第一篇:2011高中数学排列组合典型例题精讲
高中数学排列组合典型例题精讲
概念形成1、元素:我们把问题中被取的对象叫做元素
2、排列:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺....序排成一列,叫做从n个不同元素中取出m个元素的一个排列。.....
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)
(2合作探究二排列数的定义及公式
3、排列数:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号Anm议一议:“排列”和“排列数”有什么区别和联系?
4、排列数公式推导
探究:从n个不同元素中取出2个元素的排列数An是多少?An呢?An呢? mnn(n1)(n2)(nm1)(m,nN,mn)23m
说明:公式特征:(1)第一个因数是n,后面每一个因数比它前面一个少1,最后一个
因数是nm1,共有m个因数;
(2)m,nN,mn
即学即练:
1.计算(1)A10;(2)A5 ;(3)A5A3
2.已知A101095,那么mm4253
3.kN,且k40,则(50k)(51k)(52k)(79k)用排列数符号表示为()
50k293030A.A79kB.A79kC.A79kD.A50k
例1. 计算从a,b,c这三个元素中,取出3个元素的排列数,并写出所有的排列。、全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的全排列。
此时在排列数公式中,m = n
全排列数:Ann(n1)(n2)21n!(叫做n的阶乘).即学即练:口答(用阶乘表示):(1)4A3(2)A4(3)n(n1)!
排列数公式的另一种形式:
mAn3n4(nm)!
另外,我们规定 0!=1.例2.求证:AnmAnmm1mAn1.
解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。
解:
左边=
n!mn!(n-m1)n!mn!(n1)!Am
n1右边(nm)!(nm1)!(nm1)!(nm1)!
点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。
75AnAn89,求n的值。变式训练:已知(n=15)5An
1.若xn!,则x()3!
3n3n3(B)An(C)A3(D)An3(A)An
2.若Am2Am,则m的值为()53
(A)5(B)3(C)6(D)7
3. 已知An56,那么n
4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1
列火车)?
1.计算(1)A10;(2)A5 ;(3)A5A3
2.已知A101095,那么mm24253
3.kN,且k40,则(50k)(51k)(52k)(79k)用排列数符号表示为()
50k293030A.A79kB.A79kC.A79kD.A50k
例1. 计算从a,b,c这三个元素中,取出3个元素的排列数,并写出所有的排列。
1.若xn!,则x()3!
3n3n3(B)An(C)A3(D)An3(A)An
2.若Am2Am,则m的值为()53
(A)5(B)3(C)6(D)7
3. 已知An56,那么n;
4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1
列火车)?
1.下列各式中与排列数An相等的是()m
mnAnn!1m11(A)(B)n(n-1)(n-2)„„(n-m)(C)(D)AnAn1 nm1(nm1)!
2.若 n∈N且 n<20,则(27-n)(28-n)„„(34-n)等于()
(A)A27n(B)A34n(C)A34n(D)A34n
3.若S=A1A2A3A100,则S的个位数字是()
(A)0(B)3(C)5(D)8
4.已知An6An-5,则。
542A87A8 5.计算5A8A89
1An
n16.解不等式:2<n142 An122123100827n78
1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()
(A)24个(B)30个(C)40个(D)60个
2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方
法共有()
(A)12种(B)18种(C)24种(D)96种
3.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不
同排法共有()
(A)6种(B)9种(C)18种(D)24种
4.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.
例
1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多
少场比赛?
解:
(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?
(2)放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?
例
2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?
(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
例
3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?
变式训练: 有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方
案共有()
(A)A8种(B)A8种(C)A4·A4种(D)A4种
例
4、三个女生和五个男生排成一排.
(1)如果女生必须全排在一起,有多少种不同的排法?
(2)如果女生必须全分开,有多少种不同的排法?
(3)如果两端都不能排女生,有多少种不同的排法?
8444
4(4)如果两端不能都排女生,有多少种不同的排法?
(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?
点评:
1)若要求某n个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。
2)若要求某n个元素间隔,常采用“插空法”。所谓插空法就是首先安排一般元素,然后再将受限
制元素插人到允许的位置上.
变式训练:
1、6个人站一排,甲不在排头,共有
2.6个人站一排,甲不在排头,乙不在排尾,共有
1.由0,l,2,3,4,5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为()
(A)l:l(B)2:3(C)12:13(D)21:23
2.由0,l,2,3,4这五个数字组成无重复数字的五位数中,从小到大排列第86个数是()(A)
42031(B)42103(C)42130(D)43021
3.若直线方程AX十By=0的系数A、B可以从o,1,2,3,6,7六个数中取不同的数值,则这些方程所表
示的直线条数是()
(A)A5一2B)A5(C)A5+2(D)A5-2A522221
4.从a,b,c,d,e这五个元素中任取四个排成一列,b不排在第二的不同排法有()
A A4A5B A3A3CA5DA4A4
5.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有种不
同的种植方法。
6.9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有种。
7、某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?
(2)如果其中某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
1.四支足球队争夺冠、亚军,不同的结果有()
A.8种B.10种C.12种D.16种
2.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有
()
A.3种B.6种C.1种D.27种
3.kN,且k40,则(50k)(51k)(52k)(79k)用排列数符号表示为
()
50k293030A.A79kB.A79kC.A79kD.A50k 1312413
4.5人站成一排照相,甲不站在排头的排法有()
A.24种B.72种C.96种D.120种
5.4·5·6·7·„·(n-1)·n等于()
A.An
2n4B.Ann3C.n!-4!D.n!4!6.An1与An的大小关系是()
A.An1AnB.An1AnC.An1An
7.给出下列问题:
2323233D.大小关系不定
①有10个车站,共需要准备多少种车票?
②有10个车站,共有多少中不同的票价?
③平面内有10个点,共可作出多少条不同的有向线段?
④有10个同学,假期约定每两人通电话一次,共需通话多少次?
⑤从10个同学中选出2名分别参加数学和物理竞赛,有多少种选派方法?
以上问题中,属于排列问题的是(填写问题的编号)。
8.若x{x|Z,|x|4},y{y|yZ,|y|5},则以(x,y)为坐标的点共有
9.若x=n!m,则x用An的形式表示为x3!
mm1mm110.(1)AnAn1;(2)AnAn
m 711.(1)已知A101095,那么m;(2)已知9!362880,那么A9(3)已
知An56,那么n(4)已知An7An4,那么n.
12.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有多少种不
同的方法?
13.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少中不同的种植方法?
32123414.计算:(1)5A54A4(2)A4A4A4A
416.求证: AnmAnmm1mAn1;222
565A7A62A93A9617.计算:①6② 659!A10A6A5
18.三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?
排列与排列数作业(2)
1.与A10A7不等的是()
98910(B)81A8(C)10A9(D)A10(A)A1037
2.若Am2Am,则m的值为()53
(A)5(B)3(C)6(D)7
3.100×99×98ׄ×89等于()
A.A100B.A100C.A100
2101112 D.A100 134.已知An=132,则n等于()
A.11B.12C.13D.以上都不对
5.将1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法多少种?()
A. 6B. 9C. 11D. 23
6.有5列火车停在某车站并排的五条轨道上,若快车A不能停在第三条轨道上,货车B不能停在第一条
轨道上,则五列火车的停车方法有多少种()
A.78B.72C.120D.96
7.由0,1,3,5,7这五个数组成无重复数字的三位数,其中是5的倍的共有多少个
()
A.9B.21C. 24D.42
8.从9,5,0,1,2,3,7七个数中,每次选不重复的三个数作为直线方程axbyc0的系数,则倾斜角
为钝角的直线共有多少条?()
A.14B.30C. 70D.60
9.把3张电影票分给10人中的3人,分法种数为()
A.2160B.240C.720D.120
10.五名学生站成一排,其中甲必须站在乙的左边(可以不相邻)的站法种数()
A.A44 B.14A42 C.A5 5D.15A5 2
11.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进
行实验,有种不同的种植方法。
12.9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有种。
13.(1)由数字1,2,3,4,5可以组成.(2)由数字1,2,3,4,5可以组成个无重复数字,并且比13000大的正整数?
14.学校要安排一场文艺晚会的11个节目的出场顺序,除第1个节目和最后1个节目已确定外,4个音乐
节目要求排在第2、5、7、10的位置,3个舞蹈节目要求排在第3、6、9的位置,2个曲艺节目要求排在第4、8的位置,共有种不同的排法?
15.某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有序的方法.(2)如果其中某两工序不能放在最前,也不能放在最后,有种排列加顺序的方法.16.一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有种不同的排法?
17.求证:A12A23A3nAnAn11
123nn1
第二篇:排列组合典型例题
典型例题一
例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?
分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:
如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.
如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.
如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.
解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A9个;
当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4A8A8(个).
∴ 没有重复数字的四位偶数有
11232296
A9A4A8A85041792个.
解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:13A4(A9A82)个
3311
2∴
没有重复数字的四位偶数有
A9A4(A9A8)50417922296个.
解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有
A5A5A8个
干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有
11A4A4A82个 11231
32∴ 没有重复数字的四位偶数有
A5A5A8A4A4A82296个.
解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.
没有重复数字的四位数有A10A9个.
其中四位奇数有A5(A9A8)个
/ 13
***∴ 没有重复数字的四位偶数有
4313333A10A9A5(A9A82)10A9A95A95A82
34A95A82
36A825A82
41A82
2296个
说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.
典型例题二
例2 三个女生和五个男生排成一排
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?
(4)如果两端不能都排女生,可有多少种不同的排法?
解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A6种不同排法.对于其中的每一种排法,三个女生之间又都有A3对种不同的排法,因此共有A6A34320种不同的排法.
(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有A6种方法,因此共有A5A614400种不同的排法.
(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有A5种不同的排法,对于其中的任意一种排法,其余六位都有A6种排法,所以共有6A52A614400种不同的排法. 2635353636
解法2:(间接法)3个女生和5个男生排成一排共有A8种不同的排法,从中扣除女生排在首位的A3A7种排法和女生排在末位的A3A7种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有A3A6种不同的排法,所以共有
2617178 2 / 1 8176A82A3A7A32A614400种不同的排法.
解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有A6种不同的排法,对于其中的任意一种排活,其余5个位置又都有A5种不同的排法,所以共有35A6A514400种不同的排法,53(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,这样可有A5A7种不同的排法;如果首位排女生,有A3种排法,这时末位就只能排男生,有A5种排法,首末两端任意排定一种情况后,其余6位都有A6种不同的排法,这样可有A3A5A6种不同排法.因此共有A5A7A3A5A636000种不同的排法.
解法2:3个女生和5个男生排成一排有A8种排法,从中扣去两端都是女生排法A3A6种,就能得到两端不都是女生的排法种数.
因此共有A8A3A636000种不同的排法.
说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.
若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.
若以元素为主,需先满足特殊元素要求再处理其它的元素.
间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.
捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用. ***6171典型例题三
例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?
(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?
解:(1)先排歌唱节目有A5种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有A6中方法,所以任两个舞蹈节目不相邻排法有:A5A6=43200.(2)先排舞蹈节目有A4中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:A4A5=2880种方法。
说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。
4545454 3 / 1 如本题(2)中,若先排歌唱节目有A5,再排舞蹈节目有A6,这样排完之后,其中含有歌唱节目相邻的情况,不符合间隔排列的要求。
54典型例题四
例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.
分析与解法1:6六门课总的排法是A6,其中不符合要求的可分为:体育排在第一书有A5种排法,如图中Ⅰ;数学排在最后一节有A5556种排法,如图中Ⅱ;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中Ⅲ,这种情况有A4种排法,因此符合条件的排法应是:
A62A5A4504(种).
分析与解法2:根据要求,课程表安排可分为4种情况:
(1)体育、数学既不排在第一节也不排在最后一节,这种排法有A4A4种;
(2)数学排在第一节但体育不排在最后一节,有排法A4A4种;
(3)体育排在最后一节但数学不排在第一节,有排法A4A4种;
(4)数学排在第一节,体育排在最后一节,有排法A这四类排法并列,不重复也不遗漏,故总的排法有:
A4A4A4A4A4A4504(种).
分析与解法3:根据要求,课表安排还可分下述4种情况:
(1)体育,数学既不在最后也不在开头一节,有A412种排法;
(2)数学排在第一节,体育不排在最后一节,有4种排法;
(3)体育在最后一书,数学木在第一节有4种排法;
(4)数学在第一节,体育在最后一节有1种排法.
上述 21种排法确定以后,仅剩余下四门课程排法是种A4,故总排法数为21A4504(种).
下面再提出一个问题,请予解答.
问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法.
请读者完成此题.
说明:解答排列、组合问题要注意一题多解的练习,不仅能提高解题能力,而且是检验所解答问题正确与否的行之有效的方法.
***46544 4 / 1
3典型例题五
例5 现有3辆公交车、每辆车上需配1位司机和1位售票员.问3位司机和3位售票员,车辆、司机、售票员搭配方案一共有多少种?
分析:可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分别填入.因此可认为事件分两步完成,每一步都是一个排列问题.
解:分两步完成.第一步,把3名司机安排到3辆车中,有A36种安排方法;第二步把3名售票员安排到3辆车中,有A36种安排方法.故搭配方案共有
33A3A336种.
33说明:许多复杂的排列问题,不可能一步就能完成.而应分解开来考虑:即经适当地分类成分或分步之后,应用分类计数原理、分步计数原理原理去解决.在分类或分步时,要尽量把整个事件的安排过程考虑清楚,防止分类或分步的混乱.
典型例题六
例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?
学 校 1 2 3 1 1 1 专 业 2 2 2
分析:填写学校时是有顺序的,因为这涉及到第一志愿、第二志愿、第三志愿的问题;同一学校的两个专业也有顺序,要区分出第一专业和第二专业.因此这是一个排列问题.
解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有A4种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有A3A3A3种.综合以上两步,由分步计数原理得不同的填表方法有:A4A3A3A35184种.
说明:要完成的事件与元素的排列顺序是否有关,有时题中并未直接点明,需要根据实际情景自己判断,特别是学习了后面的“组合”之后这一点尤其重要.“选而且排”(元素之间有顺序要求)的是排列,“选而不排”(元素之间无顺序要求)的是组合.另外,较复杂的事件应分解开考虑.
32222223典型例题七
/ 1
3例5 7名同学排队照相.
(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?
(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,女生不能相邻,有多少种不面的排法? 3名女生,分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A7种排法;第二步,剩下的4人排在后排,有A4种排法,故一共有A7A4A7种排法.事实上排两排与排成一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A7,相当于7个人的全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”. 解:(1)A7A4A75040种.
(2)第一步安排甲,有A3种排法;第二步安排乙,有A4种排法;第三步余下的5人排在剩下的5个位置上,有A5种排法,由分步计数原理得,符合要求的排法共有115A3A4A51440种.
5***(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的全排列问题,有A5种排法;第二步,甲、乙、丙三人内部全排列,有A3种排法.由分步计数原理得,共有A5A3720种排法.
(4)第一步,4名男生全排列,有A4种排法;第二步,女生插空,即将3名女生插入4名男生之间的5个空位,这样可保证女生不相邻,易知有A5种插入方法.由分步计数原理得,符合条件的排法共有:A4A51440种.
说明:(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.
43353534典型例题八
例8 从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.
分析:可以从每个数字出现的次数来分析,例如“2”,当它位于个位时,即形如
/ 1 的数共有A4个(从
3、,当这些数相加时,由“2”4、5、6四个数中选两个填入前面的两个空)所产生的和是A42.当2位于十位时,即形如
222的数也有A4,那么当这些数相加时,2由“2”产生的和应是A4210.当2位于面位时,可同理分析.然后再依次分析3、4、5、6的情况.
解:形如2的数共有A4个,当这些数相加时,由“2”产生的和是A42;形如
222的数也有A4个,当这些数相加时,由“2”产生的和是A4210;形如
2的数也有A42个,当这些数相加时,由“2”产生的和应是A42100.这样在所有三位数的和中,由“2”产生的和是A42111.同理由3、4、5、6产生的和分别是A43111,A44111,222111(23456)26640. A45111,A46111,因此所有三位数的和是A4222说明:类似于这种求“数字之和”的问题都可以用分析数字出现次数的办法来解决.如“由1,4,5,x四个数字组成没有重复数字的四位数,若所有这些四位数的各数位上的数字之和为288,求数x”.本题的特殊性在于,由于是全排列,每个数字都要选用,故每个数字均出现了A424次,故有24(145x)288,得x2. 4典型例题九
例9 计算下列各题:
m1nmAnA1nm(1)A;
(2)A;
(3); n1An121566(4)1!22!33!nn!
(5)
123n1 2!3!4!n!解:(1)A151514210;(2)A66!654321720;(3)原式62(n1)!1(nm)!
[n1(m1)!](n1)!(n1)!1(nm)!1;
(nm)!(n1)!(4)原式(2!1)(3!2!)(4!3!)[(n1)!n!]
/ 1 (n1)!1;
(5)∵n111,n!(n1)!n!123n1 2!3!4!n!1111111111. 1!2!2!3!3!4!(n1)!n!n!∴说明:准确掌握好排列公式是顺利进行计算的关键.
本题计算中灵活地用到下列各式:
n!n(n1)!;nn!(n1)!n!;
n111;使问题解得简单、快捷. n!(n1)!n!典型例题十
例10 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.对这个题目,A、B、C、D四位同学各自给出了一种算式:A的算式是161111144A2A3A4A5)A4;C的算式是A6; A6;B的算式是(A124.上面四个算式是否正确,正确的加以解释,不正确的说明理由. D的算式是C62A4解:A中很显然,“a在b前的六人纵队”的排队数目与“b在a前的六人纵队”排队数目相等,而“六人纵队”的排法数目应是这二者数目之和.这表明:A的算式正确.
B中把六人排队这件事划分为a占位,b占位,其他四人占位这样三个阶段,然后用乘法求出总数,注意到a占位的状况决定了b占位的方法数,第一阶段,当a占据第一个位置时,b占位方法数是A5;当a占据第2个位置时,b占位的方法数是A4;„„;当a占据第5个位置时,b占位的方法数是A1,当a,b占位后,再排其他四人,他们有A4种排法,可见B的算式是正确的.
1411C中A64可理解为从6个位置中选4个位置让c,d,e,f占据,这时,剩下的两个位置依前后顺序应是a,b的.因此C的算式也正确.
这两个位置让a,b占据,显然,a,b占D中把6个位置先圈定两个位置的方法数C62,据这两个圈定的位置的方法只有一种(a要在b的前面),这时,再排其余四人,又有A4种排法,可见D的算式是对的. 8 / 1 说明:下一节组合学完后,可回过头来学习D的解法.
典型例题十一
例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?
解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:
215215A4A2A5A4A4A58640(种).
解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八人坐法数”看成“总方法数”,这个数目是A4A7.在这种前提下,不合题意的方法是“甲坐第一排,且乙、丙坐两排的八人坐法.”这个数目是A4C2A3A4A5.其中第一个因数
111A4表示甲坐在第一排的方法数,C2表示从乙、丙中任选出一人的办法数,A3表示把选出
1111517的这个人安排在第一排的方法数,下一个A4则表示乙、丙中沿未安排的那个人坐在第二排的方法数,A5就是其他五人的坐法数,于是总的方法数为
1711115A4A7A4C2A3A4A58640(种). 51说明:解法2可在学完组合后回过头来学习.
典型例题十二
例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有().
A.A4A
5B.A3A4A5
C.C3A4A5
D.A2A4A5
解:将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有A2种排列.但4幅油画、5幅国画本身还有排列顺序要求.所以共有A2A4A5种陈列方式.
∴应选D.
说明:关于“若干个元素相邻”的排列问题,一般使用“捆绑”法,也就是将相邻的若干个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列.本例题就是一个典型的用“捆绑”法来解答的问题.
***典型例题十三
/ 1
3例13 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有().
A.210
B.300
C.46
4D.600 解法1:(直接法):分别用1,2,3,4,5作十万位的排列数,共有5A5种,所以其中个位数字小于十位数字的这样的六位数有
5155A5300个. 265解法2:(间接法):取0,1,,5个数字排列有A6,而0作为十万位的排列有A5,所以其中个位数字小于十位数字的这样的六位数有
165(A6A5)300(个). 2∴应选B.
说明:(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或间接法要视问题而定,有的问题如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解.
(2)“个位数字小于十位数字”与“个位数字大于十位数字”具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有6个人排队照像时,甲必须站在乙的左侧,共有多少种排法.
典型例题十四
例14 用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有(). A.24个
B.30个
C.40个
D.60个
分析:本题是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用概率,也可利用本题所提供的选择项分析判断.
解法1:分类计算.
将符合条件的偶数分为两类.一类是2作个位数,共有A4个,另一类是4作个位数,也有A4个.因此符合条件的偶数共有A4A424个.
解法2:分步计算.
先排个位数字,有A2种排法,再排十位和百位数字,有A4种排法,根据分步计数原理,三位偶数应有A2A424个.
解法3:按概率算.
用15这5个数字可以组成没有重复数字的三位数共有A560个,其中偶点其中的32222121222.因此三位偶数共有6024个. 55解法4:利用选择项判断.
/ 1 用15这5个数字可以组成没有重复数字的三位数共有A560个.其中偶数少于奇数,因此偶数的个数应少于30个,四个选择项所提供的答案中,只有A符合条件. ∴应选A.
3典型例题十五
例15(1)计算A12A23A38A8.
(2)求Sn1!2!3!n!(n10)的个位数字.
分析:本题如果直接用排列数公式计算,在运算上比较困难,现在我们可以从和式中项的特点以及排列数公式的特点两方面考虑.在(1)中,项可抽象为nnnnn1nnAn(n11)An(n1)AnnAnAn1An1238,(2)中,项为n!n(n1)(n2)321,当n5时,乘积中出现5和2,积的个位数为0,在加法运算中可不考虑.
解:(1)由nAn(n1)!n!
∴原式2!1!3!2!9!8!9!1!362879.(2)当n5时,n!n(n1)(n2)321的个位数为0,∴Sn1!2!3!n!(n10)的个位数字与1!2!3!4!的个位数字相同. 而1!2!3!4!33,∴Sn的个位数字为3.
说明:对排列数公式特点的分析是我们解决此类问题的关键,比如:求证: n123n11,我们首先可抓等式右边的 2!3!4!(n1)!(n1)!nn11n1111,(n1)!(n1)!(n1)!(n1)!n!(n1)!∴左边11111111右边. 2!2!3!n!(n1)!(n1)!典型例题十六
例16 用0、组成无重复数字的自然数,(1)可以组成多少个1、2、3、4、5共六个数字,无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?
/ 1 分析:3位偶数要求个位是偶数且首位数字不能是0,由于个位用或者不用数字0,对确定首位数字有影响,所以需要就个位数字用0或者用
2、一个自然数能被3整4进行分类.除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字0进行分类.
解:(1)就个位用0还是用2、2、3、4中任取两4分成两类,个位用0,其它两位从
1、数排列,共有A412(个),个位用2或4,再确定首位,最后确定十位,共有224432(个),所有3位偶数的总数为:123244(个).
(2)从0、1、2、3、4、5中取出和为3的倍数的三个数,分别有下列取法:(012)、(015)、(024)、(045)、(123)、(135)、(234)、(345),前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有42A216(个),如果用后四组,共有4A324(个),所有被3整除的三位数的总数为162440(个). 32典型例题十七
例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?
分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7.先选定两个空位,可以在1、2号位,也可以在2、3号位„共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此.如果相邻空位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻.
解答一:就两相邻空位的位置分类:
若两相邻空位在1、2或6、7,共有24A4192(种)坐法.
若两相邻空位在2、3,3、4,4、5或5、6,共有43A4288(种)不同坐法,所以所有坐法总数为192288480(种).
解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有4A4A52480(种)不同坐法.
44解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相
/ 13
邻的情况,4个人任意坐到7个座位上,共有A7种坐法,三个空位全相邻可以用合并法,直接将三个空位看成一个元素与其它座位一起排列,共有A5种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A410种不同方法,所以,所有满足条件的不同坐法种数为A7A510A4480(种).
454544 13 / 13
第三篇:排列组合典型例题+详解
典型例题一
例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?
典型例题二
例2 三个女生和五个男生排成一排
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?
(4)如果两端不能都排女生,可有多少种不同的排法?
典型例题三
例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?
(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?
典型例题四
例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.
典型例题五
3位司机和3位售票员,例5 现有3辆公交车、每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?
典型例题六
例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?
学 校 1 2 3 1 1 1 专 业 2 2 2
/ 1jiangshan整理
典型例题七
例5 7名同学排队照相.
(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?
(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?
3名女生,7人中有4名男生,(4)若排成一排照,女生不能相邻,有多少种不面的排法?
典型例题八
例8 从2、3、4、5、6五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.
典型例题九
例9 计算下列各题:(1)A;
(2)A;
(3)21566An1AnmAn1n1m1nm;
(4)1!22!33!nn!
(5)
12!23!34!n1n!
典型例题十
例10 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.对这个题目,A、B、C、D四位同学各自给出了一种算式:A的算式是2412A6;B的算式是(A1A2A3A4A5)A4;C的算式是A6;
61111144D的算式是C6A4.上面四个算式是否正确,正确的加以解释,不正确的说明理由.
典型例题十一
例11 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?
典型例题十二
/ 1jiangshan整理 例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有().
145245A.A44A5
5B.A33A44A55
C.C3A4A5
D.A2A4A5
典型例题十三
例13 由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有().
A.210
B.300
C.46
4D.600
典型例题十四
例14 用1,2,3,4,5,这五个数字,组成没有重复数字的三位数,其中偶数共有(). A.24个
B.30个
C.40个
D.60个
典型例题十五
1238例15(1)计算A12A23A38A8.
(2)求Sn1!2!3!n!(n10)的个位数字.
典型例题十六
例16 用0、组成无重复数字的自然数,(1)可以组成多少个1、2、3、4、5共六个数字,无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?
典型例题十七
例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?
/ 1jiangshan整理 典型例题分析
1、分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下:
如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二.
如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三.
如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四.
解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A93个;
当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一
112A8A8(个)个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4.
∴ 没有重复数字的四位偶数有
311
2A9A4A8A850417922296个.
解法2:当个位数上排“0”时,同解一有A9个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:A4(A9A8)个 132
3∴
没有重复数字的四位偶数有
313
2A9A4(A9A8)50417922296个.
解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有
2A5A5A8个
干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有
A4A4A8个 11
2∴ 没有重复数字的四位偶数有
112112
A5A5A8A4A4A82296个.
解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数.
43没有重复数字的四位数有A10A9个.
132其中四位奇数有A5(A9A8)个
/ 14
jiangshan整理 ∴ 没有重复数字的四位偶数有
A10A9A5(A9A8)10A9A95A95A8 4313233324A95A8 36A85A8
223241A8
22296个
说明:这是典型的简单具有限制条件的排列问题,上述四种解法是基本、常见的解法、要认真体会每种解法的实质,掌握其解答方法,以期灵活运用.
2、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A66种不同排法.对于其中的每一种排法,三个女生之间又都有A33对种不同的排法,因此共有A66A334320种不同的排法.
(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位
353置中选出三个来让三个女生插入都有A6种方法,因此共有A5A614400种不同的排法.
5(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的226个,有A5种不同的排法,对于其中的任意一种排法,其余六位都有A6种排法,所以共有A5A614400种不同的排法. 26
解法2:(间接法)3个女生和5个男生排成一排共有A8种不同的排法,从中扣除女生1717排在首位的A3A7种排法和女生排在末位的A3A7种排法,但这样两端都是女生的排法在8扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以
26还需加一次回来,由于两端都是女生有A3A6种不同的排法,所以共有A82A3A7A3A61440种不同的排法.0 81726解法3:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有A6种不同的排法,对于其中的任意一种排活,其余5个位置又都有A5种不同的排法,所以共有A6A514400种不同的排法,5 / 1jiangshan整理 3553(4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受
171条件限制了,这样可有A5A7种不同的排法;如果首位排女生,有A3种排法,这时末位就1只能排男生,有A5种排法,首末两端任意排定一种情况后,其余6位都有A66种不同的排法,11617116这样可有A3 A5A6种不同排法.因此共有A5A7A3A5A636000种不同的排法.解法2:3个女生和5个男生排成一排有A88种排法,从中扣去两端都是女生排法A32A66种,就能得到两端不都是女生的排法种数.
因此共有A88A32A6636000种不同的排法.
说明:解决排列、组合(下面将学到,由于规律相同,顺便提及,以下遇到也同样处理)应用问题最常用也是最基本的方法是位置分析法和元素分析法.
若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.
若以元素为主,需先满足特殊元素要求再处理其它的元素.
间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.
捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.
3、解:(1)先排歌唱节目有A55种,歌唱节目之间以及两端共有6个位子,从中选4个454放入舞蹈节目,共有A6中方法,所以任两个舞蹈节目不相邻排法有:A5A6=43200.(2)先排舞蹈节目有A44中方法,在舞蹈节目之间以及两端共有5个空位,恰好供
55个歌唱节目放入。所以歌唱节目与舞蹈节目间隔排列的排法有:A44A5=2880种方法。
说明:对于“间隔”排列问题,我们往往先排个数较少的元素,再让其余元素插空排列。否则,若先排个数较多的元素,再让其余元素插空排时,往往个数较多的元素有相邻情况。如本题(2)中,若先排歌唱节目有A5,再排舞蹈节目有A6,这样排完之后,其中含有歌唱节目相邻的情况,不符合间隔排列的要求。
544、分析与解法1:6六门课总的排法是A566,其中不符合要求的可分为:体育排在5第一书有A5种排法,如图中Ⅰ;数学排在最后一节有A5种排法,如图中Ⅱ;但这两种排法,都包括体育排在第一书数学排在最后一节,如图中Ⅲ,这种情况有A4种排法,因此符合条件的排法应是:
54A62A5A4504(种). 6 / 14
jiangshan整理
分析与解法2:根据要求,课程表安排可分为4种情况:
(1)体育、数学既不排在第一节也不排在最后一节,这种排法有A42A44种;
4(2)数学排在第一节但体育不排在最后一节,有排法A4A4种;
(3)体育排在最后一节但数学不排在第一节,有排法A4A4种;
(4)数学排在第一节,体育排在最后一节,有排法A44
这四类排法并列,不重复也不遗漏,故总的排法有:
1414
A42A44A4. A4A4A4504(种)
分析与解法3:根据要求,课表安排还可分下述4种情况:
(1)体育,数学既不在最后也不在开头一节,有A4212种排法;
(2)数学排在第一节,体育不排在最后一节,有4种排法;
(3)体育在最后一书,数学木在第一节有4种排法;
(4)数学在第一节,体育在最后一节有1种排法.
上述 21种排法确定以后,仅剩余下四门课程排法是种A44,故总排法数为21A44504(种).
下面再提出一个问题,请予解答.
问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法.
请读者完成此题.
说明:解答排列、组合问题要注意一题多解的练习,不仅能提高解题能力,而且是检验所解答问题正确与否的行之有效的方法.
5、分析:可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分别填入.因此可认为事件分两步完成,每一步都是一个排列问题.
3解:分两步完成.第一步,把3名司机安排到3辆车中,有A36种安排方法;第二步
3把3名售票员安排到3辆车中,有A36种安排方法.故搭配方案共有
A3A336种. 33说明:许多复杂的排列问题,不可能一步就能完成.而应分解开来考虑:即经适当地分类成分或分步之后,应用分类计数原理、分步计数原理原理去解决.在分类或分步时,要尽量把整个事件的安排过程考虑清楚,防止分类或分步的混乱.
6、分析:填写学校时是有顺序的,因为这涉及到第一志愿、第二志愿、第三志愿的问题;同一学校的两个专业也有顺序,要区分出第一专业和第二专业.因此这是一个排列问题.
/ 1jiangshan整理 解:填表过程可分两步.第一步,确定填报学校及其顺序,则在4所学校中选出3所并加排列,共有A43种不同的排法;第二步,从每所院校的3个专业中选出2个专业并确定其顺序,其中又包含三小步,因此总的排列数有A32A32A32种.综合以上两步,由分步计数
3222原理得不同的填表方法有:A4A3A3A35184种.
说明:要完成的事件与元素的排列顺序是否有关,有时题中并未直接点明,需要根据实际情景自己判断,特别是学习了后面的“组合”之后这一点尤其重要.“选而且排”(元素之间有顺序要求)的是排列,“选而不排”(元素之间无顺序要求)的是组合.另外,较复杂的事件应分解开考虑.
7、分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A37种排法;第二步,剩下的4人排在后排,有A44种排法,故一共有A73A44A77种排法.事实上排两排与排成一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A77,相当于7个人的全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.
347解:(1)A7A4A75040种.
1(2)第一步安排甲,有A3种排法;第二步安排乙,有A4种排法;第三步余下的5人排在15剩下的5个位置上,有A5种排法,由分步计数原理得,符合要求的排法共有A3A4A51440种. 115(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的全排列问题,有A5种排法;第二步,甲、乙、丙三人内部全排列,有A3种排法.由分步计53数原理得,共有A5A3720种排法. 53(4)第一步,4名男生全排列,有A4种排法;第二步,女生插空,即将3名女生插入4名
3男生之间的5个空位,这样可保证女生不相邻,易知有A5种插入方法.由分步计数原理得,443符合条件的排法共有:A4A51440种.
说明:(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.
/ 1jiangshan整理
8、分析:可以从每个数字出现的次数来分析,例如“2”,当它位于个位时,即形如的数共有A42个(从
3、,当这些数相加时,4、5、6四个数中选两个填入前面的两个空)的数也有A42,那么当这些数由“2”所产生的和是A422.当2位于十位时,即形如相加时,由“2”产生的和应是A42210.当2位于面位时,可同理分析.然后再依次分析3、4、5、6的情况.
解:形如的数共有A42个,当这些数相加时,由“2”产生的和是A422;形如的数也有A42的数也有A42个,当这些数相加时,由“2”产生的和是A42210;形如个,当这些数相加时,由“2”产生的和应是A422100.这样在所有三位数的和中,由“2”
22产生的和是A422111.同理由3、4、5、6产生的和分别是A43111,A44111,A45111,A46111,因此所有三位数的和是A4111(23456)26640. 222说明:类似于这种求“数字之和”的问题都可以用分析数字出现次数的办法来解决.如“由1,4,5,x四个数字组成没有重复数字的四位数,若所有这些四位数的各数位上的数字之和为288,求数x”.本题的特殊性在于,由于是全排列,每个数字都要选用,故每个数字均出现了A4424次,故有24(145x)288,得x2.
9、解:(1)A(3)原式2151514210;
6(2)A66!654321720;(n1)![n1(m1)!](n1)!(nm)!(nm)!1(n1)!
(nm)!1(n1)!1;
(4)原式(2!1)(3!2!)(4!3!)[(n1)!n!]
(n1)!1; n1n!1(n1)!1n!(5)∵,9 / 1jiangshan整理 ∴12!23!34!n1n!13!
11!12!12!13!14!1(n1)!1n!11n!.
说明:准确掌握好排列公式是顺利进行计算的关键. 本题计算中灵活地用到下列各式:
n!n(n1)!;nn!(n1)!n!;
n1n!1(n1)!1n!;使问题解得简单、快捷.
10、解:A中很显然,“a在b前的六人纵队”的排队数目与“b在a前的六人纵队”排队数目相等,而“六人纵队”的排法数目应是这二者数目之和.这表明:A的算式正确.
B中把六人排队这件事划分为a占位,b占位,其他四人占位这样三个阶段,然后用乘法求出总数,注意到a占位的状况决定了b占位的方法数,第一阶段,当a占据第一个位置
1时,b占位方法数是A5;当a占据第2个位置时,b占位的方法数是A4;„„;当a占据1第5个位置时,b占位的方法数是A11,当a,b占位后,再排其他四人,他们有A44种排法,可见B的算式是正确的.
C中A6可理解为从6个位置中选4个位置让c,d,e,f占据,这时,剩下的两个位置4依前后顺序应是a,b的.因此C的算式也正确.
这两个位置让a,b占据,显然,a,b占D中把6个位置先圈定两个位置的方法数C6,据这两个圈定的位置的方法只有一种(a要在b的前面),这时,再排其余四人,又有A4种排法,可见D的算式是对的.
说明:下一节组合学完后,可回过头来学习D的解法.
4211、解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:
A4A2A5A4A4A58640(种). 215215解法2:采取“总方法数减去不命题意的所有方法数”的算法.把“甲坐在第一排的八
17人坐法数”看成“总方法数”,这个数目是A4A7.在这种前提下,不合题意的方法是“甲
11115坐第一排,且乙、丙坐两排的八人坐法.”这个数目是A4C2A3A4A5.其中第一个因数
/ 1jiangshan整理 11A4表示甲坐在第一排的方法数,C2表示从乙、丙中任选出一人的办法数,A3表示把选出
11的这个人安排在第一排的方法数,下一个A4则表示乙、丙中沿未安排的那个人坐在第二排的方法数,A55就是其他五人的坐法数,于是总的方法数为
A4A7A4C2A3A4A58640(种). 1711115说明:解法2可在学完组合后回过头来学习.
12、解:将同一品种的画“捆”在一起,注意到水彩画不放在两端,共有A22种排列.但4幅油画、5幅国画本身还有排列顺序要求.所以共有A22A44A55种陈列方式. ∴应选D.
说明:关于“若干个元素相邻”的排列问题,一般使用“捆绑”法,也就是将相邻的若干个元素“捆绑”在一起,看作一个大元素,与其他的元素进行全排列;然后,再“松绑”,将被“捆绑”的若干元素,内部进行全排列.本例题就是一个典型的用“捆绑”法来解答的问题.
13、解法1:(直接法):分别用1,2,3,4,5作十万位的排列数,共有5A所以其中个位数字小于十位数字的这样的六位数有
125A5300个.
655种,5解法2:(间接法):取0,1,,5个数字排列有A6,而0作为十万位的排列有A5,所以其中个位数字小于十位数字的这样的六位数有
12(A6A5)300(个).
655∴应选B.
说明:(1)直接法、间接法是解决有关排列应用题的两种基本方法,何时使用直接法或间接法要视问题而定,有的问题如果使用直接法解决比较困难或者比较麻烦,这时应考虑能否用间接法来解.
(2)“个位数字小于十位数字”与“个位数字大于十位数字”具有对称性,这两类的六位数个数一样多,即各占全部六位数的一半,同类问题还有6个人排队照像时,甲必须站在乙的左侧,共有多少种排法.
14、分析:本题是带有附加条件的排列问题,可以有多种思考方法,可分类,可分步,可利用概率,也可利用本题所提供的选择项分析判断.
解法1:分类计算.
将符合条件的偶数分为两类.一类是2作个位数,共有A4个,另一类是4作个位数,也有A4个.因此符合条件的偶数共有A4A424个. 2222 11 / 1jiangshan整理 解法2:分步计算.
1先排个位数字,有A2种排法,再排十位和百位数字,有A42种排法,根据分步计数原理,12三位偶数应有A2A424个.
解法3:按概率算.
用15这5个数字可以组成没有重复数字的三位数共有A5360个,其中偶点其中的25.因此三位偶数共有602524个.
解法4:利用选择项判断.
用15这5个数字可以组成没有重复数字的三位数共有A5360个.其中偶数少于奇数,因此偶数的个数应少于30个,四个选择项所提供的答案中,只有A符合条件. ∴应选A.
15、分析:本题如果直接用排列数公式计算,在运算上比较困难,现在我们可以从和式中项的特点以及排列数公式的特点两方面考虑.在(1)中,项可抽象为nAn(n11)An(n1)AnnAnAn1Annnnnn1n,(2)中,项为n!n(n1)(n2)321,当n5时,乘积中出现5和2,积的个位数为0,在加法运算中可不考虑.
n解:(1)由nAn(n1)!n!
∴原式2!1!3!2!9!8!9!1!362879.(2)当n5时,n!n(n1)(n2)321的个位数为0,∴Sn1!2!3!n!(n10)的个位数字与1!2!3!4!的个位数字相同. 而1!2!3!4!33,∴Sn的个位数字为3.
说明:对排列数公式特点的分析是我们解决此类问题的关键,比如:求证:
12!23!34!n(n1)!n1(n1)!13!11(n1)!1(n1)!1n!,我们首先可抓等式右边的
n(n1)!n11(n1)!12!11n!1(n1)!1,∴左边12!1(n1)!1(n1)!右边.
/ 1jiangshan整理
16、分析:3位偶数要求个位是偶数且首位数字不能是0,由于个位用或者不用数字0,对确定首位数字有影响,所以需要就个位数字用0或者用2、4进行分类.一个自然数能被3整除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字0进行分类.
解:(1)就个位用0还是用2、2、3、4中任取两4分成两类,个位用0,其它两位从
1、数排列,共有A4212(个),个位用2或4,再确定首位,最后确定十位,共有24432(个),所有3位偶数的总数为:123244(个).
(2)从0、1、2、3、4、5中取出和为3的倍数的三个数,分别有下列取法:(012)、(015)、(024)、(045)、(123)、(135)、(234)、(345),前四组中有0,后四组中没有0,用它们排成三位数,如果用前4组,共有42A2216(个),如果用后3四组,共有4A324(个),所有被3整除的三位数的总数为162440(个).
17、分析:对于空位,我们可以当成特殊元素对待,设空座梯形依次编号为1、2、3、4、5、6、7.先选定两个空位,可以在1、2号位,也可以在2、3号位„共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此.如果相邻空位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻.
解答一:就两相邻空位的位置分类:
若两相邻空位在1、2或6、7,共有24A4192(种)坐法.
若两相邻空位在2、3,3、4,4、5或5、6,共有43A4288(种)不同坐法,所以所有坐法总数为192288480(种).
解答二:先排好4个人,然后把两空位与另一空位插入坐好的4人之间,共有A4A5480(种)不同坐法. 4244解答三:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相邻的情况,4个人任意坐到7个座位上,共有A7种坐法,三个空位全相邻可以用合并法,13 / 14
jiangshan整理
4直接将三个空位看成一个元素与其它座位一起排列,共有A55种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隔中,有A4410种不同方法,所以,所有满足条件的不同坐法种数为A74A5510A44480(种).
/ 14
jiangshan整理
第四篇:高中数学第十章-排列组合范文
高三数学总复习................................................................高考复习科目:数学
高中数学总复习
(九)复习内容:高中数学第十章-排列组合 复习范围:第十章 编写时间:2004-7 修订时间:总计第三次 2005-4
一、两个原理.1.乘法原理、加法原理.2.可以有重复元素的排列........从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = mn..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?
(解:m种)
二、排列.1.⑪对排列定义的理解.定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m......个元素的一个排列.⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑬排列数.从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从n
m个不同元素中取出m个元素的一个排列数,用符号An表示.n⑭排列数公式:
Amn(n1)(nm1)n!(mn,n,mN)
(nm)!注意:nn!(n1)!n!
规定0!= 1
mmmm1mm1mm10
An
规定CnCnAnnAnn1 1AnAmCnAnmAn12.含有可重元素的排列问题.......对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n = n1+n2+……nk , 则S的排列个数等于nn!.n1!n2!...nk!例如:已知数字3、2、2,求其排列个数n数n3!1.3!
三、组合.(12)!3又例如:数字5、5、5、求其排列个数?其排列个1!2!1.⑪组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.高中数学高考总复习
高三数学总复习九—排列组合 — 1 —
m⑫组合数公式:CmAnn(n1)(nm1)nmAmm!Cmnn!
m!(nm)!nmm1mm⑬两个公式:①CmnCn;
②CnCnCn1
①从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出 n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是1m1m含红球选法有CmnC11Cn一类是不含红球的选法有Cn)
②根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C一元素,则需从剩余n个元素中取出m个元素,所以共有C⑭排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑮①几个常用组合数公式
012n CnCnCnnn2m1n,如果不取这
mn1m种,依分类原理有CmnCmnCn1.024135CnCnCnCnCnCn2n1mmmm1CmnCm1Cm2CmnCmn1kCnCknk1n1
111CkCknn1k1n1②常用的证明组合等式方法例.i.裂项求和法.如:123n1n1111)(利用2!3!4!(n1)!(n1)!n!(n1)!n!ii.导数法.iii.数学归纳法.iv.倒序求和法.m1m3333v.递推法(即用CmCnCn4nCnCn1递推)如:C3C4C51.02122nvi.构造二项式.如:(Cn)(Cn)(Cnn)C2n证明:这里构造二项式(x1)n(1x)n(1x)2n其中x的系数,左边为
01n12n2n00212n2,而右边C2n CnCnnCnCnCnCnCnCn(Cn)(Cn)(Cn)nn
四、排列、组合综合.1.I.排列、组合问题几大解题方法及题型: ①直接法.②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某m(mn)个元素必相邻的排列有Anm1Am个.其中Anm1是一个“整体排列”,而Am则是“局部排列”.22又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为An.An11A2nm1mnm1m高中数学高考总复习
高三数学总复习九—排列组合 — 2 —
12.②有n件不同商品,若其中A、B排在一起有Ann1A221.③有n件不同商品,若其中有二件要排在一起有AnAnn1注:①③区别在于①是确定的座位,有A2种;而③的商品地位相同,是从n件不同商品任取的2个,有不2确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.mm例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?An(插空法),当n nmAnm1– m+1≥m, 即m≤n1时有意义.2⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有Ann种,m(mn)个元素的全排列有Amm种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共有
AnnAmm种排列方法.例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m!;解法二:(比例分配法)
mAnn/Am.⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有
nnCknC(k1)nnCnAkk.C2例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有43(平均分组就用不着管组
2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?(P82C18C210C20/2!)
注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?mmm有An,当n – m+1 ≥m, 即m≤n1时有意义.nmAnm1/Am2⑧隔板法:常用于解正整数解组数的问题.例如:x1x2x3x412的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为x1,x2,x3,x4显然x1x2x3x412,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,y2,y3,y4),对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应.即方程的3解的组数等于插隔板的方法数C11.x1x2x3x4注意:若为非负数解的x个数,即用a1,a2,...an中ai等于xi1,有x1x2x3...xnAa11a21...an1A,进而转化为求a的正整数解的个数为CAn.⑨定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r高中数学高考总复习
高三数学总复习九—排列组合 — 3 —
n1r个指定位置则有ArrAknr.例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?
m1m1m1或m,1;固定在某一位置上:不在某一位置上:(一类是不取出特殊元素a,有AnAnAmAm1Am1An1nAn11n1一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)
⑩指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。先C后Akrkrkr策略,排列CrrCnrAk;组合CrCnr.ii.从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。先C后Akk策略,排列CnrAk;组合Cnkr.iii 从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个
ksksks元素中的s个元素。先C后A策略,排列CrsCnrAk;组合CrCnr.II.排列组合常见解题策略:
①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略; ⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2.组合问题中分组问题和分配问题.①均匀不编号分组:将n个不同元素分成不编号的m组,假定其中r组元素个数相等,不管是否分尽,其分法种数为A/Ar(其中A为非均匀不编号分组中分法数).如果再有K组均匀分组应再除以Ak.rk244例:10人分成三组,各组元素个数为2、4、4,其分法种数为C10.若分成六组,各组人C8C4/A22***数分别为1、1、2、2、2、2,其分法种数为C10 C9C8C6C4C2/A22A4②非均匀编号分组: n个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为AAm m233例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:C10种.C8C55A3234若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有C10种 C8C5A33③均匀编号分组:n个不同元素分成m组,其中r组元素个数相同且考虑各组间的顺序,其分法种数为m.A/ArrAm例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为C10C8C4A3
32244A2④非均匀不编号分组:将n个不同元素分成不编号的m组,每组元素数目均不相同,且不考虑各组间顺序,k不管是否分尽,其分法种数为ACn1Cn-2m1…Cn-(m1m2...mk-1)
mmm235例:10人分成三组,每组人数分别为2、3、5,其分法种数为C10C8C52520若从10人中选出6人分成三
123组,各组人数分别为1、2、3,其分法种数为C10C9C712600.高中数学高考总复习
高三数学总复习九—排列组合 — 4 —
五、二项式定理.0n01n1rnrrn0n1.⑪二项式定理:(ab)nCnabCnabCnabCnab.展开式具有以下特点: ① 项数:共有n1项;
012r② 系数:依次为组合数Cn,Cn,Cn,,Cn,,Cnn;
③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑫二项展开式的通项.rnrr(ab)n展开式中的第r1项为:Tr1Cnab(0rn,rZ).⑬二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数最大......
nI.当n是偶数时,中间项是第1项,它的二项式系数C2n最大;
2n1n1II.当n是奇数时,中间项为两项,即第项和第1项,它们的二项式系数C22③系数和:
01nCnCnCnn202413CnCnCnCnCn2n1n1n12C2最大.nnn
附:一般来说(axby)n(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求解.当...........
AkAk1,AkAk1或(Ak为Tk1的系数或系数的绝对值)的a1或b1时,一般采用解不等式组AAAAkk1kk1办法来求解.pqr⑭如何来求(abc)n展开式中含abc的系数呢?其中p,q,rN,且pqrn把
r(abc)n[(ab)c]n视为二项式,先找出含有Cr的项Cn(ab)nrCr,另一方面在(ab)nr中qpqrrqpqrqnrqqqpq含有b的项为Cnr故在(abc)n中含abc的项为CnCnrabc.其系数为abCnrab,rCnCnqr(nr)!n!n!pqrCnCnpCr.r!(nr)!q!(nrq)!r!q!p!2.近似计算的处理方法.当a的绝对值与1相比很小且n不大时,常用近似公式(1a)1na,因为这时展开式的后面部分2233nnCnaCnaCna很小,可以忽略不计。类似地,有(1a)n1na但使用这两个公式时应注意a
n的条件,以及对计算精确度的要求.高中数学高考总复习
高三数学总复习九—排列组合 — 5 —
高中数学高考总复习— 6 —
高三数学总复习九—排列组合
第五篇:高中数学不等式典型例题解析
高中数学不等式典型例题解析
高中数学辅导网http://www.xiexiebang.com/
概念、方法、题型、易误点及应试技巧总结
不等式
一.不等式的性质:
1.同向不等式可以相加;异向不等式可以相减:[同向相加,异向相减] 若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;
2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);[同向相乘,异向相除]
3.左右同正不等式:两边可以同时乘方或开方:若
bn或
4.若
;若
1a,则,则,则
1b
。如
(1)对于实数a,b,c中,给出下列命题:
①若则; ④若
; ②若则 ⑤若
则则
; ③若
则
;
; ⑥若
a
⑦若
则;
则
; ⑧若
1a
1b,则。
其中正确的命题是______
(答:②③⑥⑦⑧);
(2)已知
(答:
ca 的取值范围是______
(答:),);(3)已知,则,且的取值范围是______
则
二.不等式大小比较的常用方法:
1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;
5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;
8.图象法。其中比较法(作差、作商)是最基本的方法。如
(1)设
a 的大小
(答:当
时,且,比较logat和log
(时取等号);当
时,京翰教育http://www.xiexiebang.com/
(时取等号));
(2)设,,试比较p,q的大小
(答:);
(3)比较1+logx3与且或
2logx2;当
时,1+logx3>2logx2;当的大小(答:当
时,1+logx3<
时,1+logx3=2logx2)
三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积
最大,积定和最小”这17字方针。如(1)下列命题中正确的是 A、1x 的最小值是2 2
4x4x
0)的最大值是
0)的最小值是、C、(答:C);
(2)若,则的最小值是______、(答:);
(3)正数x,y满足,则 的最小值为______
(答:);
4.常用不等式有:(1
(根据目标不等式左右 的运算结构选用);(2)a、b、,且仅当时,取等号);(3)若
b
a
如果正数a、b满足,则ab,则
(当
(糖水的浓度问题)。如
的取值范围是_________
(答:)
五.证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:
作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).常用的放缩技巧有:
n
1n
如(1)已知,求证:
(2)已知,求证:(3)已知,且(4)若,求证:
;; ;
a、b、c
是不全相等的正数,求证:
lg
lg
ca
; 2
(5)已知,求证:若
1已知,求证:(8)求证:
n;
1n
;(6)
。
六.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次
因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现f(x)的符号变化规律,写出不等式的解集。如
(1)解不等式
(答:
(2)
不等式
(答:的解集是____ 或); 的解集为的解集为
或)。
(3)设函数f(x)、g(x)的定义域都是R,且,的解集为,则不等式______
(答:);(4)要使满足关于x的不等式(解集非空)的每一个x的值
和x
中的一个,则实数a的至少满足不等式取值范围是______.(答:[7,818))
七.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通
分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如
(1)解不等式
2); 的解集为,则关于x的不等式
(答:
(2)关于x的不等式 的解集为____________).(答:
八.绝对值不等式的解法:
1.分段讨论法(最后结果应取各段的并集):如解不等式
|
(答:);
(2)利用绝对值的定义;
(3)数形结合;如解不等式
(答:
(4)两边平方:如
若不等式______。
(答:{)
九.含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是„”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.如
(1)若loga,则a
对
恒成立,则实数a的取值范围为)的取值范围是__________
(答:或
(2)解不等式
ax);
1a
1a
或)时,时,(答:
};
时,{x|或
;
提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)
不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于x的不等式的解集为,则不等式的解集为
__________(答:(-1,2))
十一.含绝对值不等式的性质:
a、b同号或有号或有
; a、b异
如设,实数a满足,求证:
十二.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方
式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题
若不等式
若不等式
在区间D上恒成立,则等价于在区间D上如(1)设实数x,y满足,当时,c的取值范围是______)(答:;(2)不等式);
在区间D上恒成立,则等价于在区间D上
对一切实数x恒成立,求实数a的取值范围_____(答:
(3)若不等式取值
对满足的所有m都成立,则x的范围_____
(答:((4)若不等式
n
,));
对于任意正整数n恒成立,则实数a的取
值范围是_____
(答:);
(5)若不等式对求m的 取值范围.(答:)
2).能成立问题
若在区间D上存在实数x使不等式上
;
若在区间D上存在实数x使不等式上的如
已知不等式范围____
(答:)
3).恰成立问题
若不等式在区间D上恰成立, 解集为D; 的所有实数x都成立,成立,则等价于在区间D
成立,则等价于在区间D
则等价于不等式的若不等式解集为D.在区间D上恰成立, 则等价于不等式的在实数集R上的解集不是空集,求实数a的取值