第一篇:第二讲 极限的定义与基本性质
第二讲 极限的定义与基本性质
一、数列极限及其性质
1.数列极限的定义:
xn收敛于a0,NN,s.t.xna,nN。
值得注意的是:1)N依赖于,但不唯一,而事先给定;
2)不等式xna中的可以用K来代替,其中K0不依赖于N,;
3)N可以通过xna得到,需要解不等式或作适当的放大。
例1 证明:a0,an
n!
n0。
分析:直接求解不等式
时 an!用放大法。记m[a],则当nm0是不现实的。
n!12m(
从而 1)nm(1n)m(nm,1)
am(m1),n!m1
注意到a[a]1m1,因此0
即可。
证明:0,不妨设1。记m[a],取Nannm(m1)从而只要解1,m1m1aanmln(m1)ln,则当
ln(m1)lna
nN时有
am0(m1),n!m1
因此由极限定义得annan
n!0。
□
2.用定义证明极限存在的方法
1)放大法:如前。
2)分步法与拟合法
例2 设xna,证明x1xn
na。
分析:若把xn中每项看成a,则
x1xn
n的值恰为a,因此
n
x1xn
n
a
1n
n
(x
i
1i
a)
n
i1
xia。
其余要借助假设xna来证明。给定0,N,当nN时xna,因此不能控制的项为x1a,x2a,,xNa。但好在这种项只有N项,从而可以调整n来控制它们。
证明:0,由xna,N1,当nN1时xna/2,从而
x1xn
nnN1
n
a1
N1
1n
n
(x
i1
i
a)
n
n
i1N1i1
xia
/2
n
i1
xia/2
n
xia。
又收敛数列有界,不妨设xnM,n,则
N1
n
i1
xia
N1n
Ma。
N1
12N1
(M|a|),则当nN2时令N2n
i1
xia
。
最后,令Nmax{N1,N2},则当nN时有
x1xn
n
a。因此由极
限定义知
x1xn
n
a。
□ 我们看到,这里我们先利用了极限的定义,然后再利用极限的性质(有界性)来完成证
明。
例3 证明:若pk0(k1,2,)且lim
pn
p1p2pn
n
0,limxna。
n
证明lim
p1xnp2xn1pnx1
p1p2pn
n
a。
分析:把xn中每项看成a,则极限号后面的式子的值恰为a,因此
p1xnp2xn1pnx1
p1p2pn
pk
a
p1xnap2xn1apnx1a
p1p2pn。
然后我们在试图用分步的方法来估计。记qk注意到qk
(k)
(n)
p1p2pn,k1,2,,n,0,因此若nk,则当k时n,从而
(n)k
0q因而qk再由qk
(n)
pk
p1p2pn
n
qk
(k)
0,0,k。0,由limxna,N1,当nN1时xna。
(n)
0,k,N2,当nkN2时0qk
p1xnp2xn1pnx1
p1p2pnq
(n)
k
N
2(n)
。于是
n
a
q
k1
(n)k
xnk1a
n
nN1
k1
xnk1a
knN11
q
(n)k
xnk1a
kN21
qk
(n)
xnk1a
我们看到,只有中间的项得不到控制。为此我们设法使得中间项不存在,即要求
N2nN11。为此,只需要nN1N21即可。因此我们取NN1N21。
Ex1: 请完成上面的证明。
注意在上面的例题中,我们都利用xn的极限来拟合数列的项从而简化问题。这种方法称为“拟合法”,它经常与分步法同时应用。这个方法在很多类型的题目中都会用到,今后在出现相关例子时我们再作说明。
我们看到,如果在例3中取pk1,则得到例2。一个更一般的题目如下: 例4 设xna,ynb(n),则lim
n
k
n
xn
k1
ynk1ablim
n
k
n
xn
k1
yk。
Ex2:证明例4。
n
例5 设x0时f(x)x。xn
n
i1
2i1fa,a0,证明xna。2naa。于是
证明:用x拟合f(x),则xn
n
i1
2i1n
xna
i1n
2i12i1aa 22f
nn2i12i1
faa。22
nn
i1
由假设,0,0,当0x时有f(x)xx。取N则当nN时,对1in有0从而
n
2a
,
2i1n
a
2n
a,xna
i1
2i12i1faa 22
nn
n
i1
(2i1)an
a。
因此由极限的定义有xna。
□
例6 设ana,证明lim
aaCaCana。1n2nn02
n
提示:利用1
n
n
C
k0
k
n
以及lim
n
Cn2
n
k
0(k1,2,,n)。
二、极限的基本性质与应用
1.极限的性质
1)收敛数列(函数)的(局部)有界性
2)保号、保序性
2.极限的四则运算:条件—在极限存在且四则运算有意义。
例7若xna0,证明存在自然数N,当nN时证明:取
a2
a2
xn
a。
0,由xna,存在自然数N,当nN时有
a2
a2xn
32a。
xna
□
第二篇:极限操作定义
极限操作定义:在对手技能释放的瞬间 用自己的技能或者道具化解对手技能。
妙E秒羊秒吹秒C的极限操作的可能性分析:以张飞为例子,若阴影地飞出来的张飞的T妙吹妙羊的可能性几乎为零。飞飞到你面前完成T的时间只需要0.1秒钟(鸟房张飞的飞at除外)当张飞飞到你面前,你才开始反应然后左手手按到风或者羊的技能键,右手操作鼠标点到张飞身上,完成整个过程需要受过反应训练的人也至少需要0.25妙的时间。那么极限秒吹秒羊妙E是不可能的。那么游戏中经常出现的这个极限操作的假象是怎么做到的呢? 关键原因就是距离。张飞的飞 和各种限制技能都是有距离的限制,当CR 或者41保持与张飞 飞T的极限距离外,不停按技能又不停的S那么 这个时期张飞飞过来刚好在自己使用技能的距离内,那么妙限制飞的假象出现了。但是这绝不是极限操作,而是有意识的反复操作达到的效果。郭嘉的极限C张飞的情况就有两种,一种是郭嘉释放C技能的时候 张飞自己刚好飞到C的方向上,T还没放出来就被C住,这种情况发生在上路郭嘉妙关的时候特别常见,这个纯属运气,与极限操作扯不上半点关系。还有一种情况与上所诉妙E妙吹情况类似,但是这个距离就比妙E妙吹时候需要的距离精确的多,当飞在郭嘉点人C的极限距离外起飞,那么绝对被秒C,一旦张飞进入这个极限距离内那么张飞没有飞起来之前被C或者张飞飞起来躲掉了郭嘉C.第二种情况极其少见,因为成功率取决于飞的位置和郭嘉的想法,大多数郭嘉不会为了妙C张飞而去冒险释放这个团战终极技能,张飞飞到郭嘉面前再C这个是极限操作但是需要的时间如果地板C需要0.15妙 点人C也需要0.25妙,理论上也是不可以的。
那么哪些操作的的确确是极限操作了?玄武躲技能,飞躲飞T,妙T这绝对是极限操作,玄武躲技能这个操作一般选手都有这个意识而且成功率不说百分百,也有百分之八十。因为这些个躲限制技能的技能是没有距离限制(飞躲飞T除外),只能在对方释放技能前使用自身技能或者道具才能出现极限“妙X”的画面。这些操作可行性分析:玄武躲技能,左手放在技能键上,当出现非瞬发限制技能(极需要释放时间的技能点飞T41 E 郭嘉C)这些技能的释放时间大于或者等于0.1妙,而一般人开启玄武的反应时间小于0.1S,所以我们经常看见玄武躲技能的操作,因为常见,很多人认为玄武躲技能不算极限操作,但是却是理论上的极限操作。但是玄武是无法躲瞬发限制技能,这个问题我在以前的问题中讨论过的,瞬发限制技能 入风吹 羊变 和CR的E 只要这些技能释放出去,对手就必须受的。而飞鞋躲飞T这个和玄武躲技能的道理一样,但比玄武躲飞T多一些预判断时间,所以玄武躲技能可以在没有视野的情况完成。但是飞躲阴影飞T却很难,因为自己起飞躲飞T的反应时间大于0.1S..妙T更难,完全是自己判断+运气 这个不多复述了。
总结:妙羊妙吹妙E不是极限操作 更多的是需要操作者的意识,玄武躲技能,飞鞋躲飞T妙T是真三玩家的操作素质和水平的体现。不要刻意追求极限操作,加强自己的意识,注意队友的配合 这才是真三的王道。
第三篇:第4讲函数极限及性质2009
《数学分析I》第4讲教案
第4讲函数极限概念及其性质
讲授内容
一、x趋于时函数的极限
例如,对于函数f(x)
1x,当x无限增大时,函数值无限地接近于0;而对于函数g(x)=arctanx,则
2当x趋于+时函数值无限地接近于.
定义1设f为定义在[a,)上的函数,A为定数.若对任给的>0,存在正数M(a),使得当x>M时有 |f(x)A|<
则称函数f当x趋于+时以A为极限,记作limf(x)A.x
定义1的几何意义如图3—1所示,对任给的>0,在坐标平面上平行
于x轴的两条直线)yA与yA,围成以直线yA为中心线、宽为2的带形区域;定义中的“当x>M时有|f(x)A|”表示:在直线xM的右方,曲线y=f(x)全部落在这个带形区域之内.如果正
数给得小一点,即当带形区域更窄一点,那么直线xM一般要往右平移;但无论带形区域如何窄,总存在这样的正数M,使得曲线yf(x)在直线xM的右边部分全部落在这更窄的带形区域内.limf(x)A或 f(x)A(x);
x
limf(x)A或f(x)A(x).x
这两种函数极限的精确定义与定义1相仿,只须把定义1中的“xM”分别改为“xM或”xM".不难证明:若f为定义在U()上的函数,则limf(x)Alimf(x)limf(x)A
x
x
x
例1 证明lim
1x
x
0
证:任给0,取
,则当:x时有
1x
0
1x
1
,所以lim
1x
x
0。
例2证明:(1)limarctanx
x,(2)limarctanx
x
.注:当x时arctanx不存在极限.
二、x趋于x0时函数的极限
定义2(函数极限的定义)设函数f在点x0的某个空心邻域U(x0;)内有定义,为定数.若
'
对任给的0存在正数(),使得当0xx0时有 f(x),则称函数f当x趋于x0。
'
时以为极限,记作limf(x)或f(x)(xx0)
xx0
举例说明如何应用定义来验证这种类型的函数极限.特别讲清以下各例中的值是怎样确定的.
例3设f(x)
x4x
2,证明limf(x)4.x2
证:由于当x2时,f(x)4
x4x2
4x24x2,故对给定的0,只要取,则当0x2时有f(x)4,这就证明了limf(x)
4x2
例4证明:limsinxsinx0;limcosxcosx0
xx0
xx0
证:先建立一个不等式:当0x
时有sinxxtanx(1)
事实上,在如图32的单位圆内,当0x
时,显然有
SOCDS扇形OADSOAB即又当x
sinx
x
tanx,由此立得(1)式.
时有sinx1x,故对一切x0都有sinxx,当x0时,由sin(x)x得sinxx综上,我们得到不等式sinxx,xR,其中等号仅当x0时
xx0
xx0
成立.而sinxsinx02cos
sin
xx0.
对任给的0,只要取,则当0xx0时,就有sinxsinx0.
所以limsinxsinx0.可用类似方法证明limcosxcosx0
xx0
xx0
例证明lim
x12xx
1x1
3.x132x1
证:当x1时有
x12xx1
x12x1
若限制x于0x11(此时x0)则2x11,于是,对任给的0只要取min{3,1},则当
x12xx1
0x1时,便有
x13
.
例6证明
xx0
limx
x0(x01)
证:由于x1,x01 因此xx
x0x1x
x
xx0xx0
x
2xx0x
于是,对任给的0(不妨设01)取
x02
,则当0xx0时,就有1xx0.
关于函数极限的定义的几点说明:
(1)定义2中的正数,相当于数列极限定义中的,它依赖于,但也不是由所惟一确定.一
般来说,愈小,也相应地要小一些,而且把取得更小些也无妨.如在例3中可取或等等.
(2)定义中只要求函数f在x0的某一空心邻域内有定义,而一般不考虑f在点x0处的函数值是否有定义,或者取什么值.这是因为,对于函数极限我们所研究的是当x趋于x0过程中函数值的变化趋势.如在例3中,函数f在点x2是没有定义的,但当x2时f的函数值趋于一个定数.
(3)定义2中的不等式0xx0等价于xU
x0;,,而不等式
fx等价于
fxU;.
下面我们讨论单侧极限.
x2,x0
例如,函数 fx(I)
x,x0
当x0而趋于0时,应按fxx2来考察函数值的变化趋势;当x0而趋于0时,则应按fxx.定义3设函数f在Ux0;
'
或Ux
0
;
'
内有定义,为定数.若对任给的
0,存在正数
'
,使得当x
xx0,
x0xx0时有fx
则称数为函数f当x趋于x0(或x0)时的右(左)极限,记作
limfxlimfx或fxxx0fxxx0
xx0
xx0
右极限与左极限统称为单侧极限.f在点x0的右极限与左极限又分别记为fx00limfx与fx00limfx
xx0
xx0
按定义3容易验证函数(I)在x0处的左、右极限分别为f00limfxlimx0,f00lim
x0
x0
fxlimx
0
x0
x0
同样还可验证符号函数sgnx在x0处的左、右极限分别为limsgnxlim11,limsgnxlim1
1x0
x0
x0
x0
定理3.1limfxlimfxlimfx
xx0
xx0
xx0
三、函数极限的性质
定理3.2(唯一性)若极限limfx存在,则此极限是唯一的.
xx0
证:设,都是f当xx0时的极限,则对任给的0,分别存在正数1与2,使得: 当0xx01时有fx,(1)当0xx02时有fx,(2)取min1,2,则当0xx0时,(1)式与(2)式同时成立,故有(fx)fxfxfx2由的任意性得,这就证明了极限是唯一的.定理3.3(局部有限性)若limfx存在,则f在x0的某空心邻域U
xx0
x0内有界.
证:设limfx.取1,则存在0使得对一切xU
xx0
x0;有
x0;内有界.
fx1fx1,这就证明了f在U
定理3.4(局部保号性)若limfx0(或0),则对任何正数r(或r),存在xx0
U
x0,使得对一切xU0x0有 fx
r0(或fxr0)
证:设0,对任何r(0,),取r,则存在0,使得对一切xUfxr,这就证得结论.对于0的情形可类似地证明.
x0;
注:在以后应用局部保号性时,常取r
A2
.
定理3.5(保不等式性)设limfx与都limgx都存在,且在某邻域U
xx0
xx0
x
;
'
内有fxgx则
xx0
limfxlimgx
xx0
证:设limfx=,limgx=,则对任给的0,分别存在正数1与2使得当0xx01
xx0
xx0
时有fx,当0xx02 时有gx,令min,1,2,则当0xx0时,有fxgx,'
从而2.由的任意性推出,即limfxlimgx成立.
xx0
xx0
第四篇:第2讲数列极限及其性质2009
《数学分析I》第2讲教案
第2讲数列极限概念及其性质
讲授内容
一、数列极限概念
数列 a1,a2,,an,,或简单地记为{an},其中an,称为该数列的通项.
关于数列极限,先举二个我国古代有关数列的例子.(1)割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽.n
22园内接正n边形的面积An
Rsin
2n
sin
(n3,4,),当n时,AnR
2nn
R
2
(2)古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.第一天截下
12,第二天截下
n
2,„„,第n天截下
n,„„这样就得到一个数列
22,2,,1,.或n.n22
不难看出,数列{}的通项
n
随着n的无限增大而无限地接近于0.一般地说,对于数列{an},若当n无
限增大时an能无限地接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限.不具有这种特性的数列就不是收敛数列.下面我们给出收敛数列及其极限的精确定义.
定义1设{an}为数列,a为定数.若对任给的正数,总存在正整数N,使得当,n>N时有|ana|则称数列{an收敛于a,定数a称为数列{an}的极限,并记作limana,或ana(n).读作“当n
n
趋于无穷大时,an的极限等于a或an趋于a”.
若数列{an}没有极限,则称{an}为发散数列.下面举例说明如何根据N定义来验证数列极限.
二、根据N定义来验证数列极限
例2证明lim
1n
n
0,这里为正数
,故对任给的>0,只要取N=
1
1,则当nN时,便有
证:由于 |
1n
0|
1n
1n
1N
即|
1n
0|.这就证明了lim
1n
n
0.例3证明lim
3n
n
n33n
3.分析由于|
n
33|
9n3
9n
(n3).因此,对任给的>o,只要
9n
,便有
|
3n
n3
3|,即当n
时,(2)式成立.故应取Nmax{3,
999
证任给0,取Nmax{3,据分析,当nN时有|23|,式成立.于是本题得证.n3
n
例4证明limq=0,这里|q|<1.
n
3n
证若q=0,则结果是显然的.现设0<|q|<1.记h
1|q|
1,则h>0.我们有
|q0||q|
11nh
nn
1(1h)
n,并由(1h)1+nh得到|q|
|q0|,这就证明了limq
n
n
nn
1nh
.对任给的0,只要取N
h,则当nN时,得
n
0.注:本例还可利用对数函数ylgx的严格增性来证明,简述如下:对任给的>0(不妨设<1),为使
n
n
只要nlg|q|lg即n|q0||q|,lglg|q|
(这里0|q|1).于是,只要取N
lglg|q|
即可。
例5证明lim
n
n
a1,其中a>0.
证:(ⅰ)当a1时,结论显然成立.(ⅱ)当a1时,记an1,则0.由 a(1)n1n1n(an1)得
an1
a1n.(1)
任给0,由(1)式可见,当n
a1
N时,就有an1,即|an1|.所以lim
n
a1.(ⅲ)当0a1时,,1
n
-1,则0.由
a
1
1n
(1)1n1n1得 aa1
1a
n
a
1n.a
a
1
1
n.1
(2)
任给0,由(2式可见,当n1
a1
N时,就有1an,即|an1|.所以lim
n
n
a1.关于数列极限的—N定义,应着重注意下面几点:
1.的任意性:尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N,又既
2时任意小的正数,那么,3或等等同样也是任意小的正数,因此定义1中不等式|ana|中的可用
,3或等来代替.
2.N的相应性:一般说,N随的变小而变大,由此常把N写作N(),来强调N是依赖于的;但这并不意味着N是由所唯一确定的.3.从几何意义上看,“当n>N时有|aa|”意味着:所有下标大于N的项an都落在邻域U(a;)内;而在U(a;)之外,数列{an}中的项至多只有N个(有限个).
定义2若liman0,则称{an}为无穷小数列.由无穷小数列的定义,不难证明如下命题:
n
n
定理2.1数列{an}收敛于a的充要条件是:{ana}为无穷小数列.
三、收敛数列的性质
定理2.2(唯一性)若数列{an}收敛,则它只有一个极限.
定理2.3(有界性)若数列{an}收敛,则{an}为有界数列,即存在正数M,使得对一切正整数有|an|M.证:设limana取1,存在正数N,对一切n>N有
n
|ana|1即a1ana1.记Mmax{|a1|,|a2|,|aN|,|a1|,|a1|},则对一切正整数n都有anM.注:有界性只是数列收敛的必要条件,而非充分条件.例如数列1定理2.4(保号性)若limana0
n
n
有界,但它并不收敛.
(a,0
(或<0),则对任何a(0,a)(或a,存在正数N,使
得当nN时有ana(或ana).
证:设a0.取aa(>0),则存在正数N,使得当nN时有aana,即
anaa,这就证得结果.对于a0的情形,也可类似地证明.
注:在应用保号性时,经常取a
a2
.即有an
a2,或an
a2
定理2.5(保不等式性)设an与bn均为收敛数列.若存在正数N0,使得当nN0时,有anbn,则limanlimbn.n
n
请学生思考:如果把定理2.5中的条件anbn换成严格不等式anbn,那么能否把结论换成limanlimbn?,并给出理由.n
n
例1设an0n1,2,.证明:若limana,则lim
n
n
an
a.证:由定理2.5可得a0.若a0,则由liman0,任给0,存在正数N,使得当nN时有an,从而an即
n
an0,故有lim
n
an0.anaan
a
ana
a
若a0,则有
an
a
.任给0,由limana,存在正数N,使得当
n
nN时有ana
a,从而
an
a.故得证.
第五篇:数列极限的定义
Xupeisen110高中数学
教材:数列极限的定义(N)
目的:要求学生掌握数列极限的N定义,并能用它来说明(证明)数列的极限。过程:
一、复习:数列极限的感性概念
二、数列极限的N定义
1n
3.小结:对于预先给定的任意小正数,都存在一个正整数N,使得只要nN 就
有an0<
4.抽象出定义:设an是一个无穷数列,a是一个常数,如果对于预先给定的任
意小的正数,总存在正整数N,使得只要正整数nN,就有ana<,那么就说数列an以a为极限(或a是数列an的极限)
Xupeisen110高中数学
记为:limana 读法:“”趋向于“n” n无限增大时
n
注意:①关于:不是常量,是任意给定的小正数
②由于的任意性,才体现了极限的本质
③关于N:N是相对的,是相对于确定的,我们只要证明其存在④ana:形象地说是“距离”,an可以比a大趋近于a,也可以比a小趋近于
例四1.lim
n
证明
证明2:设是任意给定的小正数
要使3n13 只要
2n1
12n1
n
54
取N51当nN时,3n13恒成立
422n12