的正整数

n,都有cnck成立?证明你的结论.作业 1.填空题



(1)已知等差数列{an}的前n项和为Sn,若OB=a1OA+a200OC,且A、B、C三点共

线(该直线不过原点O),则S200=______;

(2)已知数列{an}、{bn}都是公差为1的等差数列,其首项分别为a1、b1,且a1b15,**,则数列{cn}的前10项和等于______; a1,b1N.设cnabn(nN)

(3)在数列{an}中, a1=1, a2=2,且an2an1(1)n(nN),则S100=_____.2.已知数列an满足a11,a23,an23an12an(nN*).(1)证明:数列an1an是等比数列;(2)求数列an的通项公式;(3)若数列bn满足

43.已知点的序列An(xn,0),nN,其中x1=0,x2=a(a0),A3是线段A1A2的中点,A4是线段A2A3的中点,……,An是线段An2An1,……(1)写出xn与xn1,xn2之间的关系式(n3);(2)设anxn1-xn,求数列an的通项公式;(3)求limxn。

n

b1

1b21

...4

bn1

(an1)n(nN),证明bn是等差数列。

b

*

4.在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n1,0)(nN*),满足向量AnAn1与向量BnCn共线,且点Bn(n,bn)(nN)都在斜率为6的同一条直线上.(1)试用a1,b1与n来表示an;

(2)设a1a,b1a,且12a15,求数列{an}中的最小项.5.已知二次函数f(x)=ax2+bx+c的图象的顶点坐标是((1)求y=f(x)的表达式,并求出f(1),f(2)的值;

(2)数列{an},{bn},若对任意的实数x都满足f(x)g(x)+anx+bn=xn+1, nN,其中g(x)是定义在实数集R上的一个函数,求数列{an},{bn}的通项公式;

(3)设圆Cn:(x-an)+(y-bn)=rn,若圆Cn与圆Cn+1外切,{rn}是各项都是正数的等比数列.记Sn是前n个圆的面积之和,求lim

答案:

1.(1)100,(2)85,(3)2600.n*

2.(1)公比为2;(2)an21(nN):(3)bn22bn1bn0.32,

14),且f(3)=2.Snrn

n

(nN).3.(1)xn=

(xn1+xn2);(2)an=(

12)

n1

a;(3)limxn=

n

a11(

12)

a。

4.(1)an=a1+b1(n-1)+3(n-1)(n-2);(2)当n=4时,a4取最小值,最小值为18-2a.5.(1)f(1)=0,f(2)=0;(2)an=2n+1-1,bn=2-2n+1;(3)

43.

第二篇:(教案)数列综合应用

专题三:数列的综合应用

备课人:陈燕东 时间: 备课组长

[考点分析]

高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

【例题精讲】

【题型1】求和,求通项

例1.设数列an的前n项和Sn=2n+1-2,数列bn满足bn(1)求数列an的通项公式;(2)求数列bn的前n项和Tn.

1.(n1)log2an变式训练1:已知数列an是公差不为0的等差数列,a12,且a2,a3,a41成等比数列.(1)求数列an的通项公式;(2)设bn

2,求数列bn的前n项和Sn.

nan2变式训练2.已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Snan2an3.(1)求数列{an}的通项公式;

(2)已知bn2n,求Tna1b1a2b2anbn的值.

2备选例题1.已知数列an的前n项和为Sn,且2Snnn.2(1)求数列{an}的通项公式;(2)若bn12an1,(nN*)求数列{bn}的前n项和Sn.anan

1备选例题2.已知数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。,数列错误!未找到引用源。满足错误!未找到引用源。错误!未找到引用源。.(1)求数列错误!未找到引用源。的通项错误!未找到引用源。;(2)求数列错误!未找到引用源。的通项错误!未找到引用源。;

(3)若错误!未找到引用源。,求数列错误!未找到引用源。的前错误!未找到引用源。项和错误!未找到引用源。.

【题型2】证明题

例2.已知数列an的前n项和为Sn,a11,an0,anan1Sn1,其中为常数,(I)证明:an2an;

(II)是否存在,使得an为等差数列?并说明理由.变式训练.已知函数fx123xx,数列an的前n项和为Sn,点n,SnnN均在函数22yfx的图象上.(1)求数列an的通项公式an;(2)令cn

【题型3】创新题型

3、设正项等比数列an的首项a11anan1,证明:2nc1c2cn2n.2an1an1,前n项和为Sn,且210S30(2101)S20S100。2(Ⅰ)求an的通项;(Ⅱ)求nSn的前n项和Tn。

备选例题: 1.在等差数列{an}中,公差d0,a2是a1与a4的等比中项.已知数列a1,a3,ak1,ak2,,akn,成等比数列,求数列{kn}的通项kn.【题型4】数列与不等式的综合题

4、已知有穷数列{an}共有2k项(整数k≥2),首项a1=2.设该数列的前n项和为Sn,且an1=,其中常数a>1.(a1)Sn+2(n=1,2,┅,2k-1)(1)求证:数列{an}是等比数列;(2)若a=22,┅,2k),求数列{bn}的通项公式;(3)若(2)中的数列{bn}满足不等式|b1-

【题型5】数列与函数的综合题

5、设数列{an}的前n项和为Sn,点(n,Sn)(nN)均在函数y=3x-2的图像上。(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn有nN都成立的最小正整数m。

本小题主要是考查等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力。22k1,数列{bn}满足bn=

1log2(a1a2an)(n=1,n3333|+|b2-|+┅+|b2k1-|+|b2k-|≤4,求k的值. 2222m3,Tn是数列{bn}的前n项和,求使得Tn对所

20anan1

第三篇:数列复习

一、等差数列的判定

1、利用定义法进行判定:数列复习若数列an满足:anan1d,n2,nNan1and,nN*a为等差数列 nn*a为等差数列 例题

1、在数列{an}中,a1=-3,an=2an-1+2n+3(n≥2,且n∈N*).

(1)求a2,a3的值;

an+3(2)设bn=(n∈N*),证明:{bn}是等差数列.

2例题

2、设数列an的前n项和为Sn,a11,an

(1)、求证:数列 an为等差数列;

(2)、求数列an 的通项公式an和前n项和Sn.Sn2n1,nN*, n

第四篇:数列复习4-5

数列复习(4)

主要内容:等比数列的定义、通项公式、性质、前n项和公式

一、等比数列的通项公式

1、(1)已知数列{an}中,a3=2,a2+a4=20/3/求an

(2)a2+a5=18,a3+a6=9,an=1,求n

二、等比数列的判断与证明

2、已知数列{an}的前n项和为Sn,Sn1(an1)(nN),求证数列{an}是等比数列。3

三、等比中项问题

3、等比数列{an}的前三项和为168,a2-a5=42,求a5、a7的等比中项

四、等比数列的性质

4、(1)在等比数列{an}中,若a9=-2,则此数列前17项之积为;

(1)在等比数列{an}中,若a2=2,a6=162,则a10;

(3)在等比数列{an}中,a3a4a5=3, a6a7a8=24,则a9a10a1

1五、等比数列中的基本运算

5、在等比数列{an}中,(1)已知sn=189,q=2,an=96,求a1和n;

(2)若a3a110,a4a65,求a4和s5(3)若q=2,s4=1,求s8 4

六、等比比数列前n项和的性质应用

6、已知等比数列{an}中,前10项和sn=10,前20项和s20=30,求s30.七、等比数列的综合问题

7、数列{an}是等比数列,项数是偶数,各项均为正,它所有项的和等于偶数项和的4倍,且第二项与第四项的积是第三项与第四项和的9倍,则数列{lgan}的前多少项和最大? 练习:

1、是否存在一个等比数列{an},使其满足下列三个条件:①a1+a6=11,且a3a4=③至少存在一个m(m∈N+,m>4),使32;②an+1>an;924am1,a2m,am1依次成等差数列。若存在,请写出39

数列的通项公式;若不存在,请说明理由。

2、已知数列{an}是等比数列,其中a1=1,且a4,a5+1,a6成等差数列。

(1)求数列{an}的通项公式;(2)前n项和记为sn,证明:sn<128

第五篇:数列高考复习

2012届知识梳理—数列

1a(n2k)112n

(kN*),记bna2n1,1、(河西三模)设数列{an}的首项a1,且an124a1(n2k1)n

4n

1,2,3,(I)求a2,a3;

(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)证明b13b25b3(2n1)bn3.22(Snn)3*

2、(南开二模)已知数列{an}的前n项和为Sn,对于任意的nN,有an

(I)求证:数列{an1}是等比数列,并求{an}的通项公式;(II)求数列{nan}的前n项和Tn3、(和平二模)已知数列{an}满足a1

(I)求{an}的通项公式;

(II)若Tnb12b22(III)设cna11 ,an1ann(nN*),bn2n14an1bn2,求证Tn2; 1,求数列{cn}的前n项和.bnbn

14、(河北一摸)在数列{an}与{bn}中,数列{an}的前n项Sn满足Snn22n,数列{bn}的前n项和Tn

满足3Tnnbn1,且b11,nN*.(I)求{an}的通项公式;

(II)求数列{bn}的通项公式;

(III)设cnbn(an1)2ncos,求数列{cn}的前n项和.n1

3*

5、(南开一摸)设数列{an}满足:nN,an2Sn243,其中Sn为数列{an}的前n项和.数列{bn}满

足bnlog3an.(I)求数列{an}的通项公式;

(II)求数列{cn}满足:cnbnSn,求数列{cn}的前n项和公式.6、(市内六校联考二)已知二次函数f(x)ax2bx的图象过点(4n,0),且f'(0)2n,nN*(I)求f(x)的解析式;(II)设数列满足

1f'(),且a14,求数列{an}的通项公式; anan

(III)记bn

{bn}的前n项和为Tn,求证:Tn2.7、(市内六校联考三)数列{an}的前n项和为Sn,a11,且对于任意的正整数n,点(an1,Sn)在直线

2xy20上.(I)求数列{an}的通项公式;

(II)是否存在实数,使得{Snn

2n

为等差数列?若存在,求出的值,若不存在,说明理由.112n(III)已知数列{bn},bn,bn的前n项和为Tn,求证:Tn.62(an1)(an11)

8、(河东一摸)将等差数列{an}所有项依次排列,并作如下分组:(a1),(a2,a3),(a4,a5,a6,a7),组1项,第二组2项,第三组4项,第n组

2n

1,第一

项.记Tn为第n组中各项和,已知T348,T40.(I)求数列{an}的通项公式;(II)求Tn的通项公式;(III)设{Tn}的前n项的和为Sn,求S8.9、(河西区一摸)已知数列{an}满足a1

(n1)(2ann)

1,an1(nN*)2an4n

ankn

为公差是1的等差数列,求k的值; ann

.1

2(I)求a2,a3,a4;(II)已知存在实数k,使得数列{

(III)记bn

nN*),数列{bn}的前n项和为S

n,求证Sn

10、(和平一摸)在等差数列{an}和等比数列{bn}中,已知a11,a47,b1a11,b4a81(I)分别求出{an},{bn}的通项公式;(II)若{an}的前n项和为Sn,1

1S1S

2

与2的大小; Sn

(III)设Tn

a1a2

b1b2

an*,若Tnc(cN),求c的最小值.bn

2an1(n2k)

11、(红桥区4月)已知数列{an}满足:a11,ann1(kN*),n2,3,4,22an1(n2k1)

2(I)求a3,a4,a5;(II)设bna2n11,n1,2,3,(III)若数列{cn}满足2

2(c11),,求证:数列{bn}是等比数列,并求出其通项公式;

22(c21)

22(cn1)bncn,证明:{cn}是等差数列.12、(河北区二模)已知各项均为正数的数列{an}的前n项和Sn满足6Sn(an1)(an2),且S11(I)求{an}的通项公式;(II)设数列{bn}满足an(2n

b

11)1,记Tn为{bn}的前n项和,求证:3Tn1log2(an3).Sn1Sn2an1,

SnSn1an13、(第二次12校)已知数列{an}的首项a11,a23,前n项和为Sn,且

(nN*,n2),数列bn满足b11,bn1log2(an1)bn。

(Ⅰ)判断数列1{an1}是否为等比数列,并证明你的结论;

n

21),求c1c2c3cn;(II)设cnan(bn2

(Ⅲ)对于(Ⅰ)中数列an,若数列{ln}满足lnlog2(an1)(nN*),在每两个lk与lk1 之间都插入2k1(k1,2,3,kN*)个2,使得数列{ln}变成了一个新的数列{tp},(pN)试问:是否存在正整数m,使得数列{tp}的前m项的和Tm2011?如果存在,求出m的值;如果不存在,说明理由.14、(第一次12校)已知数列{an}的前n项和Sn满足:a(Snan)Sna(a为不为零的常数,aR)

(nN).

(Ⅰ)求{an}的通项公式;(Ⅱ)设cnnan1,求数列{cn}的前n项和Tn;(Ⅲ)当数列{an}中的a2时,求证:

2222232n

1. 15(a11)(a21)(a21)(a31)(a31)(a41)(an1)(an11)

315、(五校联考)在数列an中,a1

a211,an1n,nN 7an

(I)令bn

1,求证:数列bn是等比数列;(II)若dn(3n2)bn,求数列dn的前n项

an2

3

和Sn;(Ⅲ)若cn3nbn(为非零整数,nN)试确定的值,使得对任意nN,都有cn1cn成立.

16.(津南区一模)等比数列{an}为递增数列,且a4(I)求数列{bn}的前n项和Sn及Sn的最小值;

a220*,a3a5,数列bnlog3n(nN)39

2(II)设Tnb1b2b22b2n1,求使Tn5n320成立的n的最小值. 17、(河东二模)已知数列{bn}(nN)是递增的等比数列,且b1b35,b1b3

4(1)求数列{bn}的通项公式;(2)若数列{an}的通项公式是ann2,数列{anbn}的前n项和为sn,求sn

18、(河西二模)已知曲线C:yx2(x0),过C上的点A1(1,1)做曲线C的切线l1交x轴于点B1,再过点

B1作y轴的平行线交曲线C于点A2,再过点A2作曲线C的切线l2交x轴于点B2,再过点B2作y轴的平

行线交曲线C于点A3,……,依次作下去,记点An的横坐标为an(nN)

(1)求数列{an}的通项公式;(2)设数列{an}的前n项和为sn,求证:ansn1;

14n

1(3)求证: 

3i1aisi

n

19.(09天津文)已知等差数列{an}的公差d不为0,设Sna1a2qanqn1

Tna1a2q(1)n1anqn1,q0,nN*

(Ⅰ)若q1,a11,S315 ,求数列{an}的通项公式;(Ⅱ)若a1d,且S1,S2,S3成等比数列,求q的值。(Ⅲ)若q1,证明(1q)S2n19、(2010文)在数列an

2dq(1q2n)*

(1q)T2n,nN2

1q

中,a10,且对任意kN*,a2k1,a2k,a2k1成等差数列,其公差为2k.的通项公式;

(Ⅰ)证明a4,a5,a6成等比数列;(Ⅱ)求数列an

32232n2

(Ⅲ)记Tn……+,证明2nTn2(n2).2a2a3an

20.(2011文)已知数列{an}与{bn}满足bn1anbnan1

3(1)n1

(2)1,bn,nN*,且a12.n

(Ⅰ)求a2,a3的值;(Ⅱ)设cna2n1a2n1,nN*,证明{cn}是等比数列;(Ⅲ)设Sn为{an}的前n项和,证明

S1S2

a1a2

S2n1S2n1

n(nN*).a2n1a2n3

下载数列综合复习课教案word格式文档
下载数列综合复习课教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列极限复习

    数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范......

    数列第二轮复习

    数列第二轮复习 考点一:等差、等比数列的概念与性质 例一:题型一:证明等差数列以及错位相减法 例1:在数列an中,a11,an12an2n. (Ⅰ)设bnan.证明:数列bn是等差数列; 2n1 (Ⅱ)求数列an的前n项......

    数列教案

    乐清体校 黄智莉 教学目标: 知识与技能:理解数列的有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的前几项甚至任意一项 过程与方法:通过对具体......

    数列教案

    数列教案 教材分析 1. 地位作用 数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一......

    简单数列教案

    北外附校小学部2010-2011学年度第一学期 二年级数学思维训练试题(认识简单数列教案) 我们把按一定规律排列起来的一列数叫数列. 在这一讲里,我们要认识一些重要的简单数列,还要......

    综合复习教案

    苏州思学堂教育 综合复习教案一:宪法与法律 1.从党的十八大提出“法治是治国理政的基本方式‟‟,到纪念现行宪法公布施行30周年大会上提出“依法治国,首先是依宪治国。依法行政,......

    综合复习教案

    2、生活是多么广阔 教学目标 1.学会正确、流利、有感情地朗读这首新诗; 2.体会作者热爱生活的情怀; 3.培养学生正确的人生态度和热爱生活的感情。 学习目标: 1.正确、流利、有......

    复习课教案(合集)

    复习课教案 第一课时 教学目标: 1、 复习掌握第一、二单元的生字生词、多音字,区别行近字。 2、 加强阅读理解,提高阅读分析能力。 3、 能把句子补充完整。 教学过程: 一、听写......