第一篇:加减乘除混合应用题专项练习卷
加减乘除混合应用题专项练习卷
1、有6盘苹果,每盘有8个,还剩12个,原来有多少个?
2.同学们做操,每行站8人,站了8行,又来了23人,一共有多少人?
3.学校体育室,有5盒羽毛球,每盒8个,借给同学10个,体育室现在还有几个?
4.有一本60页的书,小明看了3天,每天看9页,还剩多少页?
5.王老师带了60元钱,买上衣用去24元,剩下的钱买饼干,每包4元,还能买多少包?
6.商店有一些水果,卖出16个,把剩下装在箱子里,每箱装8个,装了7箱,商店原来有多少个?
7.爸爸、妈妈和我分别拔了7个萝卜,小弟弟拔了6个。问我们全家一共拔了多少个萝卜?
8.小兔种了5行萝卜,每行9个。送给邻居兔奶奶15个,还剩多少个?
9.老师拿70元去买书,买了7套故事书,每套9元,还剩多少元?
10、有60个奖品,如果分给8个人,每人9个,还差几个?
第二篇:六年级分数应用题专项练习卷
六年级分数应用题专项练习卷
1、某校参加数学竞赛的男生人数比女生人数的4倍少8人,比女生人数的3倍多24人,这个学校参加数学竞赛的男生有多少人?女生有多少人?
2、修一条长200米的水渠,已经修了80米,再修多少米刚好修了这条水渠的3/5?
3、一本书600页,第一天看了它的1/4,第二天看了它的2/5,两天一共看了多少页?
4、爱达花园小学向希望工程捐款,六(1)班捐的占六年级的1/3,六年级捐的占全校捐款的1/4,全校共捐款2400元,六(1)班捐了多少元?(用两种方法解答)
5、甲乙两地相距60千米,汽车从甲地开往乙地,当汽车超过全程中点10千米时,还剩下全程的几分之几?
6、学校去年植树120棵,今年植树的棵树比去年的3/4多5棵,今年植树多少棵?
7、学校今年植树120棵,比去年的3/5多5棵,去年植树多少棵?
8、一筐苹果,第一次卖出它的一半,第二次卖出的是第一次的4/5,还剩下这筐苹果的几分之几没有卖?
9、一个乒乓球从25米的高空下落,每次弹起的高度是下落高度的2/5,它第四次下落后又能弹起多少米?
10、一批加工服装的任务按4:5分配给甲、乙两个车间,实际甲车间生产了450套,超过分配任务的1/4。这批服装共有多少套?
11、某年七月份雨天是晴天的2/3,阴天是晴天的2/5,这个月晴天有几天?
12、商场有白、蓝、花布一共1380米,白、花布米数的比是5∶6,花布的米数是蓝布的3/2倍,三种布各有多少米?
13、三组同学采集树种,甲组、乙组、丙组的工作效率的比是5∶3∶4。甲组采集了15千克,乙组比丙组少采集多少千克?
14、甲数是乙数的3/5,丙数是甲数的2/3,丙数是乙数的几分之几?
15、每台拖拉机每小时耕地5/7公顷,8台拖拉机45分钟耕多少公顷?
16、一根绳子,第一次剪去它的1/2,第二次剪去剩下的1/3,第三次剪去又剩下的1/4,剩下的绳子是原来的几分之几?
17、一种混凝土的水泥、黄沙和石子的比是2∶3∶5,如果有3/4吨的水泥搅拌混凝土,需要黄沙和石子个多少吨。
18、小红8天读一本书的2/5,剩下的准备6天读完,平均每天读这本书的几分之几?
19、一本书640页,3天看了它的3/8,照这样的速度还要几天才能看完这本书? 20、一条长800千米的路,一辆汽车6小时行了路程的3/5,照这样的速度行完全程还要几小时?
21、小红拿出自己钱的4/7,小丽拿出自己钱的3/5,两人各买一本同样的字典,已知小红原有21元,求小丽原有多少元?
22、仓库有一批化肥,运出它的4/7按5∶3分配给王村和张村,已知张村比王村少分4.8吨。这批化肥一共有多少吨?
23、新河口小学一(2)班女生人数占男生人数的5/6,转走2名女生后,全班共有42人。现在女生人数是男生人数的几分之几?
24、六(2)在一次数学考试中,平均成绩是78分。已知男生的平均成绩是75.5分,女生的平均成绩是81分。这个班男、女生人数的比是多少?
25、一杯盐水200克,其中盐与水的比是1∶24,如果再放入4克盐,这时盐与水的比是多少?
26、甲厂有120人,乙厂有80人。从乙厂调几人到甲厂才能使两厂人数的比是5∶3?
27、要修一条长1800米的水渠,工作五天后,修的长度与未修的比是1∶3,照这样的进度修下去,还要多少天才能修完这条水渠?
28、汽车和货车的速度比是4∶7,两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?
29、一架飞机每小时飞行720千米,3/4小时飞行了全程的2/7。全程多少千米? 30、王师傅加工一批零件,6/7小时加工了12个。照这样计算要加工144个零件需几小时?
31、修一条水渠,已经修了全长的2/11,后来又修了160米,两次一共修了400米。这条水渠全长多少米?
32、修一条路,已经修的和全长的比是1∶3。如果再修150米,就可以完成这条路的一半,这条路长多少米?
33、新光小学有男生585人,女生540人,合唱队人数占全校人数的4/45,又调走20人参加舞蹈队后,剩下的人刚好是六年级人数的8/17,六年级有多少人?
34、一筐鱼连筐重43千克,卖出1/3后,又卖出5千克,这时筐里的鱼连筐重25千克,求鱼筐多少千克?
35、小明看一本144页的科幻书,已看页数与未看页数的比是5∶3。后来又看了12页,还剩多少没有看?
36、一本书360页,第一天看了1/4,第二天看了余下的2/3,还有多少页没看完?
37、东西两仓共有化肥94吨,从东仓运出2/5,再从西仓运出2/5多2吨,这时东仓还有10吨,西仓还有几吨?
38、一种商品,今年的成本比去年增加1/10,但是仍保持原售价,因此每件利润下降了2/5,那么今年这种商品的成本占售价的几分之几?
39、化肥厂一月份生产化肥250吨,以后每一个月都比前一个月增长1/5,所以第一季度就完成了全年计划产量的5/12,这个厂全年计划生产化肥多少吨? 40、五六年级同学去植树,五年级同学植的是六年级的2/3,六年级植的比总数的3/4少24棵,五年级植了多少棵?
41、甲乙两队修一条路,甲独修要12天,乙独修要10天。现由甲队先修几天,余下的由乙独修。结果完成时甲比乙多干1天,乙队修了几天?
42、甲乙两车同时从AB两地相对开出,几小时后在距中点40千米处相遇。已知甲车行完全程要8小时,乙车行完全程要10小时,求AB两地相距多少千米?
43、一项工程,甲乙两队合做要12天完成,现在甲队独做18天,余下的由乙接着做,8天正好做完,如果由甲独做这项工程,要多少天完成?
44、一个池上装有三根水管,甲管是进水管;乙管是出水管,20分钟可将满池水放完;丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池的水刚刚溢出时再打开乙、丙两管,用了18分钟才将这池水放完。这样,当开甲管注满水池时,再打开乙管,而不开丙管,需要多少分钟将这池水放完?
45、街道今年投资42万元实行扶贫计划,比去年多投资1/2,去年投资多少万元?
46、车间主任分配给黄师傅320个零件,要在10小时内完成,如果黄师傅3小时就加工了总数的3/8。照这样计算,黄师傅能在规定时间内完成任务吗?为什么?
47、含盐量为1/10的盐水300克,要把它变成含盐量为1/4的盐水,需要加盐多少克?
48、一项工程,甲、乙两队合做,10天可以完成。如果甲队做4天,乙队做6天,共完成这项工程的7/15。求甲队独做这项工程要多少天?
49、一批图书分给甲、乙、丙三位同学,甲分得总本数的1/5又5本,乙分得总本数的1/4又7本,丙分得其余本数的1/2,剩下图书正好占总本数的1/8。这批书共多少本? 50、修一条路,已修的米数是未修米数的3/2,如果再修30米,这时已修米数与未修米数的比是7∶3,这条路共多少米?
1、一项工程,甲单独做10天完成,乙单独做8天完成,甲每天比乙少做()%
2、一车间某月上旬生产的零件个数是全月计划的45%,中旬生产的零件数是上旬的2/9,该车间在下旬将全月计划按时完成了。现在知道下旬比中旬多生产7000个零件,求全月计划生产多少个零件?
3、两块铁皮,第一块的面积比第二块小1/5,从两块铁皮上各剪下它们的1/3,共剪下36平方分米。原来这两块铁皮的面积各是多少?
5、有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇多重?
6、有两只桶装油44千克,若第一桶里倒出1/5,第二桶里倒进2.8千克,则两桶油重量相等,原来每只桶各装油多少千克?
7、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的1/7,第二天吃了余下的1/6„„第六天吃了余下的1/2。这时还剩下12只桃子。那么第一天和第二天猴子共吃了多少只桃子?
8、建筑工人铺地砖,第一天用去的砖比总砖数的1/3少25块,第二天用去第一天剩下的1/3又24块,第三天用去第二天剩下的1/3又33块,最后还剩下19块。开始一共有多少块砖?
9、一盒糖果连盒重450千克,吃去一部分后连盒重150克,已知盒子的重量是原有糖果重量的1/8,这盒糖果吃去了几分之几?
10、甲、乙两人共同生产一批零件,甲生产的是乙的5/3倍,如果甲把自己生产的零件给乙55个,甲生产的就是乙的3/4,原来两人各生产多少个?
11、某小学举行六年级数学竞赛。参加竞赛的女生人数比男生多28人。根据成绩,男生全部达到优良,女生有1/4没有达到优良,男、女生取得优良成绩的合计42人,参加比赛的人占全年级人数的20%。六年级共多少人?
12、有若干围棋子,每堆棋子数一样多,且每堆中白子都占28%。小明从某一堆中拿走一半棋子,而且拿走的都是黑子。现在所有的棋子中,白子占32%。共有多少堆棋子?
13、甲、乙、丙三人生产一批玩具,甲生产的件数是乙、丙两人的1/2,乙生产的件数是甲、丙的1/3,丙做了240件。这批玩具共有多少件?
14、修路队修一条公路,如果由甲队单独修要15天,而乙队每天可以修44米,当两队共同修完这段公路时,甲队修了全长的60%,这段公路全长多少米?
1、水结成冰时,体积增加1/10,当冰融成水后,体积要减少几分之几?
2、某商店同时卖出两件商品,每件各得30元,其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?
3、某处摆着甲、乙两盆花,一群蜜蜂飞来,在甲花上落了1/4,在乙花上落了1/3。假如这群蜜蜂中再有两盆花上蜜蜂之差的3倍的蜜蜂落在花上,则剩下2只蜜蜂,这群蜜蜂共有多少只?
4、小牛乘汽车从县城到省城需2天,他第一天走了全程的1/2又72千米,第二天走的路程等于第一天的1/2,求县城到省城的距离。
5、光明小学六年级有学生360人,其中女生占7/12,后来又转来了几名女生,这样女生占六年级总人数的60%,转来的女生有多少人?
6、甲乙两个养猪专业户共养猪2000头,如果甲卖掉他原有猪的1/4,已卖掉110头,则甲、乙两户剩余的猪的头数相等,甲两户原来积各养猪多少头?
7、人民机械厂加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工再余下的40%,还剩下3600个没加工,这批零件共有多少个?
8、庆丰文具店运来的毛笔比钢笔多1万支,其中毛笔的3/7与钢笔的1/2支数相同,庆丰文具店共运来多少万支笔?
9、四个孩子合买一只60元的小船。第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的三分之一,第三个孩子付的钱是其他孩子付的总钱数的四分之一,第四个孩子付多少钱?
10、煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?
11、某车间生产甲、乙两种零件。生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有4/5合格,两种零件合格的一共是42个,两种零件共生产多少个?
12、某车间两个生产小组计划生产680个零件,实际两个小组共生产了798个零件,甲组生产的零件数比本组的任务多生产了1/5,乙组生产的零件仅比本组任务多生产3/20,两个小组原来的任务各是多少个?
13、把105升水注入甲、乙两个容器,可注满甲容器及乙容器的1/2,或可注满乙容器及甲容器的1/3,每个容器的容量各是多少?
14、有三堆棋子,每堆棋子一样多,并且都只有黑白两种棋子。第一堆里的黑子数与第二堆里的白子数一样多,第三堆里的黑子为全部黑子的2/5。把三堆棋子集中在一起,白子为全部棋子的几分之几?
1、小军读一本故事书,第一天共读42页,第二天共读了43页,还余下全书的83%没有读,这本故事书共有多少页?
2、一个车间计划六月份生产400个零件,上半月完成了40%,现在要使实际产量超额完成10%,下半月还必须生产多少个零件?
3、加工一批零件,王师傅独做要4小时完成,李师傅的工作效率比王师傅的高20%,两人合做这一批零件只要几小时就能完成?
4、修一条公路,已经修了全长的3/4,如果再修50米,则余下全长的10%没有修,这一条,这一条公路全长多少米?
5、某修路队修一条公路,原计划每天修300米,实际每天比原计划多修12%,实际每天修多少米?
6、红星村去年总共有60户种油菜,平均每户产油菜籽105千克。油菜籽的出油率是42%,这个村去年生产的油菜籽一共可以炸油多少千克?
7、某织布厂第一车间有工人250人,相当于第二车间人数的5/6,两车间人数的总数占职工总数的11%。全厂职工有多少人?
8、一根铁丝,第一次截去全长的28%,第二次截去8.8米,两次刚好截去全长的一半。第一次截去多少米?
9、两列火车从A、B两城同时相对开出,行驶2.4小时后两车距离为两城间铁路全长的40%,已知甲车速度比乙车快20%,乙车每小时行驶45千米,两城间的铁路全长是多少千米?
10、沿江粮店运进一批大米,第一天上午售出35%,下午售出这批米的20%;第二天售出了余下的75%,两天后还剩3690千克。这批大米共有多少千克?
11、山野机械厂今年共生产机器240台,比去年多生产40台,今年产量比去年增产了百分之几?
12、新华书店新到一批儿童读物,第一天卖出总数的3/8,第二天卖出总数的40%,还余下400本,这批儿童读物一共有多少本?
13、一批零件,第一天加工了总数的1/4,第二天比第一天多加工了25%,两天加工的比总数的62.5%还少400个,还要加工多少个才能完成任务?
14、甲、乙两车共运一批煤,运完时,甲车运了总数的7/15多9吨,乙车运的吨数相当于甲车的50%。这批煤共有多少吨?
1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?
2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?
3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?
4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?
5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?
6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?
7、李叔叔于2000年1月1日在银行存了活期储蓄1000元,如果每月的利率是0.165%,存款半年时,可得到利息多少元?
8、叔叔今年存入银行10万元,定期二年,年利率4.50%,二年后到期,扣除利息税5%,得到的利息能买一台6000元的电脑吗?
9、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在400-600元的,每月党费应缴纳工资总额的0.5%,在600-800元的应缴纳工资总额的1%,在800-1000元的,应缴纳工资总额的1.5%,在1000以上的应缴纳工资总额的2%,小华妈妈的工资为2400元,她这一年应缴纳党费多少元?
10、常熟新开了一家永乐生活电器,“十?一”节日期间,那里的商品降价幅度很大。有一种款式的MP3,原价280元,现在打三折出售。①现价多少元?②现价比原价便宜了多少元?
11、一种矿泉水,零售每瓶卖2元,生产厂家为感谢广大顾客对产品的厚爱,特开展“买四赠一”大酬宾活动,生产厂家的做法优惠了百分之几?
12、一辆自行车200元,在原价基础上打八折,小明有贵宾卡,还可以再打九折,小明买这辆车花了多钱?
二十三、比例法
比和比例是传统算术的重要内容,在较早的年代,许多实际问题都是应用比和比例的知识来解答的。近年来,小学数学教材中比和比例的内容虽然简化了,但它仍是小学数学教学的重要内容之一,是升入中学继续学习的必要基础。用比例法解应用题,实际上就是用解比例的方法解应用题。有许多应用题,用比例法解简单、方便,容易理解。
用比例法解答应用题的关键是:正确判断题中两种相关联的量是成正比例还是成反比例,然后列成比例式或方程来解答。
(一)正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x、y表示两种相关联的量,用k表示比值(一定),正比例的数量关系可以用下面的式子表示:
例1 一个化肥厂4天生产氮肥32吨。照这样计算,这个化肥厂4月份生产氮肥多少吨?(适于六年级程度)
解:因为日产氮肥的吨数一定,所以生产氮肥的吨数与天数成正比例。设四月份30天生产氮肥x吨,则:
例2 某工厂要加工1320个零件,前8天加工了320个。照这样计算,其余的零件还要加工几天?(适于六年级程度)
解:因为每一天加工的数量一定,所以加工的数量与天数成正比例。还需要加工的数量是:
1320-320=1000(个)
设还需要加工x天,则:
例3 一列火车从上海开往天津,行了全程的60%,距离天津还有538千米。这列火车已行了多少千米?(适于六年级程度)
解:火车已行的路程∶剩下的路程=60%∶(1-60%)=3∶2。设火车已行的路程为x千米。
答略。
米。这时这段公路余下的长度与已修好长度的比是2∶3。这段公路长多少米?(适于六年级程度)
解:余下的长度与已修好长度的比是2∶3,就是说,余下的长度是已
这段公路的长度是:
(二)反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的数量关系可以用下面的式子表达:
x×y=k(一定)
例1 某印刷厂装订一批作业本,每天装订2500本,14天可以完成。如果每天装订2800本,多少天可以完成?(适于六年级程度)
解:由于要装订的本数一定,因此,每天装订的本数与可以装订的天数成反比例。
设x天可以完成,则:
例2 一项工程,原来计划30人做,18天完成。现在减少了3人,需要多少天完成?(适于六年级程度)
解:工作总量一定,每人的工作效率也是一定的,所以所需要的人数与天数成反比例。
现在减少3人,现在的人数就是:
30-3=27(人)
设需要x天完成,则:
例3 有一项搬运砖的任务,25个人去做,6小时可以完成任务;如果相同工效的人数增加到30人,搬运完这批砖要减少几小时?(适于六年级程度)解:题中的总任务和每人的工作效率一定,所以搬运砖的人数与所需要的时间成反比例。
设增加到30人以后,需要x小时完成,则:
6-5=1(小时)
答:增加到30人后,搬运完这批砖要减少1小时。
例4 某地有驻军3600人,储备着吃一年的粮食。经过4个月后,复员若干人。如果余下的粮食可以用10个月,求复员了多少人?(适于六年级程度)
解:按原计划,4个月后余下的粮食可以用:
12-4=8(个月)
因为复员一部分人后,人数少了,所以原来可以用8个月的粮食,现在就可以用10个月。
粮食的数量一定,人数与用粮的时间成反比例。设余下的粮食供x人吃10个月,则:
答:复员了720人。
(三)按比例分配
按比例分配的应用题可用归一法解,也可用解分数应用题的方法来解。用归一法解按比例分配应用题的核心是:先求出一份是多少,再求几份是多少。这种方法比解分数应用题的方法容易一些。用解分数应用题的方法解按比例分配问题的关键是:把两个(或几个)部分量之比转化为部分量占总量的(几个部分量之和)几分之几。这种转化稍微难一些。然而学会这种转化对解答某些较难的比例应用题和分数应用题是有益的。
究竟用哪种方法解,要根据题目的不同,灵活采用不同的方法。
有些应用题叙述的数量关系不是以比或比例的形式出现的,如果我们用按比
例分配的方法解这样的题,要先把有关数量关系转化为比或比例的关系。
1.按正比例分配
甲、乙、丙三个数的连比是:
例2 有甲、乙、丙三堆煤,甲堆比乙堆多12.5%,乙堆比丙堆少
解:因为甲堆比乙堆多12.5%,所以要把乙堆看作“1”,这样甲堆就是(1+12.5%)。
甲∶乙=
甲∶乙∶丙= 已知甲堆比丙堆少6吨,这6吨所对应的份数是1,所以,甲堆煤的吨数是: 乙堆煤的吨数是:
6×8=48(吨)
丙堆煤的吨数是:
6×10=60(吨)
答略。
2.按反比例分配
*例1 某人骑自行车往返于甲、乙两地用了10小时,去时每小时行12千米,返回时每小时行8千米。求甲、乙两地相距多少千米?(适于六年级程度)
解:此人往返的速度比是:
12∶8=3∶2
因为在距离一定的情况下,时间与速度成反比例,所以,由此人往返的速度比是3∶2,可推出此人往返所用的时间比是2∶3。
去时用的时间是:
两地之间的距离:
12×4=48(千米)
答略。
*例2 一个文艺演出队去少数民族地区慰问演出,路上共用了110个小
这也是骑马、乘轮船、坐火车的时间比。将110小时按8∶2∶1的比例分配。骑马的时间是: 坐火车的时间是: 3.按混合比例分配
把价格不同、数量不等的同类物品相混合,已知各物品的单价及混合后的平均价(或总价和总数量),求混合量的应用题叫做混合比例应用题。混合比例应用题在实际生活中有广泛的应用。
*例1 红辣椒每500克3角钱,青辣椒每500克2角1分钱。现将红辣椒与青辣椒混合,每500克2角5分钱。问应按怎样的比例混合,菜店和顾客才都不会吃亏?(适于六年级程度)
解:列出表23-1。表23-1
表中,价格一栏是根据题意填的,其他栏目是在分析题的过程中填的。混合后的辣椒是每500克卖2角5分钱,而混合辣椒中红、青两种辣椒的比
不能是1∶1,因为在混合后的辣椒中每有500克红辣椒,红辣椒就要少卖5分钱,所以应算是每500克红辣椒损失了5分钱,在“损”一栏中,横对红辣椒和3角,填上5分;又因为在混合后的辣椒中每有500克青辣椒,青辣椒就要多卖4分钱,所以应算是每500克青辣椒多卖了(益)4分钱,在“益”一栏中,横对青辣椒和2角1分,填上4分。
5与4的最小公倍数是20。
20÷5=4,20÷4=5,只有在混合的辣椒中,有4份的红辣椒,5份的青辣椒,500克混合后的辣椒正好卖2角5分钱。
4份的红辣椒是4个500克,它的价钱是,0.3×4=1.2(元)
5份的青辣椒是5个500克,它的价钱是,0.21×5=1.05(元)
4份红辣椒与5份青辣椒的总价是,1.2+1.05=2.25(元)
而9个500克的混合辣椒的总价是,0.25×9=2.25(元)
9份(9个500克)红辣椒和青辣椒的总价正好与9个500克混合辣椒的总价相等。
所以在混合的辣椒中,红辣椒与青辣椒的比应是4∶5。这个比正好是益损两数比的反比。
答略。
*例2 王老师买甲、乙两种铅笔共20支,共用4元5角钱。甲种铅笔每支3角,乙种铅笔每支2角。两种铅笔各买多少支?(适于六年级程度)
解:20支铅笔的平均价格是:
因为甲种铅笔每支3角,而平均价格是每支2.25角,所以每支甲种铅笔损失了0.75角钱。在表中“损”一栏横对“甲”填上0.75角/支;因为乙种铅笔
每支2角,而平均价格是每支2.25角,所以每支乙种铅笔是增加(益)了0.25角。在表中“益”一栏横对“乙”填上0.25角/支。
两种铅笔的混合比,正好是损、益两数比的反比,所以在混合比一栏中,横对甲填0.25,而横对乙填0.75。把0.25和0.75化简后得1和3。
现在可以认为两种铅笔的总份数是: 甲种铅笔的支数是: 乙种铅笔的支数是:
(四)连比
如果甲数量与乙数量的比是a∶b,乙数量与丙数量的比是b∶c,那么表示甲、乙、丙三个数量的比可以写作a∶b∶c,a∶b∶c就叫做甲、乙、丙三个数量的连比。
注意:“比”中的比号相当于除号,也相当于分数线,而“连比”中的比号却不是相当于除号、分数线。
*例1 已知甲数和乙数的比是5∶6,丙数和乙数的比是7∶8,求这三个数的连比。(适于六年级程度)
解:已知甲、乙两数的比是5∶6,丙数与乙数之比为7∶8,即乙数与丙数之比为8∶7。第一个比的后项是6,第二个比的前项为8,这说明甲、丙两个数不是以相同标准划分的,甲、乙、丙三个数不能直接写成连比。
用下面的方法可以统一甲、丙的标准,把甲、乙、丙三个数写成连比。把5扩大8倍,得40;把6扩大8倍,得48。把6扩大8倍得48,也就是把8扩大6倍,得48,所以也要把7扩大6倍得42。
甲、乙、丙三个数的连比是:4O∶ 48∶42=20∶24∶21。答略。
*例2 甲、乙、丙三堆煤共重1480吨,已知甲堆煤重量的
又根据,甲∶乙=3∶2,乙∶丙=5∶6,可求出甲、乙、丙三个数的连比是: 甲∶乙∶丙=15∶10∶12
把1480吨煤按15∶10∶12的比例分配。甲堆煤重:
乙堆煤重:
三
十六、解工程问题的方法
工程问题是研究工作量、工作效率和工作时间三者之间关系的问题。这三者之间的关系是:
工作效率×工作时间=工作量 工作量÷工作时间=工作效率 工作量÷工作效率=工作时间
根据上面的数量关系,只要知道三者中的任意两种量,就可求出第三种量。由于工作量的已知情况不同,工程问题可分为整数工程问题和分数工程问题两类。在整数工程问题中,工作量是已知的具体数量。解答这类问题时,只要按照上面介绍的数量关系计算就可解题,计算过程中一般不涉及分率。在分数工程问题中,工作量是未知数量。解这类题时,也要根据上面介绍的数量关系计算,但在计算过程中要涉及到分率。
(一)工作总量是具体数量的工程问题
例1 建筑工地需要1200吨水泥,用甲车队运需要15天,用乙车队运需要10天。两队合运需要多少天?(适于四年级程度)
解:这是一道整数工程问题,题中给出了总工作量是具体的数量1200吨,还给出了甲、乙两队完成总工作量的具体时间。先根据“工作量÷工作时间=工作效率”,分别求出甲、乙两队的工作效率。再根据两队工作效率的和及总工作量,利用公式“工作量÷工作效率=工作时间”,求出两队合运需用多少天。
甲车队每天运的吨数:(甲车队工作效率)乙车队每天运的吨数:(乙车队工作效率)两个车队一天共运的吨数: 两个车队合运需用的天数: 综合算式:
*例2 生产350个零件,李师傅14小时可以完成。如果李师傅和他的徒弟小王合作,则10小时可以完成。如果小王单独做这批零件,需多少小时?(适于四年级程度)
解:题中工作总量是具体的数量,李师傅完成工作总量的时间也是具体的。李师傅1小时可完成:
由“如果李师傅和他的徒弟小王合作,则10小时可以完成”可知,李师傅和徒弟小王每小时完成:
小王单独工作一小时可完成: 小王单独做这批零件需要: 综合算式: 答略。
*例3 把生产2191打毛巾的任务,分配给甲、乙两组。甲组每小时生产毛巾128打,乙组每小时生产毛巾160打。乙组生产2小时后,甲组也开始生产。两组同时完工时超产1打。乙组生产了多长时间?(适于四年级程度)
解:两组共同生产的总任务是: 两组共同生产的时间是: 乙组生产的时间是: 综合算式:
一同生产用了多少小时?(适于六年级程度)解:两台机器一同生产的个数是:
第一台机器每小时生产: 第二台机器每小时生产: 两台机器一同生产用的时间是: 综合算式:
(二)工作总量不是具体数量的工程问题
例1 一项工程,甲队单独做24天完成,乙队单独做16天完成。甲、乙两队合做,多少天可以完成?(适于六年级程度)
解:把这项工程的工作总量看作1。甲队单独做24天完成,做1天完成
例2 一项工程,由甲工程队修建需要20天,由乙工程队修建需要30
解:把这项工程的工作总量看作1,由甲工程队修建需要20天,知甲工
例3 一项工程,甲、乙合做5天可以完成,甲单独做15天可以完成。乙单独做多少天可以完成?(适于六年级程度)
解:把这项工程的工作量看作1。甲、乙合做5天可以完成,甲、乙合
需要多长的时间。
例4 有一个水箱,用甲水管注水10分钟可以注满,用乙水管注水8分钟可以注满。甲、乙两管同时开放2分钟后,注入水箱中的水占水箱容量的几分之几?(适于六年级程度)
解:把水箱的容量看作1。用甲水管注水10分钟可以注满,则甲水管1
例5 一项工程,由甲、乙、丙三人各自单独做分别要用6天、3天、2天完
成任务。如果三人合作需要几天完成任务?(适于六年级程度)
解:甲、乙、丙三人各自单独做分别要用6天、3天、2天完成任务,所以,乙单独做可以完成的时间是: 综合算式:
以完成?(适于六年级程度)
解:甲队独做3天,乙队独做5天所完成的工作量,相当于甲乙两队合做3天,乙队再独做2天所完成的工作量。这时完成了全工程的:
乙队单独做完成的时间是:
*例8加工一批零件,甲独做需要3天完成,乙独做需要4天完成。两人同时加工完成任务时,甲比乙多做24个。这批零件有多少个?(适于六年级程度)
解:解这道题的关键是,求出24个零件相当于零件总数的几分之几。
完成任务时甲比乙多做: 综合算式:
*例9 一项工程,甲单独做20天完成,乙单独做30天完成。甲、乙合做了数天后,乙因事请假,甲继续做,从开工到完成任务共用了14天。乙请假几天?(适于六年级程度)
解:根据“甲单独做20天完成”和“从开工到完成任务共用了14天”,可知甲做了全工程的:
乙做了全工程的:
乙请假的天数是: 综合算式:
*例10 一项工程,乙队单独做需要15天完成。甲、乙两队合做,比乙队单独做可提前6天完成。如果甲、乙两队合做5天后,再由甲队单独做,甲队还需要多少天才能完成?(适于六年级程度)
解:设这项工程为1,则乙队每天做: 两队合做时每天做: 甲队每天做:
两队合做5天后剩下的工作量是: 甲队做剩的工作还需要的时间是:
综合算式:
(三)用解工程问题的方法解其他类型的应用题
例1 甲、乙两地相距487千米。李华驾驶摩托车从甲地到乙地,需要1小时;王明骑自行车从乙地到甲地需要3小时。照这样的速度,两人分别从两地同时相向出发,经过几小时在途中相遇?
一般解法:
用解工程问题的方法解:
把全程看作1。李华驾驶摩托车从甲地到乙地需要1小时,李华的速度就是1;王明骑自行车从乙地到甲地需要3小时,王明每1小时要行全程的
例2 某学校食堂购进一车煤,原计划烧60天。由于改进了炉灶的构造,实际每天比原来少烧10千克,这样这车煤烧了70天。这车煤重多少千克?
*一般解法:
用解工程问题的方法解:
一般解法:
用解工程问题的方法解:
如果把这批零件的总数作为一项“工程”,以1表示,则这个工厂计划
因此,实际需要的天数是:
(四)用份数法解工程问题
例1 一项工程,甲队单独做9天完成,乙队单独做18天完成。甲、乙两队合做4天后,剩下的任务由乙队单独做。乙队还需要几天才能完成?(适于六年级程度)
解:把整个工程的工作量平均分成9×18=162(份)甲队每天可以完成: 乙队每天可以完成:
甲、乙两队合做每天共完成: 两队4天共完成:
两队合做4天后,剩下的工程是:
剩下的任务由乙队单独做,需要的天数是: 综合算式:
例2 一项工程,甲队单独做16天完成,乙队单独做20天完成。甲队先做7天,然后由甲、乙两队合做。甲、乙两队合做还要多少天才能完成?(适于六年
级程度)
解:把这项工程的总工作量看做16×20份,则甲队每天做20份,乙队每天做16份。
甲队先做7天,完成的工作量是: 甲队做7天后,剩下的工作量是: 甲、乙两队合做,一天可以完成: 甲、乙两队合做还需要的天数是:
例3 一个水池装有进、出水管各一个。单开进水管10分钟可将空池注满,单开出水管12分钟可将满池水放完。若两管齐开多少分钟可将空池注满?(适于六年级程度)
解:把注满全池水所用的时间看作10×12份,当进水管进12份的水量时,出水管可放出10份的水量,进出水相差的水量是:
12-10=2(份)
甲、乙两管齐开注满水池所用的时间是:
10×12÷2=60(分钟)
答:若两管齐开60分钟可将空池注满。
(五)根据时间差解工程问题
例1 师、徒二人共同加工一批零件,需要4小时完成。师傅单独加工这批零件需要5小时完成。师、徒二人共同加工完这批零件时,徒弟加工了30个。这批零件有多少个?(适于六年级程度)
解:从时间差考虑,师、徒共同加工完的时间与师傅单独加工完的时间相差5-4=1(小时)。这说明师傅1小时加工的零件数等于徒弟4小时加工的零件数。
所以,师傅5小时加工的零件就是这批零件的总数:
30×5=150(个)
答略。
例2 一份稿件需要打字,甲、乙两人合打10天可以完成。甲单独打15天
可以完成。乙单独打需要几天完成?(适于六年级程度)
解:从时间差考虑,甲、乙两人合打完成与甲单独打完,两者的时间差是15-10=5(天),这说明甲5天的工作量相当于乙10天的工作量。
那么,甲15天的工作量,乙要工作:
10÷5×15=30(天)
答:乙单独打需要30天完成。
例3 一辆快车和慢车同时分别从A、B两站相对开出,经过12小时相遇。已知快车行完全程需要20小时。求两车相遇后慢车还要行多少小时才能到达A站?(适于六年级程度)
解:从时间差考虑,两车相遇与快车行完全程的时间差是20-12=8(小时)。这说明快车8小时行的路程相当于慢车12小时行的路程。那么快车行12小时的路程,慢车要行多长时间?也就是两车相遇后慢车还要行驶而到达A点的时间。
12÷8×12=18(小时)
第三篇:连乘、连除应用题的混合练习
连乘、连除应用题的混合练习教学内容:教科书第11页分步检验应用题的方法,练习三的第6—10题。教学目的:(1)通过练习使学生进一步理解连乘、连除应用题的数量关系,掌握解答方法。(2)使学生初步学会分步检验应用题的方法,培养学生在解答应用题时进行检验的良好习惯。教具准备:口算卡片、小黑板。教学过程:
一、复习1.做练习三的第6题。教师出示口算卡片,指名让学生口算,全班集体订正。
二、新课教学分步检验应用题的方法。教师用小黑板出示:三年级有43名学生,平均每人每学期用4本练习本,2个学期共用练习本多少本?教师提问:解答这道题可以先算什么,再算什么?怎样列式计算?教师指名让学生说一说所列的算式和每一步算的是什么。教师提问:还可以怎样算?怎样列式?教师同样指名让学生说一说所列的算式和每一步算的是什么。教师:怎么知道我们解答的对不对呢2这就需要对解答的过程进行检验。怎样检验呢?常用的方法是:按照原来的题意,依次检查每一步列式和计算,看是不是正确。现在让我们来检验一下上面这道题的解答是否正确。教师和学生一起讨论这道题已知什么,要求的是什么,可以先算什么,再算什么,所列的算式是什么等。每解决一个问题看一看与前面解答的是否一样,直到全部解答完。教师让学生翻开书第11页,自己解答题目:四年级有43名学生,2个学期共用练习本344本,平均每人每学期用多少本7做完后,让学生自己检验。
三、课堂练习1.做练习三的第7题。读题后,指名让学生说一说这题要求的是什么。使学生明确这题要求的是新增加5台冰箱一年的用电数,即多用电的数。然后让学生自己解答并且检验。检验之后,让学生说一说检验的方法。如果学生还没有掌握,教师可以带着集体进行检验。2.做练习三的第8题。让学生独立做题并且进行检验。3.做练习三的第9题。先让学生独立解答。然后教师提问:怎样把上面这道题改编成用除法解答的应用题呢?教师可以启发学生回想上一节课的第4题里的两小题之间的联系,然后问:想一想,怎样把条件和问题加以改变?指名让学生说一说;教师可以根据学生的意见把所改变的题目写在黑板上:15辆汽车一年可以节约10800千克汽油,平均每辆汽车1个月节约汽油多少千克?之后让学生自己解答,集体订正。4.做练习三的第10题。让学生自己解答,教师巡视,集体订正。5.选做练习三的第11*、12*题。这两题是选做题,教师可以让学有余力的学生试着做,教师个别辅导。第11*题,可启发学生想:根据“每组人数相等。”这个条件联系前面的已知条件,就可以确定是把180个同学平均分成了9组(5+4组),每一组的人数是180÷(5+4)=20(个)。要求第一批去了多少个同学,就是求5个组是多少人,即20×5=100(个)。所以这一题的解法是:180÷(5+4)×5=100(个)。第12*题,可启发学生想:要想求出1台碾米机8小时碾米多少千克,就要先知道1 台碾米机1小时碾米多少千克。已知4台碾米机3小时碾米4860千克,求1台碾米机1小时碾米多少千克,这是我们刚学过的连除应用题,我们会解答。求出1台碾米机1小时碾米400千克后,再加算一步乘以8,就可算出1台碾米机8小时碾米3200千克。所以,这一题的解法是:4800÷4÷3×8=3200(千克)或者4800÷3÷4×8=3200(千克)。
第四篇:解比例应用题专项练习
解比例应用题专项练习
班级:
姓名:
家长签名:
1、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?
2、甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?
3、在一幅地图上,用3厘米的线段表示实际距离600千米。量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?
4、运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?
5、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?
6、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?
7、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?
8、在一幅比例尺是1:4000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?
9、一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)
10、一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)
11、修一条公路,原计划每天修 360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)
12、修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)
13、修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)
14、修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)
15、小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)
16、工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约12.5%,实际可以烧多少天?(比例解)
17、解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)
18、一对互相啮合的齿轮,主动轮有60个齿,每分转80转。从动轮有20个齿,每分转多少转?(用比例方法解)
19、6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)
20、一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)
21、某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?(用比例方法解)
22、用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)
23、一种农药,药液与水重量的比是1:1000。(1)、20克药液要加水多少克?(2)、在6000克水中,要加多少克药液?
(3)、现在要配制这种农药500.5千克,需要药液和水各多少千克?
24、一种稻谷每1000千克能碾出大米720千克。照这样计算,要得到180吨大米,需要稻谷多少吨?
25、某工程队修一条公路,已修了1200米,这时已修的和未修的比是3:2,这条公路全长是多少米?
26、一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米?
27、用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?
28、甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨?
29、园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。这批树苗一共有多少棵?
30、生产一批零件,计划每天生产160个,27天可以完成,实际每天超产20个,可以提前几天完成?
31、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?
32、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?
33、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?
34我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?
35一辆汽车从甲地开往乙地,3.5小时行了全程的,照这样计算,行完全程要几小时?
36、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?
37、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?
38、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?
39、小明读一本书,每天读12页,8天可以读完。如果每天多读4页,几天可以读完?
40、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需多少天?
41、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?
42、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?
43、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?
44、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?
45学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?
46、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?
47、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?
48、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?
49、用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?
50、某印刷厂计划四月份印刷课本20000本,结果8天就印刷了5600本,照这样速度,四月份能印多少本?
51、食堂有一批煤,计划每天烧105千克可以烧30天。改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?
52、跃进机床厂原计划30天制造机床200台,结果做20天就只差40台没有做,照这样计算,可以提前几天完成任务?
53、工程队修一条水渠,原计划每天修360米,30天修完。修10天后,每天多修40米,再修多少天就能完成任务?
54、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。这条水渠全长多少米?
55、一列火车从甲地开往乙地,5小时行了350千米,照这样计算,共要行9小时。甲乙两地相距多少千米?
56、40千克小麦能磨面粉32千克,照这样计算,7吨小麦能磨面粉多少千克?
57、机床厂4天能生产小机床32台,照这样计算,要生产120台小机床需几天?
58、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是1.6米,同时测得电线杆的影子长度是4米,求电线杆高多少米?
59、要测量一棵树的高度,量得树的影子长度是8.4米,同时用一根2米长的标杆直立在地面上,量得影子长度是1.2米,这棵树高是多少米?
60、修路队修一段路,头3天修了135米,照这样速度,又修了8天才修完这段路,这段路长多少米?
61、一辆汽车从甲地开往乙地,甲乙两地相距405千米,头4小时行驶了180千米,剩下的路程还要行多少小时?
62、某印刷厂计划三月份印刷课本20000本,结果上旬就印刷7000本,照这样速度,三月份可以多印刷多少本?
63、用5辆同样汽车运粮食一次能运22.5吨,照这样计算,要把36吨粮食一次运完,需要增加多少辆这样的汽车?
64、服装厂生产制服,前3个月生产0.48万套,照这样计算,今年可以生产制服多少万套?
65、农场用3辆拖拉机耕地,每天共耕225公顷,如果用5辆同样的拖拉机,每天共耕在多少公顷?
66、一艘轮船,从甲地开往乙地,每小时行20千米,12小时到达,从乙地返回甲地时,每小时航行4千米,几小时可以到达?
67、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?
68、一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?
69、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米? 70.在一幅地图上,测得甲、乙两地的图上距离是12厘米,已知甲乙两地的实际距离是480千米。
(1)求这幅图的比例尺。
(2)在这幅地图上量得A、B两城的图上距离是4厘米,求A、B两城的实际距离。
71.在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?
72.在一幅比例尺为1:500的平面图上量得一间长方形教室的的周长是10厘米,长与宽的比是3:2。求这间教室的图上面积与实际面积。
73.修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?
74.一块直角三角形钢板用1:200的比例尺画在图上,两条直角边共长5.4厘米,它们的比是5:4.这块钢板的实际面积是多少?
75.甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?
76.学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占,科技书与故事书的比是2:3,故事书有多少本?
77.小明读一本书,已经读了全书的,如果再读15页,则读过的页数与未读的页数的比是 2:3,这本书有多少页?
78.每条男领带20元,每支女胸花10元,某个体商店进领带与胸花件数的比是3∶2,共值4000元。领带与胸花各多少?
79、一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺?
80、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?
81、在一幅比例尺是1:300的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?
82、朝阳小学的操场是一个长方形,长120米,宽75米,用 的比例尺画成平面图,长和宽各是多少厘米?
83、在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地之间的实际距离是多少千米? 84、右图是在一幅比例尺为1:2000的图纸上的一个梯形地平面图(单位:厘米),求它的实际面积
85、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)
86、同学们做操,每行站20人,正好站18行。如果每行站24人,可以站多少行?(用比例方法解)
87、飞机每小时飞行480千米,汽车每小时行60千米。飞机行4 小时的路程,汽车要行多少小时?(用比例方法解)
88、修一条公路,每天修0.5千米,36天完成。如果每天修0.6千米,多少天可修完?(用比例方法解)
89、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
90、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)
91、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)
第五篇:《加减乘除混合运算》教学设计
《加减乘除混合运算》教学设计
年级:四年级 学科:数学 主备人:张波 审核:张丽丽 周海蓉 时间:2015年3月9日
【学习内容】加减乘除混合运算 【基于标准】
1.总体和学段目标中的描述:
(1)经历从现实生活中抽象出数及简单数量关系的过程。
(2)能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描述并解决现实世界中的简单问题。
2、内容目标中的描述:
掌握四则混合运算的运算顺序,会进行简单的整数四则混合运算;探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。
依据二:《教师教学用书》中的单元目标的具体描述
1、学生学会含有两级运算的运算顺序,正确计算三步试题。
2、学生经历探索和交流解决问题的过程中,学会用两三步计算的方法解决一些实际问题。
【基于教材】
本节课的教学内容是两个商(积)之和(差)的混合运算,例3和例4是通过解决实际问题,来总结含有小括号的混合运算的运算顺序。它以冰雕区的活动场景为题材,完全用文字提供了一个实际问题,含有两条信息:上午有游人180位,下午有游人270位,每30位派一名保洁员。所求的问题是:下午要比上午多派几名保洁员?教材呈现了两种不同的解题方法:第一种方法是先求上午派了几名保洁员,再求下午要派几名保洁员,最后求下午比上午多派几名保洁员;第二种方法是先求下午游人比上午多多少名,再求下午比上午多派几名保洁员。先分步解答,再列综合算式,最后得出含有小括号的算式的运算顺序:要先算括号里面的。
【基于学情】
学生可以根据自己的实际情况解决例3和例4的问题,在理解题意的基础上把分步算式列成综合算式,通过一步一步的分析题意,来明白小括号的作用。教学时要使学生明确游人和保洁员之间的关系,游人越多,需要的保洁员越多。理解了这一点,为学生分析数量关系,寻找解题思路做好铺垫。同时也要对比两种不同的解法,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样。
【学习目标】
1、学生学会含有两级运算(没有小括号)的运算顺序,并能正确计算。
2、学会发现问题、分析问题及解决问题的方法。【学习重难点】
教学重点:两级运算由高到低.教学难点:理解两边高级,中间低级的混合运算的灵活方法。【教具学具准备】 多媒体课件 【教学思路】
根据概念教学的特点,为了更好的突出本节的重点,突破难点,我根据学生的认识规律及心理发展的特点,我在教学中采用的教法是:
1、情景教学法,结合学生生活实际,提取一些具体感性的材料,激发学生的学习兴趣,充分调动学生多种感知觉动脑、动手、动口,去感知和体验知识。
2、运用新旧知识迁移法,启发引导学生层层深入,促使学生在积极的思维中获取新识。
3、开放式教学法,营造一个民主、宽松的学习氛围,鼓励学生自主探索,研究问题,积极发言和敢于质疑。
【评价设计】
交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。表现性评价:通过操作活动、学生回答问题情况,适当对学生进行点拨。选择性反应评价:通过评价样题检测学生对知识点的掌握情 【评价方案】
1、通过观察、提问、分析、计算,检测目标1、2、的达成。
2、通过课堂练习,达成目标1、2。【学习流程】
一、主题图引入
观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
二、新授
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。同桌两人说说自己是怎样解答的。汇报:教师根据学生的汇报进行板书。(1)24+24+24÷2
=24+24+12
=48+12
=60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2
=48+12
=60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点? 这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。这样的综合算式的运算顺序是什么? 学生总结运算顺序。
买3张成人票,付100元,应找回多少钱? 等等。
出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的? 汇报。
(1)270÷30-180÷30
=9-6
=3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
=90÷30
=3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。学生进行小结。
教师根据学生的小结进行板书。
三、巩固练习P7/做一做1、2 P11/做一做(完成书上的后,可以变化条件,如“买2副手套”等等。)教师在练习的过程中应抓住学生的关键语言进行知识的巩固。
四、作业 P8—9/5—9