10专题十数列极限与函数极限

时间:2019-05-13 09:02:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《10专题十数列极限与函数极限》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《10专题十数列极限与函数极限》。

第一篇:10专题十数列极限与函数极限

2012年高考复习资料—第二轮复习专题练习题

华中师大一附中孟昭奎

专题十数列极限与函数极限

一、选择题

(1x)mab,则a·b=()1.(2008年高考·湖北卷)已知m∈N, a、b∈R,若lim n0x

A.-mB.mC.-1D.1 *

2.lim(n1

4A.1 111)的值为()464684682n1111B.C.418D.11 24

x32xa2(x1)3.若函数f(x)15a在点x=1处连续,则实数a=()(x1)3x

1A.4B.-14C.4或-14 D.1或-4 4

4.下列命题:①发果f(x)=1,那么limf(x)=0;②如果f(x)=x1,那么f(x)=0;③如xx

x22xx,x0果f(x)=,那么limf(x)不存在;④如果f(x),那么limf(x)=0,其中真x2x0x2x1,x0

命题是()

A.①②B.①②③C.③④D.①②④

ax2bx3cx3bxccxa1,则lim5.设abc≠0,lim的值等于(),limxaxbxbx3cx2a3xbx2c4

419 A.4B.C.D. 944

an1abn126.设正数a, b满足lim(x+ax-b)=4,则lim等于()nax22b11 A.0B.C.D.1 4

27.把1+(1+x)+(1+x)2+…+(1+x)n展开成关于x的多项式,其各项系数和为an,则lim等于()

A.2an1na1n14B.12C.1D.2

二、填空题

8.已知数列的通项an=-5n+2,其前n项和为Sn,则lim

9.lim(x2Sn=________. nn241)=________. x24x

2专题十数列极限与函数极限

2012年高考复习资料—第二轮复习专题练习题

华中师大一附中孟昭奎

10.(2008年高考·安徽卷)在数列{an}中,an=4n-5, a1+a2+…+an=an2+bn, n∈N*,其中a, b2

anbn

为常数,则limn的值为__________. nabn

ex1,(x0)11.关于函数f(x)(a是常数且a>0).下列表述正确的是_________.(将你2ax,(x0)

认为正确的答案的序号都填上)

①它的最小值是0

②它在每一点处都连续

③它在每一点处都可导

④它在R上是增函数

⑤它具有反函数

12.如图所示,如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_______条.这些直线中共有f(n)对异面直线,则f(4)=_______;f(n)=_______.(答案用数字或n的解析式表示)

三、解答题

1x(x0),13.已知f(x) xabx(x0).

(1)求f(-x);(2)求常数a的值,使f(x)在区间(-∞, +∞)内处处连续.

14.已知{an}, {bn}都是公差不为0的等差数列,且limanaa2an2,求lim1的值. nbnnbn2n

15.已知数列{an}中a1=2, an+1=(2-1)(an+2), n=1, 2, 3, ….

(1)求{an}的通项公式;(2)若数列{bn}中b1=2, bn+1=3bn4, n=1, 2, 3, ….

专题十数列极限与函数极限

第二篇:数列极限和函数极限(最终版)

数列极限和函数极限

极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、判别方法等问题.1.极限定义

1.1 数列极限定义

设有数列an与常数A,如果对于任意给定的正数(不论它有多么小),总存在正整数N,使得当nN时,不等式anA 都成立,那么就称常数A是数列an的极限,或者称数列an收敛于A,记作limanA.n

读作“当趋n于无穷大时,an的极限等于A或an趋于A”.数列极限存在,称数列an 为收敛数列,否则称为发散数列.关于数列极限的N定义,着重注意以下几点:

(1)的任意性: 定义中正数的作用在于衡量数列通项an与定数的a接近程度越小,表示接近的越好.而正数可以任意的小,说明an与可a以接近到任何程度,然而,尽管有其任意性,但一经给出,就暂时的被确定下来,以便依靠它来求出N.(2)N的相应性: 一般说,N随的变小而变大,由此常把N写作N,来强调N是依赖与的,但这并不意味着N是由所唯一决定的,重要的是N的存在性,而不在于它值得大小.另外,定义中nN的也可以改写成nN.(3)几何意义:对于任何一个以A为中心,为半径的开区间A,A,总可以在数列an中找到某一项aN,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有an的有限项(N项).数列是定义在自然数集上的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值,其解析表达式为anfn;我们把数列中的n用x来替换后就得到了一个函数fx,数列和函数的区别在于数列中的点是离散的,而函数是连续的,那么类似的我们也有函数极限的定义.1.2 函数极限定义

1.2.1x时函数的极限:设函数fx为a,上的函数,A为定数,若对任给的0,总存在着正数Ma,使得当xM时有fxA,则称函数fx当

x趋于时以A为极限,记作limfxA.x

即有limfxA0,M0,xM,有fxA.x

对应的,我们也有limfxA,limfxA的相应的

x

x

M语言成立.对于函数极限的M定义着重注意以下几点:

(1)在定义中正数M的作用与数列极限定义中的N类似,表明x充分大的程度;但这里所考虑的是比M大的所有实数x,而不仅仅是正整数n.(2)当x时,函数fx以A为极限意味着: A的任意小邻域内必含有fx在的某邻域内的全部函数值.(3)几何意义是:对任给0的,在坐标平面上,平行于x轴的两条直线yA与

yA,围成以直线yA为中心线,宽2为的带形区域;定义中的“当xM时,有fxA”表示:在直线xM的右方,曲线yfx全部落在这个带形区域之内.1.2.2xx0时函数的极限:设函数fx 在点x0的某一去心邻域U

x;内有

'0

'定义,A为定数,如果对于任意给定的正数(无论它多么小),总存在正数,使



得当0xx0时,有fxA,则常数A为函数fx在xx0时的极限,记作limfxA.xx0

即limfxA0,0,x:x0xx0,有fxA.xx0

对应的,我们也有limfxA,limfxA的相应的

xx0

xx0

语言成立.对于函数极限的

定义着重注意以下几点:

N定义中的N,它依赖于,但也不是由所唯

(1)定义中的正数,相当于数列极限

一确定的,一般来说, 愈小, 也相应地要小一些,而且把取得更小些也无妨.(2)定义中只要求函数在的某一空心邻域内有定义,而一般不考虑在点处的函数值是否有意义,这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势.(3)定义中的不等式0xx0等价于xUx0;,而不等式fxA等价于fxUA;.于是,

定义又可写成:

任给0,存在0,使得一切xUx0;有fxUA;.或更简单的表为:

任给0,存在0,使得fUx0;UA;.

(4)几何意义是:将极限定义中的四段话用几何语言表述为

对任给0的,在坐标平面上画一条以直线yA为中心线,宽2为的横带,则必存在以直线xx0为中心线、宽为2的数带,使函数yfx的图像在该数带中的部分全部落在横带内,但点x,fx0可能例外(或无意义).

2.极限性质

2.1数列极限的性质

收敛数列有如下性质:

(1)极限唯一性:若数列an收敛,则它只有一个极限.(2)若数列an收敛,则an为有界数列.(3)若数列an有极限,则其任一子列an也有极限.''

(4)保号性,即若limana00,则对任何a0,aaa,0,存在正整数N1,n



n>N1时,ana'ana'.(5)保不等式性:即若an与bn均为收敛数列, 若存在正整数N1,使得当n>N1时有

an

n

(6)数列极限的基本公式(四则运算)设limxn,limyn存在,则

n

n

limxnynlimxnlimyn

nn

n

n

limxnynlimxnlimyn

n

n

xn

xnlimnlimlimyn0nylimynnn



n

limxnlimynxnyn

n

n

2.2函数极限性质

(1)极限唯一性;若极限limfx存在,则此极限是唯一的.xx0

(2)局部有界性

若limfx存在,则fx在x0的某空心邻域Ux内是有界的,当x0趋于无穷大时,xx0

亦成立.(3)局部保号性

若limfxA00,则对任何正数rAA,存在Ux0使得对一切

xx0

xUx0有fxr0fxr0,当趋于无穷大时,亦成立.(4)保不等式性

若limfxA,limgxB,且在某邻域U

xx0

xx0

x;内有fxgx,则

'0

xx0

limfxlimgx.xx0

(5)函数极限的基本公式(四则运算)

设limfx,limgx存在,则

xa

xa

limfxgxlimfxlimgx

xaxa

xa

xa

limfxgxlimfxlimgx

xa

xa

fxfxlimxalimlimgx0xagxlimgxxa



xa

通过以上对数列极限与函数极限的介绍,可以知道数列极限与函数极限的本质相同,性质一致.3.极限的判别法

3.1 数列极限的判别法

(1)单调有界定理:单调有界数列必有极限.证明:不妨设an为有上界的递增数列.由确界原理,数列an有上确界,记

asupan.下面证明a就是an的极限.事实上,任给0,按上确界的定义,存在数列

an中某一项aN,使得aaN.又由an的递增性,当nN时有

aaNan。

另一方面,由于a是an的一个上界,故对一切an都有anaa 所以当nN时有

aana

这样就证得, limana.n

同理可证有下界的递减数列必有极限,且极限即为它的下确界.(2)数列收敛的柯西准则:

数列an收敛的充分必要条件是:对于任意给定的正数,存在着这样的正整数N,使得当m,n>N时,有xnxm.(3)数列极限的夹逼准则

如果收敛数列an,bn都以为a极限,数列cn满足下列条件: 存在正数N,当n>N时有

ancnbn

则数列cn收敛,且 limcna.n

3.2函数极限的判别法:(1)函数极限的夹逼准则:

设limfxlimgxA且在某U

xx0

xx0

x;内有

'0

fxhxgx

则limhxA.xx0

(2)函数收敛的柯西准则:

xx0

limfx存在的充要条件是:任给, 0,存在正数',使得对任何

x',x“Ux0;,有 fx'fx”.

第三篇:D1.2-1.3数列的极限函数的极限

高等数学(1)标准化作业题参考答案—2班级姓名学号

第二节数列的极限

一、单项选择题

1.数列极限limynA的几何意义是n

A.在点A的某一邻域内部含有{yn}中的无穷多个点

B.在点A的某一邻域外部含有{yn}中的无穷多个点

C.在点A的任何一个邻域外部含有{yn}中的无穷多个点

D.在点A的任何一个邻域外部至多含有{yn}中的有限多个点

2.limynA的等价定义是n

A.对于任意0及K0,总存在正整数N,使得当nN时,ynAK

B.对于某个充分小的0,总存在正整数N,使得当nN时,ynA

C.对于任意正整数N,总存在0,使得当nN时,ynA

D.对于某个正整数N,总存在0,使得当nN时,ynA

3.“对任意给定的(0,1),总存在正整数N,当nN时,恒有xna”是数列xn收敛于a的C条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要 ﹡

二、利用数列极限的定义证明:lim

证明: 对0,要使1cosn0.nn21cosn1cosn20,只需n.nnn

1cosn1cosn20,取N,0.则当nN时,就有所以lim0成立,nnn

3高等数学(1)标准化作业题参考答案—2班级姓名学号

第三节函数的极限

一、单项选择题

1.极限limf(x)A定义中与的关系为xx0

A.先给定,后唯一确定B.先给定后确定,但的值不唯一

C.先确定,后确定D.与无关

2.若函数f(x)在某点x0极限存在,则A.f(x)在点x0的函数值必存在且等于该点极限值

B.f(x)在点x0的函数值必存在,但不一定等于该点极限值

C.f(x)在点x0的函数值可以不存在D.若f(x)在点x0的函数值存在,必等于该点极限值

3.以下结论正确的是C.A.若limf(x)A0,则f(x)0 xx0

B.若limf(x)A0,则必存在0,使当xx0时,有f(x)0 xx0

C.若limf(x)A0,则必存在0,使当0xx0时,有f(x)xx0A

2D.若在x0的某邻域内f(x)g(x),则limf(x)limg(x)xx0xx0

4.极限limx0xx

A.1B.1C.0D.不存在x2x65.﹡

二、利用函数极限的定义证明:limx3x3

x2x6证明: 0,要使5x3,只需取,则当0x3时,x3

x2x6x2x65.就有5x3成立,所以limx3x3x3

第四篇:函数极限

习题

1.按定义证明下列极限:

(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x

x251;(4)lim(3)lim2xx1x2

(5)limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf(x)≠ A.xx0

3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0

4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x

x;(2)f(x)= [x]

2x;x0.(3)f(x)=0;x0.1x2,x0.

7.设 limf(x)= A,证明limf(xxx01)= A x

8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22

x21x113x;

lim(3)lim;(4)

x12x2x1x0x22x3

xn1(5)limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70;

a2xa3x68x5.(a>0);(8)lim

xx5x190

2. 利用敛性求极限:(1)lim

x

xcosxxsinx

;(2)lim2

x0xx4

xx0

3. 设 limf(x)=A, limg(x)=B.证明:

xx0

(1)lim[f(x)±g(x)]=A±B;

xx0

(2)lim[f(x)g(x)]=AB;

xx0

(3)lim

xx0

f(x)A

=(当B≠0时)g(x)B

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=A.证明

xx0

xx0

lim

f(x)=A,其中n≥2为正整数.6.证明limax=1(0

x0

7.设limf(x)=A, limg(x)=B.xx0

xx0

(1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么?

(2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3)lim;(4)lim

x0x0x1

x1

x

(5)lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n

[a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则;

n

(2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff(x)

6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1)lim;(2)lim

x0x0sinx2x

(3)lim

x

cosxx

tanxsinxarctanx

lim(5)lim;(6);3x0x0xx

sin2xsin2a1

(7)limxsin;(8)lim;

xxaxxa

;(4)lim

x0

tanx

;x

cosx2

(9)lim;(10)lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1)lim(1);(2)lim1axx(a为给定实数);

nx0x

x

(3)lim1tanx

x0

cotx

;(4)lim

1x

;

x01x

(5)lim(x

3x22x1);(6)lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0);

+

(3)x1o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限:

x21x(1)lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1)y =;(2)y = arctan x;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1)sin2x-2sinx;(2)

-(1-x);1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x)(x→x0),证明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

总 练习题

1. 求下列极限:

1

(x[x])lim([x]1)(1)lim;(2)

x3

x1

(3)lim(x

axbxaxbx)

xxa

(4)lim

x

(5)lim

xxa

x

(6)lim

xxxx

x0

(7)lim

nm,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1)limaxb0 xx1

x(3)limx

(2)lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1)limf(x)f(2);(2)limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0

局部保号性有矛盾吗?

5. 设limf(x)A,limg(u)B,在何种条件下能由此推出

xa

gA

limg(f(x))B?

xa

6. 设f(x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1)limanr1

n

(2)lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1)lim1

n

11(2)lim1

nnn

9. 设liman,证明

n

(1)lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2)lim

n

In(n!)

nn

11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得

limf(xn)A,则有

n

f(x0-0)=

supf(x)A

0xU(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))A证明

x

lim

f(x)

A x

第五篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

和,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念(3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一)时函数的极限:

《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证(类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域

《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th 4 若使,证 设

和都有 =

(现证对 都存在, 且存在点 的空心邻域),有

註: 若在Th 4的条件中, 改“ 就有

5.6.以

迫敛性:

”为“ 举例说明.”, 未必

四则运算性质:(只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和()§ 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限

为例.一.Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

且的某空心邻域

内有定义.则极限都存在且相等.(证)

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。一.

(证)(同理有)

例1

例2.例3

例4

例5 证明极限 不存在.二.证 对

例6

特别当 等.例7

例8

《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)

几组常用等价无穷小:(见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习题 课(2学时)

一、理论概述:

《数学分析》教案

第三章 函数极限

xbl

例7.求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.例8 求是否存在.和.并说明极限

解;

可见极限 不存在.--32

下载10专题十数列极限与函数极限word格式文档
下载10专题十数列极限与函数极限.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数极限

    数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际......

    函数与数列极限的定义区别

    导读:极限是研究函数最基本的方法,它描述的是当自变量变化时函数的变化趋势.要由数列极限的定义自然地过渡到函数极限的定义,关键在于搞清楚 数列也是函数这一点.数列可看作一......

    数列极限例题

    三、数列的极限 (1)n1}当n时的变化趋势. 观察数列{1n问题: 当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: (1)n1当n无限增大......

    数列极限教案

    数列的极限教案授课人:###一、教材分析极限思想是高等数学的重要思想。极限概念是从初等数学向高等数学过渡所必须牢固掌握的内容。二、教学重点和难点教学重点:数列极限概念......

    数列极限复习

    数列极限复习题姓名242n1、lim=; n139(3)nan22n1a2、若lim(2n)1,则=; nbn2b1an3、如果lim0,则实数a的取值范围是;n2an4、设数列{an}的通项公式为an(14x),若liman存在,则x的取值范......

    第一章函数与极限(本站推荐)

    第一章函数与极限 第一节 映射与函数 一、集合 1、集合的概念 集合是数学中的一个基本概念,我们先通过例子来说明这个概念。例如,一个书柜的书构成一个集,一间教室里的学生构成......

    函数极限与连续(汇编)

    函数、极限与连续一、基本题1、函数fxln6x的连续区间ax2x2x12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axba-1,b41sin2x3、limx2sin-2x0xx4、n2x4/(√2-3)k5、lim1e2,则k=-1xx......

    第一章函数与极限

    《函数与极限》重难点电信1003班  函数1. 定义域与定义区间的关系。2. 映射的种类及存在条件。3. 求函数定义域的基本原则(7条)。4. 几种特殊的函数类型(绝对值函数、符号函数......