第一篇:定义证明二重极限
定义证明二重极限
就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A
关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点p(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0<户几卜8的一切点p,有不等式V(p)一周<。成立,则称A为函数人p)当p~p。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点p(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点p入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点p。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点p都适合/(p)一A卜
利用极限存在准则证明:
(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;
(2)证明数列{Xn},其中a>0,Xo>0,Xn=/2,n=1,2,…收敛,并求其极限。
1)用夹逼准则:
x大于1时,lnx>0,x^2>0,故lnx/x^2>0
且lnx1),lnx/x^2<(x-1)/x^2.而(x-1)/x^2极限为0
故(Inx/x^2)的极限为0
2)用单调有界数列收敛:
分三种情况,x0=√a时,显然极限为√a
x0>√a时,Xn-X(n-1)=/2<0,单调递减
且Xn=/2>√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=/2.解得A=√a
同理可求x0<√a时,极限亦为√a
综上,数列极限存在,且为√
(一)时函数的极限:
以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)
几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……
(二)时函数的极限:
由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=
为使需有为使需有于是,倘限制,就有
例7验证例8验证(类似有(三)单侧极限:
1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:
Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有
=§2函数极限的性质(3学时)
教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:
我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:
(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性(不等式性质):
Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)
註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:
6.四则运算性质:(只证“+”和“”)
(二)利用极限性质求极限:已证明过以下几个极限:
(注意前四个极限中极限就是函数值)
这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)
例2例3註:关于的有理分式当时的极限.例4
例5例6例7
第二篇:证明二重极限不存在
证明二重极限不存在
如何判断二重极限(即二元函数极限)不存在,是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论,只是略谈一下在判断二重极限不存在时,一个值得注意的问题。由二重极限的定义知,要讨论limx→x0y→y0f(x,y)不存在,通常的方法是:找几条通过(或趋于)定点(x0,y0)的特殊曲线,如果动点(x,y)沿这些曲线趋于(x0,y0)时,f(x,y)趋于不同的值,则可判定二重极限limx→x0y→y0f(x,y)不存在,这一方法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过(x0,y0),并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如limx→x0y→y0f(x,y)g(x,y)的极限,在判断其不存在时,不少人找的曲线是f(x,y)-g(x,y)=0,这样做就很容易出错。例如,容易知道limx→0y→0x+yx2+y2=0,但是若沿曲线x2y-(x2+y2)=0→(0,0)时,所得的结论就不同(这时f(x,y)→1)。为什么会出现这种情况呢?仔细分析一下就不难得到答案
若用沿曲线,(,y)一g(,y)=0趋近于(,y0)来讨论,一0g,Y。可能会出现错误,只有证明了(,)不是孤立点后才不会出错。o13A1673-3878(2008)0l__0l02__02如何判断二重极限(即二元函数极限)不存在。是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论。只是略谈一下在判断二重极限不存在时。一个值得注意的问题。由二重极限的定义知,要讨论limf(x,y)不存在,通常x—’10y—’y0的方法是:找几条通过(或趋于)定点(xo,Yo)的特殊曲线,如果动点(x,Y)沿这些曲线趋于(xo,Y。)时,f(x,Y)趋于不同的值,则可判定二重极限limf(x,Y)不存在,这一方I—’10r’Y0法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过(xo,Y。),并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如2的极限,在判卜’Iogx,Yy—·y0断其不存在时,不少人找的曲线是f(x,y)一g(x,y):0,这样做就很容易出错。
当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;
当沿直线y=x趋于(00)时,极限为limx^2/2x=0。故极限不存在。
x-y+x^2+y^2
f(x,y)=————————
x+y
它的累次极限存在:
x-y+x^2+y^2
limlim————————=-1
y->0x->0x+y
x-y+x^2+y^2
limlim————————=1
x->0y->0x+y
当沿斜率不同的直线y=mx,(x,y)->(0,0)时,易证极限不同,所以它的二重极限不存在。
第三篇:极限 定义证明
极限定义证明
趋近于正无穷,根号x分之sinx等于0
x趋近于负1/2,2x加1分之1减4x的平方等于
2这两个用函数极限定义怎么证明?
x趋近于正无穷,根号x分之sinx等于0
证明:对于任意给定的ξ>0,要使不等式
|sinx/√x-0|=|sinx/√x|<ξ成立,只需要
|sinx/√x|^2<ξ^2,即sinx^2/x<ξ^2(∵x→+∞),则x>sinx^2/ξ^2,∵|sinx|≤1∴只需不等式x>1/ξ^2成立,所以取X=1/ξ^2,当x>X时,必有|sinx/√x-0|<ξ成立,同函数极限的定义可得x→+∞时,sinx/√x极限为0.x趋近于负1/2,2x加1分之1减4x的平方等于2
证明:对于任意给定的ξ>0,要使不等式
|1-4x^2/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|<ξ成立,只
需要0<|x+1/2|<ξ/2成立.所以取δ=ξ/2,则当0<|x+1/2|<δ时,必有
|1-4x^2/2x+1-2|=|2x+1|<ξ,由函数极限的定义可得x→-1/2时,1-4x^2/2x+1的极限为2.注意,用定义证明X走近于某一常数时的极限时,关键是找出那个绝对值里面X减去的那个X0.记g(x)=lim^(1/n),n趋于正无穷;
下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。
不妨设f1(x)趋于a;作b>a>=0,M>1;
那么存在N1,当x>N1,有a/M<=f1(x)
注意到f2的极限小于等于a,那么存在N2,当x>N2时,0<=f2(x)
同理,存在Ni,当x>Ni时,0<=fi(x)
取N=max{N1,N2...Nm};
那么当x>N,有
(a/M)^n<=f1(x)^n<=f1(x)^n+...fm(x)^n
所以a/M<=^(1/n)
对n取极限,所以a/M<=g(x)N时成立;
令x趋于正无穷,a/M<=下极限g(x)<=上极限g(x)<=b;
注意这个式子对任意M>1,b>a都成立,中间两个极限都是固定的数。
令M趋于正无穷,b趋于a;
有a<=下极限g(x)<=上极限g(x)<=a;
这表明limg(x)=a;
证毕;
证明有点古怪是为了把a=0的情况也包含进去。
还有个看起来简单些的方法
记g(x)=lim^(1/n),n趋于正无穷;
g(x)=max{f1(x),....fm(x)};
然后求极限就能得到limg(x)=max{a1,...am}。
其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。
有种简单点的方法,就是
max{a,b}=|a+b|/2+|a-b|/2从而为简单代数式。
多个求max相当于先对f1,f2求max,再对结果和f3求,然后继续,从而为有限次代数运算式,故极限可以放进去。
2一)时函数的极限:
以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)
几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……
(二)时函数的极限:
由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=
为使需有为使需有于是,倘限制,就有
例7验证例8验证(类似有(三)单侧极限:
1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:
Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有
=§2函数极限的性质(3学时)
教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:
我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:
(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:
2.局部有界性:
3.局部保号性:
4.单调性(不等式性质):
Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)
註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:
6.四则运算性质:(只证“+”和“”)
(二)利用极限性质求极限:已证明过以下几个极限:
(注意前四个极限中极限就是函数值)
这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)
例2例3註:关于的有理分式当时的极限.例4
例5例6例7
第四篇:2018考研数学:二重极限
东莞中公教育
2018考研数学:二重极限
以下是中公考研数学研究院的老师为大家整理了2018考研数学:二重极限的题型讲解,供大家复习参考。
高等数学的研究对象是函数,而极限则是研究函数的最重要的工具,对于一元函数如此,对于多元函数亦是如此。那么在学习多元微分学之前,首先来认识多重极限的概念,在此以二重极限为例进行说明。东莞中公教育
2.考试要求会计算二重极限,最直接的想法就是一元函数求极限的方法中哪些还可以继续使用,其中四则运算法则,等价无穷小替换和夹逼定理及其推论(无穷小量乘以有界量等于无穷小量)可以使用。
【注记】1.取路径的方法只是用来验证函数的极限不存在,不能用于求极限。并且路径一般取为直线,便于计算。
2.考试不会直接考查二重极限的计算,而是在研究函数的连续性、可导性和可微性的时候需要计算二重极限。
最后,中公考研祝全体考生考研成功!
第五篇:用极限定义证明极限
例
1、用数列极限定义证明:limn20 nn27
n2时n2(1)2n(2)2nn22(3)24(4)|20|222 nn7n7n7nnn1nn
2上面的系列式子要想成立,需要第一个等号和不等号(1)、(2)、(3)均成立方可。第一个等号成立的条件是n>2;不等号(1)成立的条件是2 n4,即n>2;不等号(4)成立的条件是n[],故取N=max{7, 2 44[]}。这样当n>N时,有n>7,n[]。因为n>7,所以等号第一个等号、不等式(1)、(2)、(3)能成立;因为n[],所以不等号(3)成立的条件是1 |不等式(4)能成立,因此当n>N时,上述系列不等式均成立,亦即当n>N时,在这个例题中,大量使用了把一个数字放大为n或n20|。n27n的方法,因此,对于具体的数,....... 2可把它放大为(k为大于零的常数)的形式 ......kn............... n40 nn2n 1n4n4n4时nn2n2(1)|20|22 nn1nn1nn1n2n 22不等号(1)成立的条件是n[],故取N=max{4, []},则当n>N时,上面的不等式都成例 2、用数列极限定义证明:lim 立。 注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分。如: ................................ n2n1n 2n2n1n nnn22 n(n1)2n 1(1)n 例 3、已知an,证明数列an的极限是零。2(n1) (1)n1(1)1(2) 证明:0(设01),欲使|an0|||成立 22(n1)(n1)n1 11解得:n1,由于上述式子中的等式和不等号(1)对于任意的正整n1 1数n都是成立的,因此取N[1],则当n>N时,不等号(2)成立,进而上述系列等式由不等式 和不等式均成立,所以当n>N时,|an0|。 在上面的证明中,设定01,而数列极限定义中的是任意的,为什么要这样设定?这样设定是否符合数列极限的定义? 在数列极限定义中,N是一个正整数,此题如若不设定01,则N[1]就有1 可能不是正整数,例如若=2,则此时N=-1,故为了符合数列极限的定义,先设定01,这样就能保证N是正整数了。 那么对于大于1的,是否能找到对应的N?能找到。按照上面已经证明的结论,当=0.5时,有对应的N1,当n>N1时,|an0|<0.5成立。因此,当n>N1时,对于任意的大于1的,下列式子成立: |an0|<0.5<1<,亦即对于所有大于1的,我们都能找到与它相对应的N=N1。因此,在数列极限证明中,可限小。只要对于较小的能找到对应的N,则对于较大的... 就自然能找到对应的N。