第一篇:面试智力题,附答案
面试智力题(附答案)A.逻辑推理
1、你让工人为你工作7天,给工人的回报是一根金条。金条平分成相连的7段,你必须在每天结束时给他们一段金条,如果只许你两次把金条弄断,你如何给你的工人付费?
1、day1 给1 段,day2 让工人把1 段归还给2 段,day3 给1 段,day4 归还1 2 段,给4 段。day5 依次类推……
------
2、请把一盒蛋糕切成8份,分给8个人,但蛋糕盒里还必须留有一份。
2、面对这样的怪题,有些应聘者绞尽脑汁也无法分成;而有些应聘者却感到此题实际很简单,把切成的8份蛋糕先拿出7份分给7人,剩下的1份连蛋糕盒一起分给第8个人。
------
3、小明一家过一座桥,过桥时是黑夜,所以必须有灯。现在小明过桥要1秒,小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。每 次此桥最多可过两人,而过桥的速度依过桥最慢者而定,而且灯在点燃后30秒就会 熄灭。问:小明一家如何过桥?------
4、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其他人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑 帽子?
4、假如只有一个人戴黑帽子,那他看到所有人都戴白帽,在第一次关灯时就应自打耳光,所以应该不止一个人戴黑帽子;如果有两顶黑帽子,第一次两人都只看到对方头上的黑帽子,不敢确定自己的颜色,但到第二次关灯,这两人应该明白,如果自己戴着白帽,那对方早在上一次就应打耳光了,因此自己戴的也是黑帽子,于是也会有耳光声响起;可事实是第三次才响起了耳光声,说明全场不止两顶黑帽,依此类推,应该是关了几次灯,有几顶黑帽。
------
6、一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯 从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的一颗?
7、U2合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥 的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把 手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行
速度各不同,若两人同行则以较慢者的速度为准。Bono需花1分钟过桥,Edge需花 2分钟过桥,Adam需花5分钟过桥,Larry需花10分钟过桥。他们要如何在17分钟内 过桥呢?
8、烧一根不均匀的绳要用一个小时,如何用它来判断半个小时 ?
9、为什么下水道的盖子是圆的? 字串610、美国有多少辆加油站(汽车)?
11、有7克、2克砝码各一个,天平一只,如何只用这些物品三次将140克的盐 分成50、90克各一份?
12、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以第小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以外30公里每小时的速度和 两辆火车现时启动,从洛杉矶出发,碰到另辆车后返回,依次在两辆火车来回的飞行,直道两面辆火车相遇,请问,这只小鸟飞行了多长距离?
13、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机 选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到 红球的准确几率是多少?
14、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒 上下?
15、你有四人装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被 污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
16、如果你有无穷多的水,一个3夸脱的和一个5夸脱的提桶,你如何准确称出 4夸脱的水?
17、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛选出同样颜色 的两个,抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻? 字串718、将汽车钥匙插入车门,向哪个方向旋转就可以打开车锁?
19、如果要你能去掉50个州的任何一个,那你去掉哪一个,为什么?20、对一批编号为1~100 全部开关朝上开的灯进行以下操作
凡是1 的倍数反方向拨一次开关2 的倍数反方向又拨一次开关3 的倍数反方向 又拨一次开关。
问最后为关熄状态的灯的编号。
21、假设一张圆盘像唱机上的唱盘那样转动。这张盘一半是黑色,一半是白色。假设你有数量不限的一些颜色传感器。要想确定圆盘转动的方向,你需要在它周围摆多少个颜色传感器?它们应该被摆放在什么位置?
22、假设时钟到了12点。注意时针和分针重叠在一起。在一天之中,时针和分针共重叠多少次?你知道它们重叠时的具体时间吗?
23、中间只隔一个数字的两个奇数被称为奇数对,比如17和19。证明奇数对之 间的数字总能被6整除(假设这两个奇数都大于6)。现在证明没有由三个奇数组成 的奇数对。
24、一个屋子有一个门(门是关闭的)和3盏电灯。屋外有3个开关,分别与这 3盏灯相连。你可以随意操纵这些开关,可一旦你将门打开,就不能变换开关了。确定每个开关具体管哪盏灯。
25、假设你有8个球,其中一个略微重一些,但是找出这个球的惟一方法是将两个球放在天平上对比。最少要称多少次才能找出这个较重的球? 字串726、下面玩一个拆字游戏,所有字母的顺序都被打乱。你要判断这个字是什么。假设这个被拆开的字由5个字母组成:
1.共有多少种可能的组合方式?2.如果我们知道是哪5个字母,那会怎么样?
3.找出一种解决这个问题的方法。
27、有4个女人要过一座桥。她们都站在桥的某一边,要让她们在17分钟内全 部通过这座桥。这时是晚上。她们只有一个手电筒。最多只能让两个人同时过桥。不管是谁过桥,不管是一个人还是两个人,必须要带着手电筒。手电筒必须要传来传去,不能扔过去。每个女人过桥的速度不同,两个人的速度必须以较慢的那个人 的速度过桥。第一个女人:过桥需要1分钟;第二个女人:过桥需要2分钟;第三个女人:过桥需要5分钟;第四个女人:过桥需要10分钟。比如,如果第一个女人与第4个女人首先过桥,等她们过去时,已经过去了10 分钟。如果让第4个女人将手电筒送回去,那么等她到达桥的另一端时,总共用去了20分钟,行动也就失败了。
怎样让这4个女人在17分钟内过桥?还有别的什么方 法?
28、如果你有两个桶,一个装的是红色的颜料,另一个装的是蓝色的颜料。你 从蓝色颜料桶里舀一杯,倒入红色颜料桶,再从红色颜料桶里舀一杯倒入蓝颜料桶。两个桶中红蓝颜料的比例哪个更高?通过算术的方式来证明这一点。字串8
B:疯狂计算
29、已知两个1~30之间的数字,甲知道两数之和,乙知道两数之积。甲问乙:“你知道是哪两个数吗?”乙说:“不知道”;
乙问甲:“你知道是哪两个数吗?”甲说:“也不知道”;
于是,乙说:“那我知道了”;随后甲也说:“那我也知道了”;这两个数是什么?
30、4,4,10,10,加减乘除,怎么出24点?
31、1000!有几位数,为什么?
32、F(n)=1 n>8 n<12
F(n)=2 n<2F(n)=3 n=6F(n)=4 n=other
使用+* /和sign(n)函数组合出F(n)函数sign(n)=0 n=0sign(n)=-1 n<0:sign(n)=1 n>0解:只要注意[sign(n-m)*sign(m-n)+1]在n=m 处取1 其他点取0 就可以了
34、米字形的画就行了
UID269076 帖子163 精华6 积分1839 阅读权限30 在线时间19 小时 注册时间2007-12-16 最后登录2008-9-24 查看详细资料
第二篇:求职面试智力题及答案
问题一:
“你面前有两扇门,其中一扇门内藏着宝藏,但如果你不小心闯入另一扇门,只能痛苦地慢慢死掉„„”
这一听就是那种经典的最令人头痛的一类问题,但其实与其他问题相比,这只是个热身。在这两扇门后面,有两个人,这两个人都知道哪扇门后有宝藏,哪扇门擅闯者死,而这两个人呢,一个人只说真话,一个人只说假话。
谁说真话谁说假话?那就要看你有没有智慧自己找出来了,游戏规则是,你只能问这两个人每人一个问题。
那么,你问什么问题?问哪个人?根据他们的回答,你又该怎么做?
求职者的最佳答案:
随便问其中一个人:“如果我问另一个人,他会跟我说哪扇门后是宝藏? 如果你问的恰好是讲真话的那个人,那他指给你的答案就是那扇通向死亡的门,因为他会诚实地告诉你那个说谎的人会怎么说。
如果你问的是那个只说谎话的,你得到的也是错误的答案,因为另一个人是讲真话的,说谎话的人会告诉你与讲真话的人相反的答案。
所以你只要随便问一个人上述问题,然后选择与他们说的相反的门就行了。问题二:
“你前面站了5个人,他们中间只有一个人讲真话„„”
这个问题比上个问题难就难在,你只知道他们五个中有一个只讲真话,但其余四个,他们有时候讲真话,有时候讲假话,只有一点可以确定,这四个人将真话和假话有个规律:如果这次讲了真话,下次就会讲假话,如果这次讲假话,下次就讲真话。你的任务是,把五个人中那个只讲真话的人找出来。
你可以问两个问题,两个问题可以向同一个人发问,也可以分别问两个人。你该问什么问题?
小提示:你可以这样安排两个问题承担的任务:首先你可以先问一个问题,不管得到的答案是什么,你都能从中知道下一个问题你将得到的答案是真是假。
求职者的最佳答案:
随便找一个人,首先问:“你是那个只讲真话的吗?”如果答案是肯定的,你再问这个人:“谁是只讲真话的?”;如果第一个问题你得到的答案是否定的,你就再问对方“谁不是只讲真话的?”
正如这个问题给出的提示,第一个问题的价值在于,如果你得到的答案是“我是”,那么你问的人要么是那个只讲真话的,要么是那个这一轮讲假话的“半真话半假话”者,不管是谁,他下一轮一定会说真话。所以你可以继续问这个人:“谁是只讲真话的?”对方的答案就是正确答案。
如果对第一个问题你得到的答案是“我不是”,那么回答者不可能是只讲真话的那个人,只能是一个此轮讲真话的“半真话半假话”者。此人下一轮将会说假话,所以你应该问他:“谁不是只讲真话的?”同样他告诉你的,只能是那个只讲真话的。问题三:
“外星人打算将地球用来种蘑菇,并且已经抓了十个人类„„”
外星人用这十个人代表地球60亿人口,将通过外星人的方式来测试这十个人,决定地球是不是有资格加入跨星际委员会,如果没有,就把地球变成一个蘑菇农场。
明天,这十个人将被关在一间漆黑的屋子里前后排成一队,外星人将给每个人戴一顶帽子,帽子为紫色或者绿色,然后外星人会将灯打开,这十个人每个人都无法看见自己头上的帽子是什么颜色,但可以看见排在你前面的每个人头上帽子的颜色。
帽子的颜色是随机的,可能全是紫的,也可能全是绿的,或者是任意的组合。外星人会从后往前问每一个人:“你头上的帽子是什么颜色?”如果这个人答对了,这个人就安然无事,他所代表的地球上6亿人口也将获救。否则,这个人将被爆头,外星人将把他所代表的6亿人口变成蘑菇的肥料。每个人的答案屋子里所有人都可以听到。
现在,人类的命运在你手上,你可以设计一个方案,使这十个人提前制定一个计划,这个计划必须拯救尽可能多的人。
提示:有个方案可以让你拯救其中至少九个人。
求职者的最佳答案:
第十个人计算排在前面的所有人的绿帽子是奇数还是偶数并向前面的人发出一个信号,这样排在前面人就可以再通过排在更前面的所有人的绿帽子的奇偶数是否变化来判断自己帽子的颜色,因为如果绿帽子奇偶发生变化,那自己就是那个导致变化的“绿帽子”,如果没变化,自己就是“紫帽子”。
因为所有的人除了回答外星人的问题不能说话,所以第十个人的“信号”只能包含在自己的答案里,比如如果排在前面的九个人有奇数顶绿帽子,这个人类就告诉外星人自己的帽子是“绿色”,如果是偶数,就猜自己的帽子是“紫色”。这样等于给他前面的人一个暗号,排在他前面的这个人,可以通过计算自己前面的所有人的绿帽子的奇偶变化来判断自己的帽子是绿还是紫。
排在最后的那个人为了大众利益没有选择,根据前面的人的帽子情况告诉外星人自己是“绿帽子”还是“紫帽子”,他的答案有1/2的几率正确,但他前面的人一定都能答对。还没懂?比如第十个人看到前面有奇数个绿帽子,他就告诉外星人自己的是绿色,这是他前面的人就知道他的意思是前面九个人中有奇数个绿帽子,这是第九个人再数前面八个人的,如果前面八个人中也有奇数个,那自己就是紫色帽子。第九个人告诉外星人自己是紫色帽子,第八个人就知道绿帽子没有减少还是奇数个,再数数前面七个人绿帽子数的奇偶,就可以判断自己帽子的颜色;反之,如果第九个人告诉外星人自己是绿色帽子,那第八个人就应该知道绿色帽子减少了一个由奇数变成了偶数,再看看前面所有的绿帽子情况作出判断。这样一个接一个,只要每个人都认真听后面的人的答案并在心里计算所剩绿帽子的奇偶变化,前面九个人都能获救。
当然,你也可以计算紫色帽子的奇偶。问题四:
“100个完美的逻辑学家坐在一个房间里„„”
这是一个电视真人秀节目,节目里100个拥有完美无瑕逻辑思维能力的人围成一圈坐在一个房间里。在进入房间前,这100个人被告知,100个人中至少有一个人的额头是蓝色的。你可以看见别人额头的颜色,但无法看到自己的,你需要对自己额头是不是蓝色进行猜测,在房间的灯被关掉时,如果你推测出你的额头是蓝色的,你需要站起来离开房间。
然后房间的灯被再次打开,那些认为自己额头是蓝色的人已经不在屋内。接下来灯会再次被关掉,剩下的人中推测自己额头是蓝色的离开房间,如此重复。问题来了,假设这100个人的额头都是蓝色的,将会发生什么情况?注意,这100个人都有完美无瑕的逻辑推理能力,他们会根据其他人的额头颜色对自己进行合理的推理和猜测。
提示:想想看,如果100个人不全是蓝色额头,又会发生什么情况?
求职者的最佳答案:
将会出现的情况是:灯关了又开,开了又关,重复到第一百次时,所有人都同时离开。
这是为什么呢?想想看,每个人都看见其他99个人额头是蓝色的,灯关掉后再打开,发现这99个蓝色额头的同伴都没有离开,然后灯再次关掉后打开,如此重复100遍后,所有人同时离开了房间。
这么理解吧,假设只有一个人的额头是蓝色的,由于这100个人事先被告知至少有一个人额头是蓝色,所以这个人如果看到其他99个人额头都不是蓝色,立马就知道自己是蓝色,所以灯一关掉,这个人就会离开房间。如果有两个人额头是蓝色呢?
其中一个蓝色额头的人会想:我的额头可能是蓝色也可能不是蓝色,现在其他99个人中有一个蓝色额头的人,如果我不是蓝色,那么就只有这一个人是,那么他看到我们都不是蓝色额头就能推断出他是,那么灯一关他就会离开,我先等一下,灯再打开如果他已经走了,那就证明我的额头不是蓝色的。
反之,如果我的额头是蓝色的,那个蓝色额头的人的想法会和我刚才的想法一样先等一等,第一次关灯他不会离开,这样如果灯开了那个蓝色额头的人还在,就证明我的额头也是蓝色的。这样第二次关灯我们俩会一起离开。
以此类推,如果有三个人额头是蓝色,你看到另外两个人额头是蓝色,应该推算出如果自己的额头不是蓝色的话,那么灯第二次关的时候他们俩会同时离开,如果他们俩没有同时离开,那就证明我的额头是蓝色的,我应该在第三次关灯的时候离开。结果是,三个蓝色额头的人在第三次关灯的时候同时离开。把上述逻辑重复一百遍,你就得到了最上面的正确答案。问题五:
“你有一个横6竖6的方格„„”
你现在在左上第一个格子里,你的任务是移动到最右下脚的格子里,你每次只能向右或者向下移动,不能斜向移动,也不能后退。你能找出几种方法移动到最右下脚的格子?
求职者的最佳答案:
252种。
从对称的角度思考这个问题。
随便挑选一个格子,假设你从出发点有n种方法从到达与所选格子上边相邻的格子,m种方法到达与它左边相邻的格子。
想想看,从出发点到达一个格子的方法与到达它左边和上边的格子的方法有什么关系?说对了,由于你只能向右和向下移动,到达一个格子,不是从它左边来,就是从它上边来。所以你从出发点到达一个格子的方法等于到达它上边格子的方法好到达它左边格子的方法的和相同,也就是n+m.这样,参照上图,你就可以算出从出发点到达每一个格子的方法了。问题六:
“逻辑学家们围成一圈坐着,他们的额头上面画有数字„„”
又来一个逻辑学家围成一圈的问题,这次是这样的,三个拥有完美逻辑推理能力的人围成一圈坐在一个房间里,每个人的额头上都画着一个大于0的数字,三个人的数字各不相同,每个人都看得见其他两个人的数字,看不见自己的。这三个数字的情况是,其中一个数字是其他两个数字的和,已知的情况还有,其中一个逻辑学家的数字是20,一个是30。
游戏组织者从这三个逻辑学家后面走过,并问三个人各自额头上的数字是什么。但第一轮每个逻辑学家都回答他们无法推测自己的数字是什么。游戏组织者只好进行第二轮的发问,这是为什么?你能据此猜出三个逻辑学家的数字吗? 求职者的最佳答案:
结果由第三个逻辑学家的答案而定。他们三个的数字分别是20,30和50。假设第二个和第三个逻辑学家额头上的数字是20和30,这时候如果第一个逻辑学家的数字是10,那么第二个逻辑学家看到其他两个人一个是10,一个是30,会想:“我要么是20,要么是40.”
第三个逻辑学家看到其他两个人一个是10,一个是20,会想:“我要么是30,要么是10,但我不会是10,因为每个数字都不一样,所以我应该是30.” 这样第三个逻辑学家就会猜出自己的数字是30了,但他没有,第一轮谁也没有准确推测出自己的数字,这说明我们的前提不正确,第一个逻辑学家的数字不是10,那么他只能是50。问题七:
“你面前有一百个灯泡,排成一排„„”
一百个灯泡排成一排,第一轮你把他们全都打开亮着,然后第二轮,你每隔一个灯泡关掉一个,这样所有排在偶数的灯泡都被关掉了。
然后第三轮,你每隔两个灯泡,将开着的灯泡关掉,关掉的灯泡打开(也就是说将所有排在3的倍数的灯泡的开关状态改变)。
以此类推,你将所有排在4的倍数的灯泡的开关状态改变,然后将排在5的倍数的灯泡开关状态改变„„
第100轮的时候,还有几盏灯泡亮着?
提示:如果你是第n轮(n大于1小于100),排在n的倍数位置的灯泡的开关状态就发生转变。
反过来,比如第8个灯泡,当你在8的因子轮(即第1,2,4和8轮)的时候,它就会改变开关状态。所以对于第m个灯泡,如果m有奇数个因子,你的开关状态就发生奇数次变化。求职者的最佳答案:
10盏灯泡亮着,这10盏灯泡排位数都是平方数。
根据提示已经可以看出,这个问题的实质就是找出有多少个灯泡的排位数拥有奇数个因子。每拥有一个因子,到这个因子数的那一轮时,这个灯泡就会被转换开关状态。
比如第1轮,因为所有100个数字都有因数1,所以全部被打开;第2轮,只有那些拥有2这个因子、能被2整除的数字的灯泡转换状态被关掉;第3轮,只有那些拥有3这个因子、能被3整除的数字的灯泡被转换状态。以此类推,如果灯泡排位数拥有奇数个因子,意味着它被打开和关上奇数次,那它就最终还是被打开的状态,如果灯泡排位数拥有偶数个因子,那它最终就是被关上的状态。比如第1个灯泡有奇数个因子,第2个有偶数个(1,2),第3个有偶数个(1,3)第4个有奇数个(1,2,4),所以 第4个灯泡最后还是亮着的。最终计算得出,所有排位数为平方数的灯泡最终还是亮着的,因为这些数都拥有奇数个因子,1,4,9,16„„
在100以内,共有10个平方数,分别是1,4,9,16,25,36,49,64,81,100。这10个排位数的灯泡,最终都还是亮着。2012年06月18日07:52腾讯科技木语 问题八:
“你有一个立方体,立方体的边长是3„„”
这个问题比前面那个从左上格子走到右下格子的问题难,因为那毕竟是个平面问题。如图所示,这次的任务是从立方体的背面左上的小立方体走到完全相对的正面右下小立方体。
你可以往上移,也可以往下移,还可以往前移。You can move toward the front, you can move down, or you can move upward.问题还是,你共有几种走法? 求职者的最佳答案:
90种,思路是将这个立方体分成“三层”。
上面平面图的那道题的思路就是个最好的提示。你可以将这个立方体分成“三层”,粉红色代表最上面那层,紫色代表中间那层,橘红色代表下面那层。现在,我们把问题变成了:从左边、右边和上边到达目标小立方体的走法共有多少(如图所示,即到达紫色中间层最右下脚方块以及橘红色最右下脚左边以及上边相邻方块的方法)?假设从起点小立方体到达终点小立方体左边相邻小立方体共有m种方法,到达右边相邻小立方体共有n种方法,到达上边相邻小立方体有r种方法,那我们需要求出来的,就是n+m+r.按照前面那道平面题的思路和方法,你就可以一点一点计算出来我们的正确答案。
第三篇:程序员面试智力题
1.考虑一个双人游戏。游戏在一个圆桌上进行。每个游戏者都有足够多的硬币。他们需要在桌子上轮流放置硬币,每次必需且只能放置一枚硬币,要求硬币完全置于桌面内(不能有一部分悬在桌子外面),并且不能与原来放过的硬币重叠。谁没有地方放置新的硬币,谁就输了。游戏的先行者还是后行者有必胜策略?这种策略是什么?
答案:先行者在桌子中心放置一枚硬币,以后的硬币总是放在与后行者刚才放的地方相对称的位置。这样,只要后行者能放,先行者一定也有地方放。先行者必胜。
2.用线性时间和常数附加空间将一篇文章的单词(不是字符)倒序。
答案:先将整篇文章的所有字符逆序(从两头起不断交换位置相对称的字符);然后用同样的办法将每个单词内部的字符逆序。这样,整篇文章的单词顺序颠倒了,但单词本身又被转回来了。
3.用线性时间和常数附加空间将一个长度为n的字符串向左循环移动m位(例如,“abcdefg”移动3位就变成了“defgabc”)。答案:把字符串切成长为m和n-m的两半。将这两个部分分别逆序,再对整个字符串逆序。
4.一个矩形蛋糕,蛋糕内部有一块矩形的空洞。只用一刀,如何将蛋糕切成大小相等的两块?
答案:注意到平分矩形面积的线都经过矩形的中心。过大矩形和空心矩形各自的中心画一条线,这条线显然把两个矩形都分成了一半,它们的差当然也是相等的。
5.一块矩形的巧克力,初始时由N x M个小块组成。每一次你只能把一块巧克力掰成两个小矩形。最少需要几次才能把它们掰成N x M块1x1的小巧克力?
答案:N x M1次。
6.如何快速找出一个32位整数的二进制表达里有多少个“1”?用关于“1”的个数的线性时间?
答案1(关于数字位数线性):for(n=0;b;b >>= 1)if(b & 1)n++;
答案2(关于“1”的个数线性):for(n=0;b;n++)b &= b-1;
7.一个大小为N的数组,所有数都是不超过N-1的正整数。用O(N)的时间找出重复的那个数(假设只有一个)。一个大小为N的数组,所有数都是不超过N+1的正整数。用O(N)的时间找出没有出现过的那个数(假设只有一个)。
答案:计算数组中的所有数的和,再计算出从1到N-1的所有数的和,两者之差即为重复的那个数。计算数组中的所有数的和,再计算出从1到N+1的所有数的和,两者之差即为缺少的那个数。
8.给出一行C语言表达式,判断给定的整数是否是一个2的幂。
答案:(b &(b-1))== 0
9.地球上有多少个点,使得从该点出发向南走一英里,向东走一英里,再向北走一英里之后恰好回到了起点?
答案:“北极点”是一个传统的答案,其实这个问题还有其它的答案。事实上,满足要求的点有无穷多个。所有距离南极点1 + 1/(2π)英里的地方都是满足要求的,向南走一英里后到达距离南极点1/(2π)的地方,向东走一英里后正好绕行纬度圈一周,再向北走原路返回到起点。事实上,这仍然不是满足要求的全部点。距离南极点1 + 1/(2kπ)的地方都是可以的,其中k可以是任意一个正整数。
10.A、B两人分别在两座岛上。B生病了,A有B所需要的药。C有一艘小船和一个可以上锁的箱子。C愿意在A和B之间运东西,但东西只能放在箱子里。只要箱子没被上锁,C都会偷走箱子里的东西,不管箱子里有什么。如果A和B各自有一把锁和只能开自己那把锁的钥匙,A应该如何把东西安全递交给B?
答案:A把药放进箱子,用自己的锁把箱子锁上。B拿到箱子后,再在箱子上加一把自己的锁。箱子运回A后,A取下自己的锁。箱子再运到B手中时,B取下自己的锁,获得药物。
11.一对夫妇邀请N-1对夫妇参加聚会(因此聚会上总共有2N人)。每个人都和所有自己不认识的人握了一次手。然后,男主人问其余所有人(共2N-1个人)各自都握了几次手,得到的答案全部都不一样。假设每个人都认识自己的配偶,那么女主人握了几次手?答案:握手次数只可能是从0到2N-2这2N-1个数。除去男主人外,一共有2N-1个人,因此每个数恰好出现了一次。其中有一个人(0)没有握手,有一个人(2N-2)和所有其它的夫妇都握了手。这两个人肯定是一对夫妻,否则后者将和前者握手(从而前者的握手次数不再是0)。除去这对夫妻外,有一个人(1)只与(2N-2)握过手,有一个人(2N-3)和除了(0)以外的其它夫妇都握了手。这两个人肯定是一对夫妻,否则后者将和前者握手(从而前者的握手次数不再是1)。以此类推,直到握过N-2次手的人和握过N次手的人配成一对。此时,除了男主人及其配偶以外,其余所有人都已经配对。根据排除法,最后剩下来的那个握手次数为N-1的人就是女主人了。
12.两个机器人,初始时位于数轴上的不同位置。给这两个机器人输入一段相同的程序,使得这两个机器人保证可以相遇。程序只能包含“左移n个单位”、“右移n个单位”,条件判断语句If,循环语句while,以及两个返回Boolean值的函数“在自己的起点处”和“在对方的起点处”。你不能使用其它的变量和计数器。
答案:两个机器人同时开始以单位速度右移,直到一个机器人走到另外一个机器人的起点处。然后,该机器人以双倍速度追赶对方。程序如下。
while(!at_other_robots_start){
move_right 1
}
while(true){
move_right 2
}
13.如果叫你从下面两种游戏中选择一种,你选择哪一种?为什么?
a.写下一句话。如果这句话为真,你将获得10美元;如果这句话为假,你获得的金钱将少于10美元或多于10美元(但不能恰好为10美元)。
b.写下一句话。不管这句话的真假,你都会得到多于10美元的钱。
答案:选择第一种游戏,并写下“我既不会得到10美元,也不会得到10000000美元”。
14.你在一幢100层大楼下,有21根电线线头标有数字1..21。这些电线一直延伸到大楼楼顶,楼顶的线头处标有字母A..U。你不知道下面的数字和上面的字母的对应关系。你有一个电池,一个灯泡,和许多很短的电线。如何只上下楼一次就能确定电线线头的对应关系?
答案:在下面把2,3连在一起,把4到6全连在一起,把7到10全连在一起,等等,这样你就把电线分成了6个“等价类”,大小分
别为1, 2, 3, 4, 5, 6。然后到楼顶,测出哪根线和其它所有电线都不相连,哪些线和另外一根相连,哪些线和另外两根相连,等等,从而确定出字母A..U各属于哪个等价类。现在,把每个等价类中的第一个字母连在一起,形成一个大小为6的新等价类;再把后5个等价类中的第二个字母连在一起,形成一个大小为5的新等价类;以此类推。回到楼下,把新的等价类区别出来。这样,你就知道了每个数字对应了哪一个原等价类的第几个字母,从而解决问题。
15.某种药方要求非常严格,你每天需要同时服用A、B两种药片各一颗,不能多也不能少。这种药非常贵,你不希望有任何一点的浪费。一天,你打开装药片A的药瓶,倒出一粒药片放在手心;然后打开另一个药瓶,但不小心倒出了两粒药片。现在,你手心上有一颗药片A,两颗药片B,并且你无法区别哪个是A,哪个是B。你如何才能严格遵循药方服用药片,并且不能有任何的浪费?
答案:把手上的三片药各自切成两半,分成两堆摆放。再取出一粒药片A,也把它切成两半,然后在每一堆里加上半片的A。现在,每一堆药片恰好包含两个半片的A和两个半片的B。一天服用其中一堆即可。
16.你在一个飞船上,飞船上的计算机有n个处理器。突然,飞船受到外星激光武器的攻击,一些处理器被损坏了。你知道有超过一半的处理器仍然是好的。你可以向一个处理器询问另一个处理器是好的还是坏的。一个好的处理器总是说真话,一个坏的处理器总是说假话。用n-2次询问找出一个好的处理器。
答案:给处理器从1到n标号。用符号a->b表示向标号为a的处理器询问处理器b是不是好的。首先问1->2,如果1说不是,就把他们俩都去掉(去掉了一个好的和一个坏的,则剩下的处理器中好的仍然过半),然后从3->4开始继续发问。如果1说2是好的,就继续问2->3,3->4,……直到某一次j说j+1是坏的,把j和j+1去掉,然后问j-1-> j+2;或者从j+2-> j+3开始发问,如果前面已经没有j-1了(之前已经被去掉过了)。注意到你始终维护着这样一个“链”,前面的每一个处理器都说后面那个是好的。这条链里的所有处理器要么都是好的,要么都是坏的。当这条链越来越长,剩下的处理器越来越少时,总有一个时候这条链超过了剩下的处理器的一半,此时可以肯定这条链里的所有处理器都是好的。或者,越来越多的处理器都被去掉了,链的长度依旧为0,而最后只剩下一个或两个处理器没被问过,那他们一定就是好的了。另外注意到,第一个处理器的好坏从来没被问过,仔细想想你会发现最后一个处理器的好坏也不可能被问到(一旦链长超过剩余处理器的一半,或者最后没被去掉的就只剩这一个了时,你就不问了),因此询问次数不会超过n-2。
17.一个圆盘被涂上了黑白二色,两种颜色各占一个半圆。圆盘以一个未知的速度、按一个未知的方向旋转。你有一种特殊的相机可以让你即时观察到圆上的一个点的颜色。你需要多少个相机才能确定圆盘旋转的方向?
答案:你可以把两个相机放在圆盘上相近的两点,然后观察哪个点先变色。事实上,只需要一个相机就够了。控制相机绕圆盘中心顺时针移动,观察颜色多久变一次;然后让相机以相同的速度逆时针绕着圆盘中心移动,再次观察变色的频率。可以断定,变色频率较慢的那一次,相机的转动方向是和圆盘相同的。
今天考完美国结构语言学,稍微轻松了一些。我把前几天向大家推荐的网页好好看了一遍,挑选了10个比较精彩的、不是很常见的、本Blog之前没有提过的智力题,并且把它们都整理到了一起,与大家一同分享。希望大家能够大呼过瘾~
1.给一个瞎子52张扑克牌,并告诉他里面恰好有10张牌是正面朝上的。要求这个瞎子把牌分成两堆,使得每堆牌里正面朝上的牌的张数一样多。瞎子应该怎么做?
答案:把扑克牌分成两堆,一堆10张,一堆42张。然后,把小的那一堆里的所有牌全部翻过来。
2.如何用一枚硬币等概率地产生一个1到3之间的随机整数?如果这枚硬币是不公正的呢?
答案:如果是公正的硬币,则投掷两次,“正反”为1,“反正”为2,“正正”为3,“反反”重来。
如果是不公正的硬币,注意到出现“正反”和“反正”的概率一样,因此令“正反反正”、“反正正反”、“正反正反”分别为1、2、3,其余情况重来。另一种更妙的办法是,投掷三次硬币,“正反反”为1,“反正反”为2,“反反正”为3,其余情况重来。
3.30枚面值不全相同的硬币摆成一排,甲、乙两个人轮流选择这排硬币的其中一端,并取走最外边的那枚硬币。如果你先取硬币,能保证得到的钱不会比对手少吗?
答案:先取者可以让自己总是取奇数位置上的硬币或者总是取偶数位置上的硬币。数一数是奇数位置上的面值总和多还是偶数位置上的面值总和多,然后总是取这些位置上的硬币就可以了。
4.一个环形轨道上有n个加油站,所有加油站的油量总和正好够车跑一圈。证明,总能找到其中一个加油站,使得初始时油箱为空的汽车从这里出发,能够顺利环行一圈回到起点。
答案:总存在一个加油站,仅用它的油就足够跑到下一个加油站(否则所有加油站的油量加起来将不够全程)。把下一个加油站的所有油都提前搬到这个加油站来,并把油已被搬走的加油站无视掉。在剩下的加油站中继续寻找油量足以到达下个加油站的地方,不断合并加油站,直到只剩一个加油站为止。显然从这里出发就能顺利跑完全程。
另一种证明方法:先让汽车油箱里装好足够多的油,随便从哪个加油站出发试跑一圈。车每到一个加油站时,记录此时油箱里剩下的油量,然后把那个加油站的油全部装上。试跑完一圈后,检查刚才路上到哪个加油站时剩的油量最少,那么空着油箱从那里出发显然一定能跑完全程。
5.初始时,两个口袋里各有一个球。把后面的n-2个球依次放入口袋,放进哪个口袋其概率与各口袋已有的球数成正比。这样下来,球数较少的那个口袋平均期望有多少个球?
答案:先考虑一个看似无关的问题——怎样产生一个1到n的随机排列。首先,在纸上写下数字1;然后,把2写在1的左边或者右边;然后,把3写在最左边,最右边,或者插进1和2之间……总之,把数字i等概率地放进由前面i-1个数产生的(包括最左端和最右端在内的)共i个空位中的一个。这样生成的显然是一个完全随机的排列。
我们换一个角度来看题目描述的过程:假想用一根绳子把两个球拴在一起,把这根绳子标号为1。接下来,把其中一个小球分裂成两个小球,这两个小球用标号为2的绳子相连。总之,把“放进第i个球”的操作想象成把其中一个球分裂成两个用标有i-1的绳子相连的小球。联想我们前面的讨论,这些绳子的标号事实上是一个随机的全排列,也就是说最开始绳子1的位置最后等可能地出现在每个地方。也就是说,它两边的小球个数(1,n-1)、(2,n-2)、(3,n-3)、……、(n-1,1)这n-1种情况等可能地发生。因此,小袋子里的球数大约为n/4个。准确地说,当n为奇数时,小袋子里的球数为(n+1)/4;当n为偶数时,小袋子里的球数为n^2/(4n-4)。
6.考虑一个n*n的棋盘,把有公共边的两个格子叫做相邻的格子。初始时,有些格子里有病毒。每一秒钟后,只要一个格子至少有两个相邻格子染上了病毒,那么他自己也会被感染。为了让所有的格子都被感染,初始时最少需要有几个带病毒的格子?给出一种方案并证明最优性。
答案:至少要n个,比如一条对角线上的n个格子。n个格子也是必需的。当一个新的格子被感染后,全体被感染的格子所组成的图形的周长将减少0个、2个或4个单位(具体减少了多少要看它周围被感染的格子有多少个)。又因为当所有格子都被感染后,图形的周长为4n,因此初始时至少要有n个被感染的格子。
7.在一个m*n的棋盘上,有k个格子里放有棋子。是否总能对所有棋子进行红蓝二染色,使得每行每列的红色棋子和蓝色棋子最多差一个?
答案:可以。建一个二分图G(X,Y),其中X有m个顶点代表了棋盘的m个行,Y有n个顶点代表了棋盘的n个列。第i行第j列有棋子就在X(i)和Y(j)之间连一条边。先找出图G里的所有环(由于是二分图,环的长度一定是偶数),把环里的边红蓝交替染色。剩下的没染色的图一定是一些树。对每棵树递归地进行操作:去掉一个叶子节点和对应边,把剩下的树进行合法的红蓝二染色,再把刚才去掉的顶点和边加回去,给这个边适当的颜色以满足要求。
8.任意给一个8*8的01矩阵,你每次只能选一个3*3或者4*4的子矩阵并把里面的元素全部取反。是否总有办法把矩阵里的所有数全部变为1?
答案:不能。大矩阵中有36个3*3的小矩阵和25个4*4的小矩阵,因此总共有61种可能的操作。显然,给定一个操作序列,这些操作的先后顺序是无关紧要的;另外,在一个操作序列中使用两种或两种以上相同的操作也是无用的。因此,实质不同的操作序列只有2^61种。但8*8的01矩阵一共有2^64种,因此不是每种情况都有办法达到目的。
9.五个洞排成一排,其中一个洞里藏有一只狐狸。每个夜晚,狐狸都会跳到一个相邻的洞里;每个白天,你都只允许检查其中一个洞。怎样才能保证狐狸最终会被抓住?
答案:按照2, 3, 4, 2, 3, 4的顺序检查狐狸洞可以保证抓住狐狸。为了说明这个方案是可行的,用集合F表示狐狸可能出现的位置,初始时F = {1, 2, 3, 4, 5}。如果它不在2号洞,则第二天狐狸已经跑到了F = {2, 3, 4, 5}。如果此时它不在3号洞,则第三天狐狸一定跑到了F = {1, 3, 4, 5}。如果此时它不在4号洞,则再过一晚后F = {2, 4}。如果此时它不在2号洞,则再过一天F = {3, 5}。如果此时它不在3号洞,再过一天它就一定跑到4号洞了。
方案不是唯一的,下面这些方案都是可行的:
2, 3, 4, 4, 3, 2
4, 3, 2, 2, 3, 4
4, 3, 2, 4, 3, 2
10.一个经典老题是说,把一个3*3*3的立方体切成27个单位立方体,若每一刀切完后都允许重新摆放各个小块的位置,最少可以用几刀?答案仍然是6刀,因为正中间那个单位立方体的6个面都是后来才切出来的,因此怎么也需要6刀。考虑这个问题:若把一个n*n*n的立方体切成一个个单位立方体,最少需要几刀?
答案:事实上,从一个更强的命题出发反而能使问题变得更简单。对于一个a*b*c的长方体,我们需要f(a)+f(b)+f(c)刀,其中f(x)=⌈log(x)/log(2)⌉。只需要注意到,在整个过程中的任何一步,切完当前最大的块所需要的刀数也就等于整个过程还需要的刀数,因为其它小块需要的刀数都不会超过最大块所需刀数,它们都可以与最大块一道并行处理。这表明,我们的最优决策即是让当前的最大块尽可能的小,也就是说要把当前的最大块尽可能相等地切成两半。利用数学归纳法,我们可以很快得到本段开头的结论。
第四篇:智力题
平分瓶子里的油
有两只大小、形状、重量相等的瓶子,一只瓶子里装有多半瓶的油,另外一只瓶里没有油。
请问:在没有任何称量工具的情况下,如何平分这些油?
算卖鞋一共亏了多少钱
一个卖鞋的老板,一双鞋进货20元,卖30元。
客人给了50元,可老板没零钱,所以把那50元拿去向邻居换五张10元的,找回20元给客人。
后来邻居发现50元是假口钞,老板不得不赔邻居50元。问老板一共亏了多少钱?
看似简单的加法乘法数学题
问号处应该填写什么?
烧香的时间 数学题
有两根香,香烧完的时间均是一个小时,用什么方法烧香来确定十五分钟的时间?
提示:问题并不是十五分钟烧完,而是确定十五分钟的时间。
5+5+5=550只加一笔让它成立
5+5+5=550 加一笔,使等式成立?(不能改成不等号)
将一张圆饼分成八等份,最少需要几刀?
将一张圆饼分成八等份,最少需要几刀?(可以任意折叠这张面饼)
计算问号处的数字 1,2,5,13,34,(?)计算问号处的数字是什么? A.47 B.68 C.77 D.89
看数字找规律
请观察下面数字,找出其中的规律,并填出问号处的数字。速度快的几秒钟就可以解答出来了。1 10 3 9 5 8 7 7 9 6 ? ?
看图计算问号数字
找出下面图片中图形所代表的数字,计算出问号代表的数字。
四分钟沙漏和七分钟沙漏计算九分钟时间
一个四分钟的沙漏,一个七分钟的沙漏,如何用这两个沙漏测试出九分钟的时间?
点蜡烛数学计算题
两根蜡烛,一根较细,一根较粗。细蜡烛长30厘米,可点3小时。粗蜡烛长20厘米,可点5小时。
同时点燃这两根蜡烛,几小时后,两根蜡烛一样长?(答案形式:XX小时XX分钟)
小丽买卖衣服
小丽花90元买了件衣服,她脑子一转,把这件衣服120元卖了出去,她觉得这样挺划算的,于是又用100元买进另外一件衣服,原以为会150元卖出,结果卖亏了,90元卖出。
问:你觉得小丽是赔了还是赚了?赔了多少还是赚了多少?
40元钱买饮料
小李有40元钱,他想用他们买饮料,老板告诉他,2元钱可以买一瓶饮料,4个饮料瓶可以换一瓶饮料。
那么,小李可以买到多少瓶饮料?
(这道题非常简单,建议不要先看答案)
计算四个儿子的年龄
一个家庭有4个儿子,把这四个儿子的年龄乘起来积为15。那么,这个家庭四个儿子的年龄各是多大?
ABCD四个数中那个数最小
有A、B、C、D四个数,它们分别有以下关系: A、B之和大于C、D之和 A、D之和大于B、C之和 B、D之和大于A、C之和
请问,你可以从这些条件中知道这四个数中那个数最小吗?
老师给全班60个学生布置了两道作业题
老师给全班60个学生布置了两道作业题,其中有40个人做对了第一道题,有31个人做对了第二道题,有4个人两道题都做错了。
那么,你能算出来两道题都做对的人数吗?
小红和小丽买书的价格
小红和小丽一块到新华书店去买书,两个人都想买《综合习题》这本书,但钱都不够,小红缺少4.9元,小丽缺少0.1元,用两个人合起来的钱买一本,但是钱仍然不够,那么,这本书的价格是多少呢?
看看谁做对了
甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后。
甲说:“我做错了。” 乙说:“甲做对了。” 丙说:“我做错了。”
在一旁的丁看到他们的答案并听了她们的意见后说:“你们三个人中有一个人做对了,有一个人说对了。”
请问,他们三人中到底谁做对了?
CDE对应EDF EFH对应什么?
如果CDE对应EDF,那么,EFH对应什么?
去掉第一个数字是15 去掉最后一个数字是30
一个数字,去掉第一个数字是15,去掉最后一个数字是30,请问这个数字是多少?
3388不改变顺序添加运算符号等于27 智力题 买皮鞋不见的10快钱
向爸爸借了500,向妈妈借了500,买了双皮鞋用了970。剩下30元,还爸爸10块,还妈妈10块,自己剩下了10块,欠爸爸490,欠妈妈490,490 490=980。加上自己的10块=990。还有10块去哪里了呢?
小学生智力题:闭上眼睛抓取彩球
有一堆彩色玻璃球,其中有黄色,绿色,红色三种,闭上眼睛想要抓取两个同种颜色的玻璃球,最多抓取多少个就可以肯定有两个同一颜色的玻璃球?
数学智力题:算算三个女儿的年龄
王四有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于王四自己的年龄,有一个人已知道王四的年龄,但仍不能确定王四三个女儿的年龄,这时王四说只有一个女儿的头发是黑的,然后这个下属就知道了王四三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
数学智力题:计算三种桌子的单价
一个家具店里有三种桌子,其价格分别如下: 1.他们的单价各不相同; 2.它们的单价加起来共4000元;
3.第二种桌子比第一种桌子便宜400元; 4.第三种桌子的单价是第二种的2倍。那么这三种桌子的单价各是多少?
判断数学题 判断该走那条路
一个人站在岔道口,分别通向A国和B国,这两个国家的人非常奇怪,A国的人总是说实话,B国的人总是说谎话。路口站着一个A国人和一个B国人:甲和乙,但是不知道他们真正的身份,现在那个人要去B国,但不知道应该走哪条路,需要问这两个人。只许问一句。他是怎么判断该走那条路的?
思维训练题 猜猜谁的成绩好
玲玲和芳芳经常在一起玩,有一次,有人问她们:“你们俩经常在一起玩,这次期末考试你们谁的成绩好呀?”玲玲说:“我的成绩比较好一点。”小红说芳芳说:“我的成绩比较差一些。”她们这两个人之中至少有一个人没有说实话。那么,到底她们谁的考试成绩好?
数学题 算算甲乙丙谁做对了
甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后,甲说:“我做错了。”乙说:“甲做对了。”丙说:“我做错了。”在一旁的丁看到他们的答案并听了她们的意见后说:“你们三个人中有一个人做对了,有一个人说对了。”请问,他们三人中到底谁做对了?
计算小东的成绩
一次竟赛中,小东的语文成绩和自然成绩加起来是197分,语文成绩和数学成绩加起来是199分,数学成绩和自然成绩加起来是196分。小东哪一科成绩最高?小东的各科成绩分别是多少?
根据题目所给的三个已知条件不难看出是语文分数最高,如何求出三科的成绩各是多少分呢?
年轻人买礼物计算老板损失
6只猪要过河数学题今天三字开头的30个谜语
一天,有个年轻人来到王老板的店里买了一件礼物,这件礼物成本是18元,标价是21元。这个年轻人掏出100元买这件礼物,王老板当时没有零钱,就用那100元向街坊换了100元的零钱,找零给年轻人79元。但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。请问:王老板这次交易中最后损失了多少钱?
数学计算题_小猴子搬100根香蕉 一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。
提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。
三个人去住旅馆数学题
有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?
三个灯泡智力题
门外三个开关分别对应室内三个灯泡,线路良好,在门外控制开关时候不能看到室内灯的情况,现在只允许进门一次,确定开关和灯的对应关系?
5块饼干最快几分钟吃完?
谜语大全100个今天分配美元智力题
有15块饼干。最开始的人吃了1块,把剩下的平分,分给了2个人。拿到饼干的2个人又像之前一样,吃了1块,然后分别平分给2个人。吃1块饼干的时间是1分钟,中间转手的时间不计。吃饼干的人数不限。
这些饼干最快几分钟吃完?
分24斤油
有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份?
第五篇:智力题
逻辑推理题
一、请问:从你生下来的那一刻起,你入睡和醒来的次数哪个多?多多少次?
小明和小红都是张老师的学生,张老师的生日是M月N日,2人都知道张老师的生日是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小红,张老师问他们知道他的生日是那一天吗? 3月4日 3月5日 3月8日
6月4日
6月7日 9月1日 9月5日 12月1日
12月2日
12月8日
小明说:如果我不知道的话,小红肯定也不知道 小红说:本来我也不知道,但是现在我知道了 小明说:哦,那我也知道了
请根据以上对话推断出张老师的生日是哪一天?
答案是9月1日,思路如下:
小明说:如果我不知道的话,小红肯定也不知道
从这句话可以得出,小红单靠N值是无法判断出唯一答案的,也就是说N值在以上的范围中出现的次数大于1,这样就排除了只出现1次的7和2,由此排除掉6月7日和12月2日两个答案,待选的范围还剩下:3月4日,3月5日,3月8日,6月4日,9月1日,9月5日,12月1日,12月8日。
小红说:本来我也不知道,但是现在我知道了
根据小明的言论,小红也可以立刻判断出,符合小明知道的M值的日期中出现的日子肯定在上述范围中出现两次以上(含两次),否则小明不会这么说出“如果我不知道,小红肯定也不知道”。这样,我们分类讨论:
如果小明知道的M值是3,那么符合的日子有4,5,8 如果小明知道的M值是6,那么符合的日子有4,7 如果小明知道的M值是9,那么符合的日子有1,5 如果小明知道的M值是12,那么符合的日子有1,2,8 既然之前我们已经排除了6月7日和12月2日,那么就可以完全否定小明知道的M值不是6,也不是12。由此排除6月4日,12月1日,12月8日,待选的范围还剩下:3月4日,3月5日,3月8日,9月1日,9月5日。
由此小红可以判断,小明知道的M值不是3,就是9。
因为小红知道N值,所以既然她能够在以上范围中一下子判断出日期,那么N值在上述范围内是唯一的,这样就排除掉了5,进而排除3月5日和9月5日,待选范围还剩下:3月4日,3月8日,9月1日。
小明说:哦,那我也知道了。
同以上的判断一样,既然小明在上述3个日期里面一下子判断出正确的N值,那么说明小明知道的M值在上述范围中是唯一的,排除掉了3,只剩下了一个答案9月1日。
二、A一个公安人员审查一件盗窃案,已知下列事实: 1.甲或乙盗窃了录像机;
2.若甲盗窃了录像机,则作案时间不能发生在午夜前; 3.若乙的证词正确,则午夜时屋里灯光未灭;
4.若乙的证词不正确,则作案的时间发生在午夜前; 5.午夜时屋里的灯光灭了。
试问:盗窃录像机的是甲还是乙?并写出推理过程。
三、猪八戒取经归来,取道高老庄,想找高小姐重续旧缘。不想高家庄已经改为东西两栋高楼,并有一个大门,门口坐着两个老人,八戒连忙抢步上前,正要询问高小姐家住哪个楼中,只见其中一人用手一指,八戒才看见两人之前还有一个牌子,上写“两人一个只说谎话,一个只讲真言,几十年来没有变化。并且两个人只会回答路人一个问题!切记!切记!”试问八戒如何发问才能问出高小姐住在哪个楼中(假设两人全知道高小姐住在哪个楼中,并且都知道对方习惯)?(请写清创作问题的构思过程,并写出问了问题后如何推出高小姐家住哪个楼)。四、一列火车上三个工人,史密斯——琼斯——罗伯特,三人工作为消防员,司闸员,机械师,有三个乘客与三人名字相同。
1. 罗伯特住在底特律
2. 司闸员住在芝加哥和底特律中间的地方 3. 琼斯一年赚2万美金
4. 有一个乘客和司闸员住在一个地方,每年的薪水是司闸员的3倍整。5. 史密斯台球打得比消防员好。6. 和司闸员同名的乘客住在芝加哥。请问谁是机械师? 五、五个人来自不同地方,住不同房子,养不同动物,吸不同牌子香烟,喝不同饮料,喜欢不同食物。根据以下线索确定谁是养猫的人。
1.红房子在蓝房子的右边,白房子的左边(不一定紧邻)2.黄房子的主人来自香港,而且他的房子不在最左边。3.爱吃比萨饼的人住在爱喝矿泉水的人的隔壁。
4.来自北京的人爱喝茅台,住在来自上海的人的隔壁。5.吸希尔顿香烟的人住在养马的人?右边隔壁。6.爱喝啤酒的人也爱吃鸡。7.绿房子的人养狗。
8.爱吃面条的人住在养蛇的人的隔壁。
9.来自天津的人的邻居(紧邻)一个爱吃牛肉,另一个来自成都。10.养鱼的人住在最右边的房子里。
11.吸万宝路香烟的人住在吸希尔顿香烟的人和吸“555”香烟的人的中间(紧邻)12.红房子的人爱喝茶。13.爱喝葡萄酒的人住在爱吃豆腐的人的右边隔壁。
14.吸红塔山香烟的人既不住在吸健牌香烟的人的隔壁,也不与来自上海的人相邻。15.来自上海的人住在左数第二间房子里。16.爱喝矿泉水的人住在最中间的房子里。17.爱吃面条的人也爱喝葡萄酒。
吸“555”香烟的人比吸希尔顿香烟的人住的靠右。
三、推理题
1、大有作为
鲁道夫、菲利普、罗伯特三位青年,一个当了歌手,一个考上大学,一个加入美军陆战队,个个未来都大有作为。现已知: A.罗伯特的年龄比战士的大; B.大学生的年龄比菲利普小;
C.鲁道夫的年龄和大学生的年龄不一样。
请问:三个人中谁是歌手?谁是大学生?谁是士兵?
2、麻省理工大学的学生
美国麻省理大学的学生来自不同国家。大卫、比利、特德三名学生,一个是法国人,一个是日本人,一个是美国人。现已知:
1、大卫不喜欢面条,特德不喜欢汉堡包;
2、喜欢面条的不是法国人;
3、喜欢汉堡包的是日本人;
4、比利不是美国人。
请推测出这三名留学生分别来自哪些国家?
3、宴会桌旁
在某宾馆的宴会厅里,有4位朋友正围桌而坐,侃侃而谈。他们用了中、英、法、日4种语言。现已知:
A.甲、乙、丙各会两种语言,丁只会一种语言; B.有一种语言4人中有3人都会;
C.甲会日语,丁不会日语,乙不会英语;
D.甲与丙、丙与丁不能直接交谈,乙与丙可以直接交谈; E.没有人既会日语,又会法语。请问:甲乙丙丁各会什么语言?
三、推理题推理题就不把问题写上了,直接出答案。
1、答:鲁道夫是士兵,菲利普是歌手,罗伯特是大学生。(大学生的年龄比菲利普小,鲁道夫的年龄和大学生的年龄不一样,说明菲利和鲁道夫都不是大学生,那么罗伯特就是大学生;罗伯特的年龄比战士的大,大学生“罗伯特”的年龄比菲利普小,说明菲利普不是战士,那么就是歌手;剩下鲁道夫就是战士了。)
2、答:大卫是法国人,比利是日本人,特德是美国人。(喜欢面条的不是法国人,大卫不喜欢面条,说明大卫是法国人,比利不是美国人,也就不是法国人了,那么就是日本人了,剩下特德就是美国人了。)
3、答:甲会日语和中文,乙会中文和法语,丙会法语和英文,丁会中文。(甲会日语,没有人既会日语,又会法语,说明甲不会法语;甲与丙不能直接交谈,说明丙不会日语;因为甲可能会中英文中的任何一种,没有人既会日语,又会法语,甲与丙不能直接交谈,说明丙一定会法语;丙与丁不能直接交谈,说明丁不会法语;乙不会英语,乙与丙可以直接交谈,所以乙有可能会日语和中文,也有可能会法语和中文,那么推算下来乙一定会中文;丁不会日语,有一种语言4人中有3人都会,这种语言一定要是丁会的,现丁有可能会英文,也有可能会中文,如果丁会英文的话,那么就没有一种语言有三个人会,这样丁就只会中文了;丙与丁不能直接交谈,那丙剩下一种语言就只是英文;甲与丙不能直接交谈,甲剩下一种语言就只是中文了;乙与丙可以直接交谈,那乙剩下一种语言就只是法语。)