第二讲 函数的极限典型例题

时间:2019-05-14 16:01:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第二讲 函数的极限典型例题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第二讲 函数的极限典型例题》。

第一篇:第二讲 函数的极限典型例题

第二讲

函数的极限

内容提要

1.函数在一点处的定义

xx0limf(x)A0,0,使得x:0xx0,有f(x)A.右极限

xx0limf(x)A0,0,使得x:0xx0,有f(x)A.左极限

xx0limf(x)A0,0,使得x:0x0x,有f(x)A.注1 同数列极限一样,函数极限中的同样具有双重性.

注2 的存在性(以xx0为例):在数列的“N”定义中,我们曾经提到过,N的存在性重在“存在”,而对于如何去找以及是否能找到最小的N无关紧要;对也是如此,只要对给定的0,能找到某一个,能使0xx0时,有f(x)A即可.

注3 讨论函数在某点的极限,重在局部,即在此点的某个空心邻域内研究f(x)是否无限趋近于A.

注4 limf(x)Alimf(x)limf(x)A.

xx0xx0xx0n注5 limf(x)A{xn}{xn}|xnx0,且xnx0,有limf(xn)A,称为

nxx0归结原则――海涅(Heine)定理.它是沟通数列极限与函数极限之间的桥梁.说明在一定条件下函数极限与数列极限可以相互转化.因此,利用定理必要性的逆否命题,可以方便地验证某些函数极限不存在;而利用定理的充分性,又可以借用数列极限的现成结果来论证函数极限问题.(会叙述,证明,特别充分性的证明.)注6 limf(x)A00,xx00,x:0xx0,有f(x)A0. 函数在无穷处的极限 设f(x)在[a,)上有定义,则

limf(x)A0,xXa,Xa,Xa,使得x:xX,有f(x)A. 使得x:xX,有f(x)A. 使得x:xX,有f(x)A. xlimf(x)A0,limf(x)A0,x注1 limf(x)Alimf(x)limf(x)A.

xxx 1

n注2 limf(x)A{xn}{xn}|xn,有limf(xn)A.

nx3 函数的有界

设f(x)在[a,)上有定义,若存在一常数M0,使得x[a,),有f(x)M,则称f(x)在[a,)上有界. 4 无穷大量

xx0limf(x)G0,0,X0,使得x:0xx0,有f(x)G. 使得x:xX,有f(x)G. limf(x)G0,x类似地,可定义limf(x),limf(x),limf(x),limf(x)等.

xx0xx0xx0xx0注 若limf(x),且0和C0,使得x:0xx0,有f(x)C0,xx0则limf(x)g(x).

xx0

特别的,若limf(x),limg(x)A0,则limf(x)g(x).

xx0xx0xx05 无穷小量

若limf(x)0,则称f(x)当xx0时为无穷量.

xx0注1 可将xx0改为其它逼近过程.

注2 limf(x)Af(x)A(x),其中lim(x)0.由于有这种可以互逆的表xx0xx0达关系,所以极限方法与无穷小分析方法在许多场合中可以相互取代. 注3 limf(x)0,g(x)在x0的某空心邻域内有界,则limf(x)g(x)0.

xx0xx0注4 limf(x)0,且当x足够大时,g(x)有界,则limf(x)g(x)0.

xxx0注5 在某一极限过程中,无穷大量的倒数是无穷小量,非零的无穷小量的倒数是无穷大量. 6 函数极限的性质

以下以xx0为例,其他极限过程类似.(1)limf(x)A,则极限A唯一.

xx0(2)limf(x)A,则,M0,使得x:0xx0,有f(x)M.

xx0(3)limf(x)A,limg(x)B,且AB,则0,使得x:0xx0,xx0xx0有

f(x)g(x)注

这条性质称为函数的“局部保号性”.在理论分析论证及判定函数的性态中应用极普遍.(4)limf(x)A,limg(x)B,且0当0xx0时,f(x)g(x)则xx0xx0AB.

(5)limf(x)A,limg(x)B,则

xx0xx0xx0limf(x)g(x)AB

limf(x)g(x)AB

limxx0f(x)g(x)xx0AB(B0)

要求:①进行运算的项数为有限项;②极限为有限数. 7 夹逼定理 若0,使得x:0xx0,有f(x)g(x)h(x),且

xx0xx0xx0limf(x)limh(x)A,则limg(x)A. Cauchy收敛准则

函数f(x)在x0的空心邻域内极限存在0,0,使得x,x,当0xx0,0xx0时,有f(x)f(x). 无穷小量的比较

设lim(x)0,lim(x)0,且limxx0xx0(x)(x)xx0k,则

(1)当k0时,称(x)为(x)的高阶无穷小量,记作(x)o(x);(2)当k时,称(x)为(x)的低阶无穷小量;(3)当k0且k时,称(x)为(x)的同阶无穷小量.

特别的,当k1时,称(x)和(x)为等价的无穷小量,记作(x)~(x).

注1 上述定义中,自变量的变化过程xx0也可用x,x,x,xx0,xx0之一代替. 注2 当x0时,常见的等价无穷小有:

sinx~x,tanx~x,1cosx~

x22,e1~x,ln(1x)~x,(1x)xm1~mx

注3 在用等价无穷小替换计算极限时,一般都要强调限定对“乘积因式”的等价替换.因为:

若(x)~(x)(P),则

limPf(x)(x)limPf(x)(x)f(x)limP(x)(x)(x)或

limg(x)(x)limg(x)(x)PP(x)(x). limg(x)(x)

(P为某逼近过程)

P而对于非乘积因式,这样的替换可能会导致错误的结果.

注4 在某一极限过程中,若(x)为无穷小量,则在此极限过程,有

(x)o(x)~(x). 10 两个重要极限(1)limsinxx1x01;

(2)lim(1x)xe.

x0

二、典型例题

例 用定义证明下列极限:(1)limx(x1)x12x112;

12(2)limxx1x2x.

例 limf(x)A,证明:

xx0(1)若A0,则有lim31f(x)2xx01A2;

(2)lim3xx0f(x)A.

例 设f(x)是[a,b]上的严格严格单调函数,又若对xn(a,b](n1,2,),有limf(xn)f(a),试证明:limxna.

nn

例 函数f(x)在点x0的某邻域I内有定义,且对xnI(xnx0,xnx0),且 0xn1x0xnx0(nN),有limf(xn)A,证明:limf(x)A.

nxx0

设函数f(x),x(0,1),满足f(x)0(x0),且

f(x)f()o(x)(x0)

2x则

f(x)o(x)(x0)

问:在题设条件下,是否有f(0)0?答:否.如f(x)01x0x0.

设函数f(x)在(0,)上满足议程f(2x)f(x),且limf(x)A,则

n

f(x)A(x(0,)).

求下列函数极限(1)limn0xb(a0,b0);

axxb(2)lim(a0,b0);

n0ax12exsinx(3)lim. 4n0x1ex 8

求下列极限(1)lim1tanxx1tanxn0e1;

(2)lim1cosxx)x;

n0x(1cosln(sin22(3)limxe)x2xn0ln(xe)2x.

求下列极限:(1)limn0etanxexsinxxcosx;

(2)lim1cosxcos2x3cos3xx2.

n0 10

求下列极限:(1)limx1xlnxx;

n1(2)lim(ax)ax2xx.

n0

求下列极限:

1(1)lim(cosx)n0ln(1x)2;

11(2)lim(sinn1xcos1x);

nx1xa(3)设ai0(i1,2,,n),求limn0ax2ax. nxn

(1)已知lim(1xaxb)0,求常数a,b;

n33ln(1f(x)(2)已知limn0sin2xx31)5,求limn0f(x)x2.

第二篇:函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题

一、重点难点分析:

此定理非常重要,利用它证明函数是否存在极限。② 要掌握常见的几种函数式变形求极限。③ 函数f(x)在x=x0处连续的充要条件是在x=x0处左右连续。

。④ 计算函数极限的方法,若在x=x0处连续,则

⑤ 若函数在[a,b]上连续,则它在[a,b]上有最大值,最小值。

二、典型例题

例1.求下列极限

解析:①。

②。

③。

④。

例2.已知,求m,n。

解:由可知x2+mx+2含有x+2这个因式,∴ x=-2是方程x2+mx+2=0的根,∴ m=3代入求得n=-1。

例3.讨论函数的连续性。

解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处函数是连续的,又

从而f(x)在点x=-1处不连续。

∴ f(x)在(-∞,-1),(-1,+∞)上连续,x=-1为函数的不连续点。,∴ f(x)在x=1处连续。,例4.已知函数

试讨论a,b为何值时,f(x)在x=0处连续。,(a,b为常数)。

解析:∵

且,∴,∴ a=1, b=0。

例5.求下列函数极限

解析:①。

②。

例6.设

解析:∵

要使存在,只需,问常数k为何值时,有存在?。,∴ 2k=1,故 时,存在。

例7.求函数

在x=-1处左右极限,并说明在x=-1处是否有极限?

解析:由∵,∴ f(x)在x=-1处极限不存在。,三、训练题:

1.已知,则

2.的值是_______。

3.已知,则=______。

4.已知

5.已知,2a+b=0,求a与b的值。,求a的值。

参考答案:1.3

2.3.4.a=2, b=-45.a=0

第三篇:函数极限

习题

1.按定义证明下列极限:

(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x

x251;(4)lim(3)lim2xx1x2

(5)limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf(x)≠ A.xx0

3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0

4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x

x;(2)f(x)= [x]

2x;x0.(3)f(x)=0;x0.1x2,x0.

7.设 limf(x)= A,证明limf(xxx01)= A x

8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22

x21x113x;

lim(3)lim;(4)

x12x2x1x0x22x3

xn1(5)limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70;

a2xa3x68x5.(a>0);(8)lim

xx5x190

2. 利用敛性求极限:(1)lim

x

xcosxxsinx

;(2)lim2

x0xx4

xx0

3. 设 limf(x)=A, limg(x)=B.证明:

xx0

(1)lim[f(x)±g(x)]=A±B;

xx0

(2)lim[f(x)g(x)]=AB;

xx0

(3)lim

xx0

f(x)A

=(当B≠0时)g(x)B

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=A.证明

xx0

xx0

lim

f(x)=A,其中n≥2为正整数.6.证明limax=1(0

x0

7.设limf(x)=A, limg(x)=B.xx0

xx0

(1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么?

(2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3)lim;(4)lim

x0x0x1

x1

x

(5)lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n

[a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则;

n

(2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff(x)

6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1)lim;(2)lim

x0x0sinx2x

(3)lim

x

cosxx

tanxsinxarctanx

lim(5)lim;(6);3x0x0xx

sin2xsin2a1

(7)limxsin;(8)lim;

xxaxxa

;(4)lim

x0

tanx

;x

cosx2

(9)lim;(10)lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1)lim(1);(2)lim1axx(a为给定实数);

nx0x

x

(3)lim1tanx

x0

cotx

;(4)lim

1x

;

x01x

(5)lim(x

3x22x1);(6)lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0);

+

(3)x1o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限:

x21x(1)lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1)y =;(2)y = arctan x;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1)sin2x-2sinx;(2)

-(1-x);1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x)(x→x0),证明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

总 练习题

1. 求下列极限:

1

(x[x])lim([x]1)(1)lim;(2)

x3

x1

(3)lim(x

axbxaxbx)

xxa

(4)lim

x

(5)lim

xxa

x

(6)lim

xxxx

x0

(7)lim

nm,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1)limaxb0 xx1

x(3)limx

(2)lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1)limf(x)f(2);(2)limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0

局部保号性有矛盾吗?

5. 设limf(x)A,limg(u)B,在何种条件下能由此推出

xa

gA

limg(f(x))B?

xa

6. 设f(x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1)limanr1

n

(2)lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1)lim1

n

11(2)lim1

nnn

9. 设liman,证明

n

(1)lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2)lim

n

In(n!)

nn

11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得

limf(xn)A,则有

n

f(x0-0)=

supf(x)A

0xU(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))A证明

x

lim

f(x)

A x

第四篇:函数极限

《数学分析》教案

第三章 函数极限

xbl

第三章 函数极限

教学目的:

1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限

和,并能熟练运用;

4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。教学重(难)点:

本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。

教学时数:16学时

§ 1 函数极限概念(3学时)

教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的定义的清晰概念。会应用函数极限的定义证明函数的有关命题,并能运用语言正确表述函数不以某实数为极限等相应陈述。

教学重点:函数极限的概念。

教学难点:函数极限的定义及其应用。

一、复习:数列极限的概念、性质等

二、讲授新课:

(一)时函数的极限:

《数学分析》教案

第三章 函数极限

xbl

例4 验证

例5 验证

例6 验证

证 由 =

为使

需有

需有

为使

于是, 倘限制 , 就有

例7 验证

例8 验证(类似有

(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域

《数学分析》教案

第三章 函数极限

xbl

我们引进了六种极限:.以下以极限,为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质: 以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th 4 若使,证 设

和都有 =

(现证对 都存在, 且存在点 的空心邻域),有

註: 若在Th 4的条件中, 改“ 就有

5.6.以

迫敛性:

”为“ 举例说明.”, 未必

四则运算性质:(只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

《数学分析》教案

第三章 函数极限

xbl

例8

例9

例10 已知

求和

补充题:已知

求和()§ 3 函数极限存在的条件(4学时)

教学目的:理解并运用海涅定理与柯西准则判定某些函数极限的存在性。教学要求:掌握海涅定理与柯西准则,领会其实质以及证明的基本思路。教学重点:海涅定理及柯西准则。教学难点:海涅定理及柯西准则 运用。

教学方法:讲授为主,辅以练习加深理解,掌握运用。本节介绍函数极限存在的两个充要条件.仍以极限

为例.一.Heine归并原则——函数极限与数列极限的关系:

Th 1 设函数在,对任何在点

且的某空心邻域

内有定义.则极限都存在且相等.(证)

存Heine归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具.对单侧极限,还可加强为

单调趋于

.参阅[1]P70.例1 证明函数极限的双逼原理.7 《数学分析》教案

第三章 函数极限

xbl

教学难点:两个重要极限的证明及运用。

教学方法:讲授定理的证明,举例说明应用,练习。一.

(证)(同理有)

例1

例2.例3

例4

例5 证明极限 不存在.二.证 对

例6

特别当 等.例7

例8

《数学分析》教案

第三章 函数极限

xbl

三. 等价无穷小:

Th 2(等价关系的传递性).等价无穷小在极限计算中的应用: Th 3(等价无穷小替换法则)

几组常用等价无穷小:(见[2])

例3 时, 无穷小

是否等价? 例4

四.无穷大量:

1.定义:

2.性质:

性质1 同号无穷大的和是无穷大.性质2 无穷大与无穷大的积是无穷大.性质3 与无界量的关系.无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果.3.无穷小与无穷大的关系:

无穷大的倒数是无穷小,非零无穷小的倒数是无穷大

习题 课(2学时)

一、理论概述:

《数学分析》教案

第三章 函数极限

xbl

例7.求

.注意 时, 且

.先求

由Heine归并原则

即求得所求极限

.例8 求是否存在.和.并说明极限

解;

可见极限 不存在.--32

第五篇:函数极限

数学之美2006年7月第1期

函数极限的综合分析与理解

经济学院 财政学 任银涛 0511666

数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。

一、函数极限的定义和基本性质

函数极限可以分成x→x0,x→∞两类,而运用ε-δ定义更多的见诸于已知

极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以xx0的极限为例,fx在点x0以A极限的定义是:0,0,使当0xx0时,有f(x)A(A为常数).问题的关键在于找到符合定义要求的,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。

函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若lim存在,则在该点的极限是唯一的)可以体现在用海涅定理证明xx0

''即如果fxnA,fxn,fx在x0处的极限不存在。B(n,xn和xnx0)

则fx在x0处的极限不存在。

运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式fxPxPx,Qx均为多项式,Qx0)。设Px的次数为n,Qx的Qx次数为m,当x时,若nm,则fx0;若nm,则fxPx与Qx的最高次项系数之比;若nm,则fx。当xx0时,f(x)P(x0)(Q(x0)0)。Q(x0)

二、运用函数极限的判别定理

最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数gx与

hx,并且要满足gxfxhx,从而证明或求得函数fx的极限值。

三、应用等价无穷小代换求极限

掌握常用的等价无穷小很重要。等价无穷小代换可以将复杂的极限式变的简单明了,让求解过程变得简明迅速。

x0时,sinx与x,tanx与x,arcsinx与x,arctanx与x,1cosx与x2,xa,ax1与xlna,1a与ax(a0)等等可ln1x与x,loga1x与lna

以相互替换。特别需要注意的是,等价无穷小代换只能用于分子、分母中的乘积

sinxx

因子,而对于加减法运算则不能运用。例如lim,不能直接把sinx替换

x0x

3sinxx

1成x,得出极限值为0,实际上lim。

x0x36

四、运用洛必达法则求函数极限

设函数fx,gx在点a的某空心邻域可导,且g'(x)0。当xa时,fxf'x,fx和gx的极限同时为0或时才适用'A(A为常数或)

gxgx洛必达法则。洛必达法则实际上把求函数极限问题转化为学生较为拿手的求导数

0、00、1、0等类型则需要问题。这使得求解思路简单程序化。而对于、0

对式子进行转化,或通分或取倒数或取对数等转化为型,再使用洛必达法

0

则求极限。例如fx

gx的极限转化为求egxlnfx的极限等等。然而,对于数列,则必须转化为函数再运用洛必达法则。这是因为如果把数列看作是自变量为n的函数时,它的定义域是一系列孤立的点,不存在导数。这是使用洛必达法则时必须要注意的一点。参见附例3。

五、泰勒公式的运用

对于使用洛必达法则不易求出结果的复杂函数式,可以考虑使用泰勒公式。这样将函数式化为最高次项为相同或相近的式子,这时就变成了求多项式的极限值(接着求值见上文所述方法),使计算一目了然。因此掌握和记忆常用基本初

等函数的麦克劳林展开式是十分必要的。如ex,sinx,cosx,ln1x等等。至于展开式展开多少,则要与题干中的自变量x最高次项保持一致。如

cosxelimx0x4x4)。

x

2利用泰勒公式展开cosx,e

x22,展开到x4即可(原式x最高次项为

六、利用微分中值定理来求极限

f(x)在a,b上连续,在a,b上可导,则至少存在一点a,b,使

f'()

f(b)f(a)'f(b)f(a),f()即可看成特殊的极限,用来求解。一般需

baba

要函数式可以看成同一函数的区间端点的差,这样可以使用微分中值定理。参见附例4。

另外,一些重要的结论往往在求极限时可以直接加以引用,例如

lim(1x)e,lim

x0

1x

sinx

1,

1,1等等。

x0nnx

求极限的方法和技巧更多的在于实践中的摸索和探讨,上述方法只是笔者在高等数学学习和练习的一些心得,求极限的方法还有很多。局限于笔者的认知水平,缺点和不足在所难免,敬请批评指正。

南开大学张阳和张效成老师的课堂教学给了笔者很大的启发,在此向两位老师表示感谢。

附:例1:对任意给定的0,1,总存在正整数N,使得当nN时,恒有。xna2,是数列xn收敛于a的()

A 充分非必要条件 B必要非充分条件C充分必要条件D既非充分又非必要条件

解析:这道题是1999年全国考研试卷(二)的数学选择题,这道题直接考察了对极限定义的掌握和理解。

例2:若x1a,y1b(ba0),xn1xnyn,yn1明数列xn,yn有相同的极限。(见习题册1 Page.18)

解析:由已知条件易知,by1y2……yn1xn1……x1a,数列

xn1yn

1,试证

2文中习题册是指南开大学薛运华,赵志勇主编的《高等数学习题课讲义(上册)》,为学生用数学练习册。

xyn

limyn1linxn,yn单调有界,可以推出xn,yn收敛。nn

n

。设

limynA,limxnB,则A

n

AB,AB。2

例3:求lim(ntan)n的值。(见课本2 Page.153)

nn

1

解析:这是数列。设fxxtan,则对limfx可以运用洛必达法则,xx且原式=limfx。

x

x2

aa

arctan),a0

nnn1

arctan解析:如例题3,设fxa,则在x,x1上fx连续,在x,x1内

x

例4:求limn2(arctan

可导。于是,x,x1,f'()arctan

aaaarctan2(使用微分中x1xa2

a)a。22

a

值定理可得)。x,则,原式=lim2(

参考书目

[1] 张效成主编,《经济类数学分析(上册)》,天津大学出版社,2005年7月 [2] 薛运华,赵志勇主编,《高等数学习题课讲义(上册)》,南开大学 [3] 张友贵等,《掌握高等数学(理工类、经济类)》,大连理工出版社,2004年11月

[4]《硕士研究生入学考试试题》,1984—2005

※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○※○

文中课本是指笔者使用的天津大学出版社05年7月版的《经济类数学分析(上册)》张效成主编

下载第二讲 函数的极限典型例题word格式文档
下载第二讲 函数的极限典型例题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第4讲函数极限及性质2009

    《数学分析I》第4讲教案第4讲函数极限概念及其性质讲授内容一 、x趋于时函数的极限例如,对于函数f(x)1x,当x无限增大时,函数值无限地接近于0;而对于函数g(x)=arctanx,则2当x趋于+......

    数列极限例题

    三、数列的极限 (1)n1}当n时的变化趋势. 观察数列{1n问题: 当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: (1)n1当n无限增大......

    第一讲 数列的极限典型例题

    第一讲数列的极限 一、内容提要 1.数列极限的定义 limxna0,nN,nN,有xna. 注1 的双重性.一方面,正数具有绝对的任意性,这样才能有 xn无限趋近于axna(nN) 另一方面,正数又具有......

    函数极限证明

    函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2......

    1-2函数极限

    高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限......

    函数极限概念

    一. 函数极限的概念 1.x趋于时函数的极限 设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当......

    2.3函数极限

    高三极限同步练习3(函数的极限) 求第一类函数的极限 例1、讨论下列函数当x,x,x时的极限: 1(1)f(x)1 2 (2)f(x)x1 x1 (x0)2(3)h(x)x2 x0)x1求函数的左右极限 例2、讨论下列函数在点x1处的......

    一次函数典型例题精讲分析归纳

    一次函数典型例题精讲分析归纳类型一:正比例函数与一次函数定义1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.解:∵函......