第一章函数、极限与连续学习指导

时间:2019-05-13 16:04:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第一章函数、极限与连续学习指导》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第一章函数、极限与连续学习指导》。

第一篇:第一章函数、极限与连续学习指导

第一章函数、极限与连续

重点:极限基本理论及计算、闭区间上连续函数的性质。

难点:

1.计算极限技巧;

2.极限的“X”,“”语言,(一)

A1函数概念是高等数学的基本概念,反应了同一过程中,几个变量的联系以及依赖关系。函数定义强调了自变量x在定义D上每取一值时,函数y都有唯一确定的值与它对应,而对于对应关系的形式,定义中并无限制,因此一个函数可以用分析式子来表达,也可以用图象法和表格法来表达。在用分析式子来表达时,可用一个式子表达,也可用几个式子(即分段函数),参数式(实质是以参变量为中间变量的复合函数),隐式(即隐函数)表达。

A2高等数学讨论的函数主要是初等函数。初等函数是由基本初等函数组成,因此对基本初等函数及其性质要非常熟悉,否则在研究初等函数的性质时会遇到困难。对基本初等函数以及性质的深入了解应结合函数图形进行,将函数的性质与图形的特点逐一对照,在此基础上利用图形来记忆函数的性质。

A3由于极限是研究变量在无限变化过程中的趋势,因此必须从变化的、运动的角度来认识极限,在极限的描述性定义中应明确fx“无限接近于A”的含义。“fx无限接近于A”是指x在某一过程中,fx与A要有多接近就有多接近,或者说fx与A的误差可达到任意小。

“x无限接近于a”,“fx无限接近于A”均刻划了变量无限接近于某个常数。这里有两点值得注意:

①无限接近是指在变化过程中,变量与某个常量要有多接近就有多接近,或者说fx与A的误差可以达到任意小,因此“无限接近”与“越来越接近”的含义是不同的。

②变量无限接近于某个常量并没有要求达到这个常量,如“x无限接近于a时,fx无限接近于A”,这个描述并不要求也不要求...x最终达到a,...fx达到A。这一点不可忽视。

A4闭区间上连续函数具有:有界性、最值性、介值性、零值性。在这里,闭区间与函数连续这两个前提应引起充分的注意,当前提不满足时结论就不能成立。

数列极限是特殊的函数极限。因此,其极限性质也有其特殊性。如函数极限只具有局部有界性,而存在极限的数列xn是有界的,这里就有一个局部和整体的差别,其它性质也可进行对照比较。

A5闭区间上连续函数的性质在实际中应用较广泛,在科学技术中常需知某个方程的根的近似值。对于较复杂的方程,若知fafb0便可由零值定理知所求的根落在a,b内,而求出满足fafb0的a,b一般比求出方程

fx0的根要容易得多。

(二)B1“连续”是个局部的概念,是在xx0这一点定义的,因此区间上的连续函数是指对区间上的任一点处,函数都连续。

B2函数fx在x0连续的定义常用以下两种:

定义1:若fx在点x0的某个邻域内有定义,且limfxfa,则称函数

xx0

fx在x0处连续。

定义2:若fx在点x0的某个邻域内有定义,且fx在x0处有limy0,x0

则称函数fx在x0处连续。

从以上定义中看出,fx在x0处连续的充要条件为同时满足以下三条: ①limfx存在;②fx在xx0处有定义;③极限值limfx与函数值

xx0

xx0

fx0相等。

B3无穷小量就是极限为0的变量,因此,极限为的变量显然不是无穷小量,依无穷大量的定义,它是无穷大量。

常用的等价无穷小量:当x0时,x~sinx~tgx~ln1x~ex1;

ax1~xlnaa0;1x1~x0。

B

4计算极限的基本方法小结:

1.利用极限四则运算、夹逼原理、两个重要极限求极限; 2.约简分式、分子(分母)有理化法; 3.变量替换法; 4.等价无穷小的替换法; 5.利用连续函数求极限法 6.利用对数求极限法;

7.利用洛必塔法则求极限(第二章后)。

(三),“”语言定义函数极限具有简练、精确、使用方便的C1用“X”

特点。但由于这种语言要通过一些符号、式子来表达,从而比较抽象。因此应将极限的描述性定义与用“X”,“”语言给出的定义加以对照,深入理解。

下面以limfxA为例,将极限的描述性定义转化为用“”语言给出

xx0的定义,从而加深对用“”语言的理解。

xx0

limfxA表示了:

当x无限接近于x0时,因变量fx无限地接近于常数A,即:fxA可以任意小,只要xx0充分小(不用考虑xx0的情况)即:0,只要xx0充分小,(不用考虑xx0的情况),就有fxA,即:0,0,当0xx0时,就有fx。

这时应注意到,且不唯一。而定义中对,只要求了它的存在性,加外并无要求。由的任意给定和fxA的呼应,用运动变化的观点来刻划fx与A的无限接近。,“”语言中,X、均用于刻划自变量x的变化过程,C2“X”

而是用于刻划因变量y的变化趋势的。自变量x的变化过程有:x、、xx0。而对自变量每个变化过程,因x、x、xx、xx0

变量yfx可有不同的变化趋势:fxA、fx、fx、(当然也可以考虑分得更fx。因此搭配起来就有24个不同的极限定义。细些)

只要真正掌握了极限的基本思想,理解了以上C1,这24个不同的极限定义,是可以理解和掌握的。,“”语言给出的极限定义。C3可利用图象理解“X”

从图中易看出无论取多么小,作二条平行线yA,一定存在邻域

ˆ0,,当x在这个邻域内变化的时候,对应函数图象落入这二条平行线之间。Nx

请将图中看到的这个结果与极限的“”的叙述语言联系起来考虑,并可考虑相应的图象来理解“”语言给出的极限定义。,“”语言来证明函数的极限为某值时,语言一定C4使用“X”

要规范,初学者应按教材上的例题为范例,进行证明,否则易走弯路。

例证明:当x00时,limxx0。

xx0

证:0,因为fxA

xx0

xx0xx0

1x0

xx0

要使fxA,只要xx0x0,且x0,而x0,可用xx0x0保证,因此取minx0,x0 则当x满足0xx0时,对应的函数值x满足不等式

xx0



即limxx0。

xx0

特别注意:

①证明中的划直线部分,实际上正是limxx0的“”语言定义;

xx0

②划曲线部分是用“X”,“”语言来证明xx0时,函数极限为A这类问题的主要叙述语言,要尽快地熟悉和掌握;

③式子fxA

1x0

该式应引起充分注意,通过放大的手段,xx0,将fxA与xx0联系起来了。

④从以上证明中不难看出的取法不唯一,对小于minx0,x0的数均可作为。



C5一致连续是个整体性的概念,它与fx在区间上连续的差别在于fx在区间I上连续,即0,对I上的不同的x0,分别存在x00,当xx0x0

时,fxfx0,这里的x0一般因x0的不同而不同。但若fx在区间I上一致连续,则对于给定的0,存在公共的0,对于I上的任一x0,当恒有fxfx0 成立。由于x与x0地位是相当的,因此f在xx0时,I上一致连续用“”语言来定义时通常表达为:0,0,x1I,x2I,当x1x2时恒有fx1fx2。

C6柯西准则

我们以数列极限为例容易知道,①有极限的数列在n充分大时,它们的项的变化是很微小的。这个特点就是收敛数列的本质。因此,一个数列的收敛或发散可从该数列本身的结构入手进行刻划,柯西准则就是这样刻划数列的敛散性的,它是数列an存在极限的充要条件。

②柯西准则中的an,am是指数列在N项以后的任二项。

第二篇:函数极限与连续

函数、极限与连续

一、基本题

1、函数f

xln6x的连续区间ax2x2x

12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axb

a-1,b

41sin2x

3、limx2sin-2x0xx

4、n2x4/(√2-3)k

5、lim1e2,则k=-1xx

x2axb5,则a3,b-

46、设limx1x

17、设函数fx2xsinx1,gxkx,当x0时,fx~gx,则k

ex2x0

8、函数fx2x10x1的定义域R ;连续区间(-oo,1),(1,+oo)3x1x1

1xsinx

a9、函数fx1xsinbxx0x0在x0处连续,则a1,b1x010、函数fxe

1e11

x1x的间断点为x=0,类型是 跳跃间断点。

11、fx,yx2y2xycosx,则f0,1ft,1y12、fxy,xyx2y2,则fx,yy^2+x13、函数zln

2x2y2的定义域为 {(x,y)|1=0}

14、1e2xylim-12;x,y0,0x2y2exyx,y0,01x2y2x2y2lim

3-12;lim12xyx15、x0

y0

二、计算题

1、求下列极限

(1)0

0型:

1)limexex2x

x0xsin3x;=0

2)limexx

1x0x1e2x;=-1/

43)limtan3xln12x

x01cos2x;=-

34)limtanxsinx

x0xsin2x2;=1/4

(2)

型:

1)lnsin3x

xlim0lnsin2x=1

lim2n13n1

2)n2n3n=3

(3)型:

1)lim11

x0xex1=1/

22)lim

x111x1lnx=-1/2

3)xlimarccosx=π/3

4)xlimx=-1 x0y2

(4)0型:

1)limxarctanx=1x2

2)limx1tanx1x2=-π/2

(5)1型:

21)lim1xx3x2=e^(-6)

4x23x12)limx3x2

3)lim12xx0 =e^(-4)=e^(2/5)1sin5x

14)limcos=e^(-1/2)xx

(6)00型:1)limxsinx=1 x0x2

方法:lim x^sinx=lim e^(sinxlnx)

公式:f(x)^g(x)=e^(g(x)ln(f(x)))

(7)型:1)limx20x

x1x=2

同上

2、已知:fxsin2xln13x2limfx,求fx x0x

f(x)=(sin2x)/x+ln(1-3x)+

2(方法:两边limf(x)x->0)

x2x3、求函数fx的间断点,并判定类型。2xx1驻点x=0,x=1,x=-

11)当x=0+时,f(x)=-1;当x=0-时,f(x)=1 跳跃间断点

2)当x=1时,f(x)=oo;第二类间断点

3)当x=-1时,f(x)=1/2;但f(-1)不存在,所以x=-1是可去间断点

sin2xx

4、设函数fxa

ln1bx1e2xx0x0在定义域内连续,求a与b x0

Lim sin(2x)/x|x->0-=2=a=b/-2=>a=2,b=-

45、证明方程:x33x29x10在0,1内有唯一的实根。(存在性与唯一性)证明:

1)存在性:

令f(x)=x^3-3x^2-9x+1

f(0)=1>0;

f(1)=-10<0;

因为f(0).f(1)<0所以在(0,1)内存在一个实根

2)唯一性

f’(x)=3x^2-6x-9=3(x+1)(x-3)

所以f(x)在(0,1)内为单调减函数

故x33x29x10在0,1内有唯一的实根。

第三篇:函数极限与连续教案

第四讲

Ⅰ 授课题目(章节)

1.8:函数的连续性

Ⅱ 教学目的与要求:

1、正确理解函数在一点连续及在某一区间内连续的定义;

2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的、基本初等函数在定义域内是连续的;

5、了解初等函数的和、差、积、商的连续性,反函数与复合函数的连续性; 6 掌握闭区间上连续函数的性质

教学重点与难点:

重点:函数在一点连续的定义,间断点,初等函数的连续性

难点:函数在一点连续的定义,闭区间上连续函数的性质

Ⅳ 讲授内容:

一 连续函数的概念函数的增量

定义1设变量u从它的初值u0变到终值u1,终值与初值之差u1u0,称为变量u的增

量,或称为u的改变量,记为u,即uu1u0

xx1x0

yf(x0x)f(x0)函数的连续性

定义2 设函数yf(x)在点x0的某个邻域内有定义,若当自变量的增量x趋近于零

时,相应函数的增量y也趋近于零,即

limy0或 x0

x0limf(x0x)f(x0)0

则称函数f(x)在x0点连续

2例1 用连续的定义证明y3x1在点x02处是连续的证明 略

若令xx0x则当x0时,xx0又yf(x0x)f(x0)即

f(x)f(x0)y故y0就是f(x)f(x0)

因而limy0可以改写成limf(x)f(x0)x0xx0

定义3 设函数yf(x)在点x0的某个邻域内有定义,若

xx0limf(x)f(x0)

则称函数f(x)在x0点连续

由定义3知函数fx在点x0连续包含了三个条件:

(1)fx在点x0有定义

(2)limf(x)存在xx0

(3)limf(x)f(x0)xx0

sinx,x0例2 考察函数f(x)x在点x0处得连续性

1,x0

解略

3左连续及右连续的概念.定义4 若limf(x)f(x0),则函数f(x)在x0点左连续 xx0

若limf(x)f(x0),则函数f(x)在x0点右连续 xx0+

由此可知函数f(x)在x0点连续的充分必要条件函数f(x)在x0点左连续又右连续

4、函数在区间上连续的定义

(a,b)(a,b)定义5 若函数f(x)在开区间内每一点都连续,则称函数f(x)在开区间内连

(a,b)若函数f(x)在开区间内连续,且在左端点a右连续,在右端点b左连续,则

称称函数f(x)在闭区间a,b上连续

(-,+)例3 讨论函数yx在内的连续性

解 略

二 函数的间断点定义6函数f(x)不连续的点x0称为函数f(x)的间断点

由定义6可知函数f(x)不连续的点x0有下列三种情况

(1)fx在点x0没有定义

(2)limf(x)不存在xx0

(3)limf(x)f(x0)xx0

2间断点的分类

左右极限都相等(可去间断点)第一类间断点:左右极限都存在间断点 左右极限不相等(跳跃间断点)

第二类间断点:左右极限至少有一个不存在

x21,x0例4考察函数f(x)在x0处得连续性

0,x0

解 略

例5考察函数f(x)

解 略

1,x0例6考察函数f(x)x在x0处得连续性

0,x0x,x0x1,x0在x0处得连续性

解 略

三 连续函数的运算与初等函数的连续性

1、连续函数的和、差、积、商的连续性

2、反函数与复合函数的连续性

3、初等函数的连续性:基本初等函数在它们的定义域内都是连续的.一切初等函数在其定义区间内都是连续的.对于初等函数,由于连续性xx0limf(x)f(x0),求其极限即等价于求函数的函数值

四闭区间上连续函数的性质

定理1(最大值最小值定理)

若函数f(x)在闭区间a,b上连续,则函数f(x)在闭区间a,b上必有最大值和最小值

定理2(介值定理)

若函数f(x)在闭区间a,b上连续,m 和M分别为f(x)在a,b上的最小值和最大值,则对于介于m 和M之间的任一实数C,至少存在一点a,b,使得

f()C

定理3(零点定理)

若函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,则至少存在一点a,b,使得f()0

例7 证明x52x20在区间(0,1)内至少有一个实根 证明 略

Ⅴ 小结与提问:

Ⅵ 课外作业:

习题1-8 2,5,7,9

第四篇:函数极限连续试题

····· ········密············································订·········线·································装·····系·····封················· ··················__ __:_ :___: ___________名______________业_姓_____ _号_____ _::___级_ ____别年专______学

· ·····密·········· ·············································卷···线·································阅·······封········································

函数 极限 连续试题

1.设f(x)

(1)f(x)的定义域;(2)12f[f(x)]2

;(3)lim

f(x)x0x

.2.试证明函数f(x)x3ex2

为R上的有界函数.3.求lim1nnln[(11n)(12

n)

(1nn)].4.设在平面区域D上函数f(x,y)对于变量x连续,对于变量y 的一阶偏导数有界,试证:f(x,y)在D上连续.(共12页)第1页

5.求lim(2x3x4x1

x03)x.1(1x)x

6.求lim[

x0e]x.7.设f(x)在[1,1]上连续,恒不为0,求x0

8.求lim(n!)n2

n

.9.设x

axb)2,试确定常数a和b的值.(共12页)第2页

10.设函数f(x)=limx2n1axb

n1x

2n连续,求常数a,b的值.11.若limsin6xxf(x)6f(xx0x30,求lim)

x0x2

.12.设lim

axsinx

x0c(c0),求常数a,b,c的值.xln(1t3)btdt

13.判断题:当x0时,x

1cost2

0t

是关于x的4阶无穷小量.114.设a为常数,且lim(ex

x0

2aarctan1

x)存在,求a的值,并计算极限.ex1

(共12页)第3页

215.设lim[

ln(1ex)x0

1a[x]]存在,且aN,求a的值,并计算极限.ln(1ex)

16.求n(a0).n

17.求limn2(a0,b0).

ln(1

f(x)

18.设lim)

x0

3x1

=5,求limf(x)x0x2.19.设f(x)为三次多项式,且xlim

f(x)f(x)f2ax2axlim4ax4a1,求xlim(x)

3ax3a的值.(共12页)第4页

24.设连续函数f(x)在[1,)上是正的,单调递减的,且

dnf(k)f(x)dx,试证明:数列dn收敛.n

n

20.设x1,求lim(1x)(1x2)(1x4n

n)

(1x2).21.试证明:(1)(1n1111+n)1

为递减数列;(2)n1ln(1n)n,n1,2,3,.limnn

22.求n3nn!

.23.已知数列:a1

112,a222,a32,22

a42

12

1的极限存在,求此极限.22

(共12页)第5页

k1

25.设数列xn,x0a,x1b,求limn

xn.26.求lima2n

n1a2n

.28.求limx

.x1

n2

(xn1xn2)(n2),(共12页)第6页

29.设函数f(x)是周期为T(T0)的连续函数,且f(x)0,试证:

xlim1xx0f(t)dt1TT0f(t)dt.30.求lim1

1n0

x.en

(1x)n

n

31.设lim(1x)x

tetxx

dt,求的值.32.判断函数f(x)limxn1

nxn1的连续性.33.判断函数f(x.(共12页)第7页

34.设f(x)为二次连续可微函数,f(0)=0,定义函数

g(x)

f(0)当x0,试证:g(x)f(x)

x当x0连续可微.35.设f(x)在[a,b]上连续,f(a)f(b),对x(a,b),g(x)lim

f(xt)f(xt)

t0

t

存在,试证:存在c(a,b),使g(c)0.36.若f(x)为[a,b]上定义的连续函数,如果b

a[f(x)]2dx0,试证:

f(x)0(axb).37.设函数f(x)在x=0处连续,且lim

f(2x)f(x)

x0

x

A,试证:f(0)=A.(共12页)第8页

38.设f(x)在[a,b]上二阶可导,过点A(a,f(a))与B(b,f(b))的直线与曲线

yf(x)相交于C(c,f(c)),其中acb.试证:至少存在一点(a,b),使得f()=0.39.设f(x),g(x),h(x)在axb上连续,在(a,b)内可导,试证:

f(a)

g(a)

h(a)

至少存在一点(a,b),使得f(b)

g(b)h(b)=0,并说明拉格朗日中值 f()g()h()

定理和柯西中值定理是它的特例.40.试证明函数ysgnx在x[1,1]上不存在原函数.41.设函数f(x)=nf(x)的不可导点的个数.(共12页)第9页

42.设f(x(0x

),求f(x).43.设xn1(n1,2,3,),0x13,试说明数列xn的极限存在.x0

44.求函数f(x)=sin1

x21

x(2x)的间断点.2cosx

x0

45.求曲线

3的斜渐近线.(共12页)第10页

1

46.求数列nn的最小项.

50.求lim

x.x0

sin1

x

47.求limtan(tanx)sin(sinx)

x0tanxsinx

.48.设f(x)在[0,2]上连续,在(0,2)内有二阶导数,且lim

f(x)

x1(x1)2

1,

f(x)dxf(2),试证:存在(0,2),使得f()=(1+1)f().49.试证:若函数f(x)在点a处连续,则函数f+(x)=maxf(x),0与

f-(x)=minf(x),0在点a处都连续.(共12页)第11页

12页)第12页

(共

第五篇:函数极限与连续习题(含答案)

1、已知四个命题:(1)若

(2)若

(3)若

(4)若f(x)在x0点连续,则f(x)在xx0点必有极限 f(x)在xx0点有极限,则f(x)在x0点必连续 f(x)在xx0点无极限,则f(x)在xx0点一定不连续f(x)在xx0点不连续,则f(x)在xx0点一定无极限。其中正确的命题个数是(B、2)

2、若limf(x)a,则下列说法正确的是(C、xx0f(x)在xx0处可以无意义)

3、下列命题错误的是(D、对于函数f(x)有limf(x)f(x0))

xx04、已知f(x)1

x,则limf(xx)f(x)的值是(C、1)

x0xx2

x125、下列式子中,正确的是(B、limx11)2(x1)

26、limxaxb5,则a、x11xb的值分别为(A、7和6)

7、已知f(3)2,f(3)2,则lim2x3f(x)的值是(C、8)

x3x38、limxa

xxaa(D、3a2)

29、当定义f(1)f(x)1x

2在x1处是连续的。1x10、lim16x12。

x27x31111、lim12、x21xxx12x31

limx2x112 3x1113、lim(x2xx21)1

x

214、lim(x2xx21)1

x2

x,0x1115、设(1)求xf(x),x1

2

1,1x2

1时,f(x)的左极限和右极限;(2)求f(x)在x1的函数值,它在这点连续吗?(3)求出的连续区间。

答:(1)左右极限都为1(2)不连续(3)(0,1)(1,2)

下载第一章函数、极限与连续学习指导word格式文档
下载第一章函数、极限与连续学习指导.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    多元函数的极限与连续

    数学分析 第16章多元函数的极限与连续计划课时: 1 0 时 第16章多元函数的极限与连续 ( 1 0 时 )§ 1平面点集与多元函数一.平面点集:平面点集的表示: E{(x,y)|(x,y)满......

    二元函数的极限与连续

    §2.3 二元函数的极限与连续 定义 设二元函数有意义, 若存在 常数A,都有 则称A是函数当点 趋于点 或 或趋于点时的极限,记作 。 的方式无关,即不,当(即)时,在点的某邻域内 或......

    多元函数的极限与连续

    多元函数的极限 1. 求下列极限: x2y111)lim(4x3y); 2)lim(xy)sinsin;3)lim2. 2x0x2x0xyxyy0y1y022. 证明:若f(x,y) xy,(xy0),求 limlimf(x,y)与limlimf(x,y). x0y0y0x0xyx4y43. 设函数......

    二元函数的极限与连续

    §2.3 二元函数的极限与连续定义设二元函数有意义, 若存在常数A,都有则称A是函数当点 趋于点或或趋于点时的极限,记作。的方式无关,即不,当(即)时,在点的某邻域内或必须注意这......

    函数、极限和连续试题及答案

    极限和连续试题(A卷) 1.选择题(正确答案可能不止一个)。 (1)下列数列收敛的是()。 A. xnn1n(1)n B. xn1n(1)n C. xnnsin2 D. xn2n (2)下列极限存在的有()。 A. lim1xsinxB. xlimxsinx C.......

    高等数学第一章 函数、极限与连续[全文5篇]

    高等数学教学备课系统 高等数学 教学备课系统 与《高等数学多媒体教学系统(经济类)》配套使用 教师姓名:________________________ 教学班级:________________________ 2004......

    一、多元函数、极限与连续解读

    一、多元函数、极限与连续 ㈠二元函数 1 .二元函数的定义:设 D 是平面上的一个点集,如果对于每个点 P (x,y)∈ D ,变量 按照 一定法则总有确定的值与它对应,则称 是变量 x 、y 的二......

    6.1 二元函数的极限与连续

    第6章 多元微分学 教学目的: 1.理解多元函数的概念和二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3.理解多元函数偏导数和全......