第一篇:制药工程进展
制药工程进展
浙江科技学院 生物与化学工程学院 杨乐 309044036
近年来,国际上制药研究进展很快,其发展状况和趋势呈现两个显著的特点,一是生命科学前沿如基因组、蛋白质、生物芯片、转基因动物、生物信息学等等,与药物研究紧密结合,以发现和确证药物作用新靶点作为重要目标,取得了蓬勃的发展;二是一些新兴学科越来越多地渗入到新药的发现和前期研究中。化学、物理学、理论和结构生物学、计算机和信息科学等学科与药物研究的交叉、渗透与结合日益加强,使得新药研究的进展和综合集成,将对创新药物的研究与开发产生长远的、决定性的影响。
1.世界新药研发趋势
1.1 未来制药领域的重点药物
世界卫生组织统计导致人类死亡的疾病排序为:心脏病、癌症、脑血管病、下呼吸道感染、结核病、慢性支气管阻塞、腹泻、痢疾、艾滋病和乙型肝炎。从中可以看出,除了心脑血管病和癌症外,各种传染病仍然是人类的大敌。所以,无论何时世界性的制药重点为:心脑血管用药(包括降压、强心和降脂药)、脑功能改善药(包括治疗痴呆和帕金森氏病药物)、抗癌及辅助用药、抗艾滋病药、肝炎和其它抗病毒药、抗风湿性关节炎药、免疫调节剂、抗抑郁抗精神分裂和抗焦虑药、抗血小板和升血小板药、抗前列腺肥大药物。
1.2 未来新药创新6大模式
近年来,由于计算机技术、现代合成技术、生物技术的应用以及药物化学与分子生物学、遗传学、免疫学、酶学等学科的发展与相互渗透,为新药开发奠定了基础。同时,随着社会的发展,人口结构的改变,生态环境的改变以及市场规律的作用,使得新产品生命周期日渐缩短,更新换代频率越来越快。未来新药研究与创新将向6大模式方向转变:(1)创制新颖的分子结构类型”NCE”一突破性新药研究开发;(2)创制”ME-TOO”新药一模仿性新药研制开发;(3)已知药物的进一步研究开发一延伸性新药研究开发;(4)应用现代化生物技术,开发新的生化药物;(5)现有药物的药剂学研究开发一发展新制剂产品;(6)应用现代新技术对老产品的生产工艺进行重大的技术革新和技术改造。
1.3 各公药公司更加重视新药知识产权的保护
专利新药可以为企业带来很高的经济效益,如1995年雷尼替丁销售额为34亿美元;1996年奥美拉唑销售额达35.75亿美元,取代了雷尼替丁的龙头位置。因此,为了垄断市场,收回投资,获取效益,各制药公司将会越来越重视新药知识产权的保护。1997年在我国申请的3400种医药发明专利中,外国医药企事业申请数为1408件,占41.4%,而且在继续增加。自1993年1月1日我国实施《药品行政保护条例》几年来,已有几十种外国药品的行政保护申请获得批准,在中国享有7.5年的制造或销售独占权,如吡格列酮、拓扑替康(topotecan)、塞来昔布(celecoxib)和重组干细胞因子等。
2.新药研发特点
2.l药材作用新靶标的发现
药物大多通过与人体内”靶标”分子的相互作用产生疗效。药物作用新靶点的寻找,已成为当今创新药物研究激烈竞争的焦点。新的药物作用靶点一旦被发现,往往成为一系列新药发现的突破口。
90年代以来,人类基因组计划(Human GenomeProject)进展迅速,基因测序的目标已提
前实现。在此基础上,结构和功能基因组学的研究正在紧张展开。在总数估计为3万~4万种的人类基因中,可以发现有相当数量的基因与疾病的发生和防治相关。这些疾病相关基因的发现及其结构、功能的研究,可能大大推动药物作用新靶标的发现。我国科学家在这一领域中已取得可喜的成就。对若干致病微生物如钩端螺旋体、痢疾杆菌等的基因组研究正在进行。我国科学家还克隆了遗传病高频耳聋的致病基因,定位了若干单基因疾病的染色体位点。
在白血病和某些实体肿瘤相关基因的结构、功能研究方面,取得了一批具有国际影响的成果。
近年来,蛋白质组学(Proteomics)研究迅速兴起,成为继人类基因组计划之后又一个引
人注目的新领域。通过采用双向电泳和质谱技术,分离、分析和鉴定细胞内所含有的蛋白,对正常和非正常状态(如病理状态)下细胞的蛋白质谱进行对照比较和分析鉴定,就可以找出两者蛋白质谱的定性和定量差异,从而阐明疾病发生的机制,为发现新药提供新的靶点。
生物芯片(包括DNA芯片和蛋白质芯片等),是寻找药物作用新靶点的又一重要技术。DNA
芯片,又称基因芯片或DNA阵列(DNA array),将大量特点序列的寡聚核苷酸(DNA探针)有序地固化在硅或玻璃等材料作的承载基片上,使其能与靶基因进行互补杂交形成DNA探针池。利用DNA芯片可以快速高效地获取空前规模的生物信息,因而可用于发现疾病的相关基因,为寻找新的药物作用靶点作出贡献。
Science以大量的篇幅刊登了有关drug discovery的文章。据其统计,目前治疗药物的作用靶点共483个。随着人类基因组、蛋白质组和生物芯片等研究的进展,大量的疾病相关基因将被发现,人们预测到2010年药物作用的靶标分子可能急剧增加到5000种,创新药物研究将具有前所未有的广阔用武之地。
2.2新的筛选模童和缔造技术的研究
在新药研究过程中,通过化合物活性筛选而获得具有生物活性的先导化合物,是创新药
物研究的基础。近20年来,许多药物作用的受体已被分离、纯化,一些基因的功能及相关调控物质被相继阐明,这就使得许多在生命活动中发挥重要作用的生物大分子可以直接成为大规模药物筛选的新模型,使得药物筛选模型从传统的整体动物、器官和组织水平发展到,细胞和分子水平。
现代生物技术提供的异体表达系统,使得人体的蛋白质可以以比较大的数量从大肠杆菌
或昆虫细胞中获得,用于测试各种化合物的活性,从而使得快速、准确、微量的体外酶活性和受体检测方法得以建立。
随着分子水平的药物筛选模型的出现,筛选方法和技术都发生了根本性的变化。出现了
高通量筛选(Hidl—Through put semening)的新技术,综合应用自动控制的机器人,基于新的科学原理的检测手段和计算机信息系统等技术,以酶活性、受体结合及受体功能的变化作为检测指标,在极短的时间内即可完成庞大数量的化合物活性筛选,大大加速了新药的寻找和发现。
此外,利用”基因敲除”或转基因技术,可以建立基因缺失或基因转入的动物或细胞系,作为药物研究的病理模型,对药物的作用进行试验,也将对新药研究发生重大作用。
2.3 结构生物学、生物信息学为药物分子设计提供了重要条件
结构生物学是从分子生物学和生物化学中分离出来的一门新兴学科,其主要方向是利用X衍射晶体学方法、多维核磁共振(mD—NMR)方法和电镜技术测定生物大分子的三维结构,为从原子和分子结构水平上研究生物大分子(蛋白质、核酸和多糖等)的结构与功能的关系、生物大分子一生物大分子和生物大分子一小分子间的相互作用奠定基础。随着人类基因组 和蛋白质组计划的兴起,将会有大量的新蛋白产生,目前的结构测定方法远不能满足这两个
研究计划的需求。正在发展的两项技术为高通量结构测定(high—throughput structural determination)和计算机分子模拟技术。
生物信息学(Bioinformatics)可定义为:一门包括生物信息的获取、处理、存储、传播、分析和解释等方面的学科,其目的是理解各种数据的生物学意义。人类基因计划和蛋白质组计划的开展,为生物医药研究提供了丰富的生物学信息。而从这些纷繁复杂的生物信息中寻找合适的药物作用靶标是生物信息学的重要目标之一。生物信息学还可用于药物作用机制、药物代谢动力学以及药物毒性的研究。结构生物学和生物信息学的发展为计算机辅助药物设计提供了重要的条件。计算机辅助药物设计(Computer Aided Drug Design,CADD)是化学,生物学,数学、物理学以及计算机科学交叉的产物。今天,应用各种理论计算方法和分子图形模拟技术(molecular vi—sualization),进行计算机辅助药物设计,已成为国际上十分活跃的科学研究领域。计算机辅助药物设计方法包括3类:(1)基于配体的药物设计(1igand-baseddrugdesign),这类方法根据已知的配体结构设计新的配体,主要包括定量构效关系fQSAR)方法和药效团模型方法,前者又分为2D—QSAR和3D—QSAR方法。(2)基于受体的药物设计(receptor based drug design),这类方法又称为基于结构的药物设计,主要根据受体的三维结构设计能与之匹配的配体,包括基团生长法(buiding)、模板连接法flinking)以及分子对接法(docking);(3)基于机制的药物设计(mechanism based drug design),这类方法在基于结构的药物设计基础之上,进一步考虑了药物与受体的动态结合过程,药物对受体构象的调节以及药物在体内的传输、分布和代谢。随着新世纪生命科学、计算机科学的发展,这种考虑药物作用的不同机理和全部过程的药物设计方法,将会更加完善,在新药的发现中发挥更大的作用。虚拟药物筛选(Drug Screening in Silico)是计算机辅助药物设计的另一种重要策略和方法。虚拟药物筛选指利用各种计算方法对化合物数据库进行”筛选”,可以大大减少工作量与成本,加快新药发现的步伐。当前,计算机技术的发展日新月异,已出现每秒运算lO万亿次以上的超级计算机。这种迅猛发展的势头,必将引起计算化学、计算生物学和药物分子设计领域的革命性变化。为此,要大力发展基于超级计算机、能适应复杂生物体系理论计算和药物设计要求的新方法和软件技术。
2.4产生大量新化合物的快速、高效新技术——组合化学和组合生物催化
大约在80年代,科学家提出一种新的思路,即对含有数十万乃至数十亿个化合物的化学进行同步合成和筛选,这一方法称为组合化学(CombinatorialChemistry)。短短l0年左右的时间,组合化学就已经显示了它的旺盛的活力,成为化学、药物和材料科学研究中的一个热点。组合化学的研究领域包括:(1)组合化学库的合成;(2)高通量筛选;(3)化学库编码及解析。
目前组合化学发展的一种趋势是和合理药物设计结合起来,通过分子模拟和理论计算方法合理地设计化合物库,目的之一是增加库中化合物的多样性(diversity),提高库的质量;目前研究的热点,是根据受体生物大分子结合部位的三维结构设计”集中库”(focuslibrary),这将大大提高组合化学物库的质量和筛选效率。
组合生物催化(Combinatorial Biocatalyst)是药物研究领域中继组合化学之后的又一种新技术。它是将生物催化和组合化学结合起来,即从某一先导化合物出发,用酶催化或微生物转化方法产生化合物库。组合化学和组合生物催化新技术大大加快了产生新化合物的速度,经过良好设计的组合化学库还可大大提高化合物结构的多样性,从而大大提高了寻找新药的速度和效率。以上我们概括了当前创新药物研究中高技术发展的状况和趋势,可以清楚地看到,现代生命科学和生物技术已日益渗透和融人到创新药物研究中去,对药物研究产生了巨大而深刻的影响,形成了当代创新药物研究的新模式。我们应清醒地认识和掌握科学技术发展的这种趋势和规律,有效地组织力量,强化我国创新药物的研究与开发.
第二篇:制药工程进展
制药工程进展
制药工程进展
摘要:本文简述了生物制药技术在国内外的发展前景与现状,动物细胞工程制药是动物细胞技术在生物制药工业方面的应用,转基因技术的发展,生物技术制药的发展过程以及对生物技术制药的展望。
关键词:生物制药;转基因;生物技术制药;展望
现代生物制药是一个热门的话题,21世纪的科学技术以生物学的成就占主导地位,该技术的不断发展与更新将会对人类的一些目前无法医治的疾病提供帮助,在食品方面也能起到较大的作用。生物技术药物(biotech drugs)是泛指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗的医药品,采用现代生物技术人为创造一些条件,借助某些微生物、植物或动物来产生所需的医药品[1]。
动物细胞工程制药是动物细胞技术在生物制药工业方面的应用,涉及动物细胞融合技术、转基因动物技术和细胞大规模培养技术等。
动物细胞工程是根据细胞生物学及工程学原理,定向改变动物细胞内的遗传物质从而获得新型生物或特种细胞产品的一门技术。在生物制药的研究和应用中起关键作用,目前全世界生物技术药物中使用动物细胞工程生产的已超过80%。当前动物细胞工程制药所涉及的主要技术领域包括细胞融合技术、细胞核移植技术、转基因动物技术和细胞大规模培养技术等方面。生物制药在国际上的发展前景与现状
1.1生物制药在国际上的发展
生物制药产业的发展是随着生物技术的发展而发展的,自1971年世界上第一家生物制药公司诞生以来,世界上很多国家都在发展生物制药产业。美国在生物制药产业发展方面领先于世界各国。美国目前已有超过1000家的生物技术企业,约占世界总量的2/3,已成功研发出30多个重要的治疗药物,正式投放市场的生物工程药物也达到了40多个,广泛应用于癌症、糖尿病、肝炎等疾病的治疗。
欧洲在生物制药方面整体落后于美国,但也发展迅猛。英、法、德、俄等国在开发研制和生产生物药品方面成绩很好。如俄罗斯科学院分子生物学研究所、莫斯科妇产科研究等多个科研机构近年来在研究和应用基因治疗方面都取得了重大进展。
日本在生物制药产业上也发展较快,日本已有65%的生物技术公司从事于生物医药研究,部分公司的技术实力已经跻身世界前列。澳大利亚、中国等亚太国家在生物制药产业方面同样发展也比较快,在世界范围的市场正不断拓展壮大。
1.2转基因动物
利用转基因动物乳腺反应器生产药用或食品蛋白是生物制药领域近年来研究的热点之
一。因为乳腺是一个外分泌器官,乳汁不进人体内循环,不会影响到转基因动物本身的生理反应,从转基因动物的乳汁中获取的目的基因产物,不但产量高、易提纯,而且表达的蛋白 1
经过了充分的修饰加工,具有稳定的生物活性,因此又被称为动物乳腺生物反应器,所以用乳腺表达人类所需蛋白基因的羊、牛等产量高的动物就相当于一座药物工厂。20 世纪80 年代中期,英国科学家克拉克首先在鼠的乳腺组织高效表达了人抗胰蛋白酶因子基因,开创了研制动物乳房生物反应器的先河[2-3]。
2生物制药在国内的发展前景与现状
2.1生物制药在国内的发展
我国在20世纪80年代初就把生物技术定为科技和产业发展的重要领域之一,也取得了比较明显的成果。已研制成功的基因工程乙型肝炎疫苗,产品已投放市场。正在研制的疫苗中病毒性疫苗有新型乙型肝炎疫苗和流行性出血热疫苗等7种;细菌性疫苗有痢疾疫苗;寄生虫疫苗有13本血吸虫疫苗;疟疾疫苗、避孕疫苗有人绒毛膜促性腺激素(HCG)疫苗等。但是与世界先进国家的生物医药产业相比,我国生物医药产业还处于比较落后的状态,但是国家和地方政府都在不断加大对该产业的发展力度,从政策和资金等各方面不断加大投入。当前,我国已将生物制药作为经济发展的重点建设行业和高新技术的支柱产业来发展。全国注册的生物技术公司超过了200家。近10年来,我国开发了新的特效药物,对肿瘤、心脑肺血管、免疫性、内分泌等严重威胁人类健康的疑难病症起到了较好的治疗效果,且副作用明显低于传统药品。
2.2转基因牛制药工程
科院新疆理化技术研究所与新疆金牛生物股份有限公司合作开展的“转基因牛(羊)制药工程”项目近日取得新进展。
该所科研人员将携带目的基因的表达载体导入纯化培养的成年奶牛成纤维细胞,并将其永久性整合导入成纤维细胞染色体中,通过核移植技术,将携带目的基因的成纤维细胞植入去核的山羊卵母细胞中,得到囊胚。目前,山羊成纤维细胞的纯化培养工作也已完成,下一步计划也将通过上述技术手段完成同种胚胎发育,得到囊胚,并经胚胎移植获得转基因良种奶羊。
用转基因家畜来生产药物,能生产其它方法不能生产的产品,是未来药物生产的一个趋势。
2.3纳米水基磁性液体在肿瘤治疗领域的研究进展
生物医学应用领域纳米磁性粒子的组成结构及特点,指出高分子改性纳米磁性粒子具有生物相容性好、稳定性强、载药量高的优点,并对目前高分子改性纳米四氧化三铁颗粒的制备方法及特点进行了对比分析。指出进一步研制磁响应性强、载药量高、粒度分布均匀的纳米磁性粒,使之对癌细胞具有亲和作用,尽量避免对毛细血管网状内皮系统的清除,是未来肿瘤治疗领域纳米磁性粒子的研发目标,并对目前制备方法中存在的不足提出了改进的建议。
2.4动物细胞工程制药的现状
(1)建立动物细胞大规模培养的技术平台。该技术是转墓因工程药物、单克隆扰 [4]
体及疫苗等产品的关键技术,主要由以下几个要素构成:1)高效的真核细胞表达系统。中国仓鼠卵巢细胞(CHO)作为宿主细胞表达的外源蛋白最接近其天然构象,是生物制药最为理想的表达系统,但也存在一些问题,如表达量低、大规模培养困难、生产成本高昂。我们应从工程细胞本身着手,对细胞本身的生理特征进行改造,除了要求目的蛋白的表达量高外,必须适应无血清培养基培养,具有即抗细胞衰老凋亡能力。2)性能优越的、个性化的细胞培养基,包括低血清培养基、无血清培养基。3)先进的生物反应设备,(2)减少污染风险、提高产品质量和安全性。
(3)实行“动物药厂”计划,尽快实现转基因动物乳腺生物反应器的产业化.(4)发展下游工程,主要是转基因表达产物及产品的分离纯化,在提高产品的纯度和产量同时,降低成本。总之,我国动物细胞工程制药目前仍处于起步阶段,与欧美国家相比还有很大差距,虽然目前可生产多种有重要价值的蛋白质生物制品,如病毒疫苗、干扰素、单克隆抗体等,但大部分还处于实验和临床阶段。随着生命科学的发展和细胞工程技术研究的深入,将会有更多的细胞工程药物出现,具有广阔的应用前景[5]。
2.5核酸蛋白药物研发
首届核酸蛋白药物研发国际研讨会在北京会议中心召开。据独立市场分析报告显示,市场对于核酸及核酸蛋白和药物复合物的结构测定的需求与日俱增,生物制药作为生物技术研究开发和应用中最活跃、进展最快的领域,被公认为21世纪最有前途的产业之一。
北京康钰垚生物科技有限公司是北京市“瞪羚计划”首批重点培育企业、ABO联盟成员,拥有全球首创的 “硒核酸蛋白平台技术”,成功用于核酸和蛋白核酸复合物的高通量结构测定,可以满足制药和生物技术行业对新的潜在药物靶点(核酸和蛋白核酸复合物)的结构生物学研究的需求。
它首先发明和深度开发的硒取代核酸衍生物的技术及产品,用于非常规散射X射线法对大分子物质进行3D结构中的相位测定,这种方法已在多个实验室中采用。生物分子3D结构的测定非常有利于在原子水平上促进新药的发现,在分子水平上有助于人们对发病机理的认识,这将使人们改进疾病治疗方案,改善人们的健康状态。
3生物制药产业发展的过程趋势
生物制药按其发展过程大致划分为三代。第一代,生物制药是利用生物材料制成的含某些天然活性物质与混合成分的粗提物制剂,如脑垂体后叶制剂、肾上腺提取物、眼制剂、混合血清等。第二代,生物制药是根据生物化学和免疫学原理,应用近代生化分离纯化技术从生物体制取的具有针对性治疗的特异性生化成分,如猪胰岛素、尿激酶、肝素钠、人丙种球蛋白,转铁蛋白,狂犬病免疫球蛋白。第三代,生物药物是应用生物工程技术生产的天然生理活性物质,以及通过蛋白质工程原理设计制造的具有比天然物质更高活性的类似物或与天然物质结构不同的全新的药理活性成分,如基因工程白细胞介素(IL)、红细胞生成素(EPO)等。
未来生物技术将对当代重大疾病治疗创造出更多的有效药物,而将生物医药技术从科研
转向产业化生产是科研的重要目的,只有将技术转化为生产力,才能使得社会生活水平得到提升。生物制药产业作为高新技术产业,需要不断进行技术创新,才能不断解决产业发展中存在的问题,并不断满足医药水平提升的要求[6]。生物医药技术向产业化推进要求企业通过委托外包策略,建立技术同盟,形成优势互补,使得自身能够专注于自身专长方面,从而能够降低生产成本、提高竞争优势。而生物制药这项新兴技术的发展也将会不断应用到产业发展当中来,从而可以更好地促进产业技术水平和社会医疗水平的提升。
4生物制药展望
随着社会时代不断的发展人们对生物制品的需求将会越来越多,今后10年生物技术将会得到突飞猛进的发展,并在所有前沿性的医学领域形成一个新的领域。目前热门的生物药品主要分为:1.氨基酸及其衍生物类;2.有机酸、醇酮类;3.维生素;4.酶以及辅酶类
[7]。
生物学的发展不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素耐受性越来越强的不良趋势,对感染形成新的攻势。
5制药工程专业的发展
从2003年8月的统计数据来看,制药工程专业在各省市的分布不是十分均衡的,国外制药工程交流最多的江苏省有10所以上的高校设置了制药工程专业,但是全国却有近1/5的省、自治区则没有设置该专业。
制药工程各大区高校的制药工程专业设置也不均匀,其中华东地区所占比例最高,达到了1/3,华北地区次之,东北地区排列第三,而西北地区和华南地区则相对较少。这些制药工程专业的设置数量在某种程度上可能与该地区高校数量、办学能力、该地区的制药工业或者经济发展状况有一定的相关性。
医药产业已成为世界经济强国竞争的焦点,世界上许多国家都把建立制药工程专业视为国家强盛的一个象征。
新药的不断发现和治疗方法(如基因研究)的巨大进步,促使医药工业发生了非常大的变化。因此,无论是药品,还是过程技术都需要新型制药工程师,这类人才掌握最新技术和交叉学科知识、具备制药过程和产品双向定位的知识及能力,同时了解密集的工业信息并熟悉全球和本国政策法规。
2003年中国制药企业共5082家,生产药品的工业企业约3000家,生化制药企业300余家,其中现代生物制药企业47家;生产中药(包括天然药物)产品的企业约1600家,其中专门生产中药(包括天然药物)产品的155家。另外,还有药品批发企业16.7万多家,药品零售企业12万家,医疗机构6万家。这些企业都在近期和将来对制药工程专业人才有较大的需求量。[8]
6小结
药物的研究开发需要较大的资金支柱,而且需要大批专业的科学人士花费多年的时间才会有成效,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。所以说利用生物技术来制药将会越来越受人们的重视与青睐,利用这项技术来生产制造出对人们更有益更有效的药品。它将会成为未来药物研发中的一项重要技术。
综合多学科的努力以及人们不断探索创新的精神,在社会多方面的大力支持下通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。
参考文献
[1]文淑美.全球生物制药产业发展态势[J].中国生物工程杂志,2006,(1):92-96.
[2]沈子龙,廖建民.转基因动物技术与转基因动物制药[J].中国药科大学学报,2002,33(2):8-86.[3]Brink MF,BishoP MD,Pieper FR.Developlng efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk[J].Theriogenology.2000,53(1):139-142.[4]熊宗贵.生物技术制药[M].北京:高等教育出版社,1-13.[5]马瑞丽.动物细胞工程制药的研究进展[J].工业技术,2007,14:28-29.
[6]王明亮.贵州生物制药产业发展的SWOT分析及对策[J].凯里学院学报,2010,28(1):46-49.[7]何华,焦庆才.生物药物分析[M].北京:化学工业出版社,4-6.
[8]刘广艳.现代生物技术主要的研究与进展[J].林区教学,2011,3:122-123.
第三篇:制药工程
间歇釜式反应器和平推流反应器中,返混为零;全混流反应器中,返混 极大 ;多釜串联反应器,釜数越多,返混程度越小。实际反应器中,一般都有一定程度的返混。基本反应器:间歇釜式反应器、连续釜式反应器、连续管式反应器和多釜串联反应器 对整个反应器进行物料衡算:
流入量 = 流出量 + 反应量 + 累积量
某组分流入量=某组分流出量+某组分反应消耗量+某组分累积量
1.间歇釜式反应器
特点:1)一般为液相反应,密度变化不大,可视为等容过程;2)物料混合完全;3)间歇操作反应期间无进料和出料
装料系数,一般在0.4~0.85之间,不起泡不沸腾的物料可取0.7~0.85,易起泡或沸腾的物料可取0.4~0.6V1=V2/n
0.连续操作管式反应器
优点:具有容积小、比表面大、返混少、反应参数连续变化、易于控制的优点,缺点:对于慢速反应,则有需要管子长,压降大的不足。
适用:液相反应和气相反应。由于PFR能承受较高的压力,用于加压反应尤为合适。
1.间歇反应器与平推流反应器需要的容积相同。
但因为间歇反应器中存在辅助时间与装料系数。所以它需要的总容积较平推流反应器较大。对于反应时间很短,辅助时间相对较长的反应来说,选用管式反应器较为合适。
2.对简单反应,选择反应器型式有如下几条原则可供参考。
对零级反应,选用单个连续釜和管式反应器需要的容积相同,而间歇釜因有辅助时间和装料系数,需要的容积较大。
反应级数越高,转化率越高,单个连续釜需要的容积越大,可采用管式反应器。如反应热效应很大,为了控制温度方便,可采用间歇釜或多釜串联反应器。
液相反应,反应慢,要求转化率高时,采用间歇反应釜。
气相或液相反应,反应快,采用管式反应器。
液相反应,反应级数低,要求转化率不高;或自催化反应,可采用单个连续操作的搅拌釜。
3.反应器型式选择
设置较高的CA:采用管式反应器。因管式反应器内反应物的浓度较连续釜式反应器为高,其次则采用间歇釜式反应器或多釜串联反应器。
设置较低的CA:采用连续釜式反应器。但在完成相同生产任务时,所需釜式反应器体积较大。故需全面分析,再作选择。
与浓度无关:选用管式反应器,因同样选择性下其生产能力较大。
4.管式反应器特点:
(1)反应物浓度和化学反应速度随管长变化。
(2)管式反应器具有容积小、比表面大、单位容积的传热面积大,特别适用于热效应较大的反应。
(3)由于反应物在管式反应器中反应速度快、流速快,所以它的生产能力高。
(4)管式反应器适用于大型化和连续化的化工生产。
(5)和釜式反应器相比较,其返混较小,在流速较低的情况下,其管内流体流型接近与理想流体。
(6)管式反应器既适用于液相反应,又适用于气相反应。用于加压反应尤为合适。此外,管式反应器可实现分段温度控制。
缺点:反应速率很低时所需管道过长,工业上不易实现
分类:(1)水平管式反应器(2)立管式反应器(3)盘管式反应器(4)U形管式反应器
换热方式:(1)套管或夹套传热(2)套筒传热(3)电流加热(4)烟道气加热
双膜理论模型
(1)基本假定
气液两相沿接触界面均存在一个滞留膜,气相组分A传递阻力完全集中在气膜内,相界面本身无传递阻力;组分A由界面传递到液相主体的阻力完全位于液膜内,液膜以外的湍动足以消除浓度梯度。
(2)实质:定态理论
(3)缺点:双膜存在是理论先决条件,与事实不符。但包含两个基本特征-溶解和扩散
1.固定床反应器的特点
结构简单很少催化剂损耗很小气固返混较长的扩散时间及距离高床层压降 床内取热供热困难催化剂取出更新困难催化剂颗粒大,效率低
压力降产生原因
(1)摩擦阻力:由于流体与颗粒表面之间的摩擦产生。
(2)局部阻力:流体在孔道内的收缩、扩大及再分布所引起的。
低流速时,摩擦阻力为主;
高流速及薄床层中流动时,以局部阻力为主。
(1)属于流体的:气流速度、流体的粘度、密度等物理性质
(2)属于床层的:床层的高度、床层空隙率和颗粒特性如形状、粒度等
压力降过大对反应的影响: 影响生产能力;影响床层中的浓度和温度分布;增加动力消耗。降低压降的方法:降低流速、增大空隙率、减小床层高度、增加催化剂颗粒直径等。
1单段绝热式
特点:结构简单,反应器生产能力大,但反应过程中温度变化较大。
适用:1.反应热效应不大,反应过程允许温度有较宽变动范围的反应过程;2.热效应较大的反应只要对反应温度不很敏感或是反应速率非常快的过程,有时也使用这种类型的反应器。2多段绝热式
特点及适用:多段绝热式弥补了单段绝热式的不足;
冷激式反应器结构简单,便于装卸催化剂,内无冷管,避免由于少数冷管损坏而影响操作,特别适用于大型催化反应器。
1对外换热式
特点:小管径,传热面积大,有利于强放热反应;热效果好,易控制床层温度;管径较细,故反应速率快,选择性高;结构较复杂,设备费用高。
适用 : 原料成本高,副产物价值低以及分离不是十分容易的情况。
2自热式
特点:把原料的预热和产物的冷却过程融为一体,大大提高了能量利用水平。
应用:只适用于热效应不大的高压放热反应过程。如中小型合成氨厂的氨合成和甲醇的合成。
2.流化床反应器
优点:温度分布均匀;提高了催化剂的内表面利用率;能够实现反应过程和再生过程的连续化;所需的传热面积大为减小;设备生产强度大,适用于大规模生产。
缺点: 1)气体返混严重,转化率降低2)增加了催化剂的损耗和设备及管道等的磨损。流化床适用于: A、热效应很大的放热或吸热反应; B、要求有均一的反应温度和需要精
确控制温度的反应; C、催化剂寿命较短,操作较短时间就需要更换(或活化)的反应。一般不适用于:A、要求高转化率的反应;B、要求催化剂床层有温度分布的反应。
流化床层中流体的流动
固定床阶段:u0≤umf时,固体粒子不动,床层压降随u0增大而增大;
流化床阶段:umf≤u0≤ut时,固体粒子悬浮湍动,床层分为浓相段和稀相段,u0增大而床层压降不变;
输送床阶段:u0>ut时,粒子被气流带走,床层上界面消失,u0增大而床层压降有所下降。
1.实际流化床与理想流化床差异的原因:固定床阶段,颗粒之间由于相互接触,部分颗粒可能有架桥、嵌接等情况,造成开始流化时需要大于理论值的推动力才能使床层松动,即形成较大的压力降。
(1)沟流消除:物料预先干燥;加大气速;合理设计分布板
(2)大气泡 消除:在床层内加设内部构件可以避免产生大气泡,促使平稳流化
(3)腾涌 消除:在床层过高时,可以增设挡板以破坏气泡的长大,避免腾涌发生
对萃取剂的基本要求:(1)选择性强(2)溶解度大(3)挥发性小(4)经济、安全要求 共沸精馏的概念:
第三组分(恒沸剂或挟带剂)与原溶液中一或两个组分形成恒沸物,使原有组分间的相对挥发度 增大,再用一般精馏方法分离。
最低恒沸物的体系:恒沸物为塔顶产品,塔底得纯组分;
最高恒沸物的体系:恒沸物为塔底产品,塔顶得纯组分。
恒沸精馏流程取决于共沸剂与原组分形成的恒沸液的性质。
1.形成共沸物的条件和特性:(1)在恒温下,两液相共存区的溶液蒸汽压大于纯组分的蒸汽压,但蒸汽组成介于两液相之间,这种系统就形成非均相共沸物。(2)在恒温下,两液相共存区的溶液蒸汽压大于纯组分的蒸汽压,但蒸汽组成并不介于两液相组成之间,这种系统不形成非均相共沸物而形成均相共沸物(3)在恒温下,两液相共存区的溶液蒸汽压介于纯组分的蒸汽压之间,而蒸汽组成并不介于两液相组成之间,这种系统不形成共沸物。
1.共沸剂的选择原则:1)共沸剂至少应与原溶液的组分之一形成共沸物且该共沸物的Tb与原溶液组分的Tb或原溶液共沸物的 Tb相差越大越好。一般希望>10K。2)新共沸物所含共沸剂的量要小,以减少共沸剂用量、节省能耗和降低设备投资。3)新共沸物最好为非均相共沸物,便于用分层方法分离,使共沸剂易于回收。4)有较好的物理、化学性能。溶剂选择(萃取)范围较广一定要形成共沸,选择余地小(共沸)
溶剂用量(萃取)用量波动范围大,用量一般较大用量不易波动(共沸)
能量消耗(萃取)以消耗显热为主,能耗小以消耗蒸发潜热为主,能耗大(共沸)溶剂加入方式(萃取)在靠塔顶部加入加入方式灵活,视溶剂性质而定(共沸)适用范围(萃取)规模大的连续生产连续或间歇操作(共沸)
精密精馏1.不稳态操作时间的增加因素:塔身和产品罐存料大;原料浓度低而产品浓度又要求高;相对挥发度小,理论板数多;塔内汽液流速低,等等;此外还与操作方式有关盐溶精馏-选择一种盐溶液作为添加剂,来达到改变本分离组分之间的相对挥发度,从而达到分离目的。
优点:(1)可以节省能耗;(2)盐一般为不挥发组分,故仅仅在塔釜中出现,可以使产品的纯度提高;(3)盐的分离也较容易。盐可以循环使用。
缺点:盐的溶解回收,固体物料的输送,加料,以及盐结晶引起堵塞、腐蚀等问题,限制了它在工业上的应用。
用途:a)制造无水酒精。b)稀硝酸用硝酸镁脱水制造浓度99.5%的浓硝酸
方法:1)将固体盐加入到回流液中,溶解后由塔顶加入,在塔顶可以得到纯的产品,塔底得盐的溶液,其中的盐回收再用。该法的缺点是回收盐十分困难,要消耗大量热能。2)将盐溶液和回流液混合,此方法应用方便,但盐溶液中含有塔底组分,使塔顶得不到高纯产品。
3)把盐加到再沸器中,盐仅起破坏共沸液的作用,然后再用普通蒸馏进行分离。这种方法只适合用于盐效应很大,或纯度要求不高的情况。
1.加盐为什么会改变α?
宏观 :盐在水中的溶解度较大,使溶液的蒸汽压严重下降,进而导致沸点升高;而盐在醇中的溶解度较小,导致醇溶液的蒸气压下降较小,从而导致相对挥发度增加。
微观 :盐是强电解质,水中会解离为离子,产生电场,水分子极性和介电常数大,易聚集在离子周围使水的活度系数下降,从而使相对挥发度增加。
2.反应精馏优点:1)可以增加反应的转化率及选择性。2)增加了反应速度,提高了生产能力。
3)由于利用了反应热,节省能量。4)由于将反应器和精馏塔合成一个设备,节省设备投资。
5)对于某些难分离的物系,可以利用反应精馏来获得较纯的产品。例如用丁苯或叔丁苯的转移烷基化来分离间二甲苯对二甲苯的混合物
分子蒸馏过程(四步曲)
(1)物料分子从液相主体向蒸发表面扩散(注意:液相中的扩散速度是控制分子蒸馏速度的主要因素);
(2)物料分子在液层上自由蒸发速度随温度升高而增大,但是,分离因素却随温度升高而降低;
(3)分子从蒸发面向冷凝面飞射。在飞射过程中可能与残存的空气分子碰撞,也可能相互碰撞,但只要真空度合适,使蒸发分子的平均自由程大于或等于蒸发面与冷凝面之间的距离即可。
(4)轻分子在冷凝面上冷凝。如果冷凝面的形状合理且光滑并迅速转移,则可以认为冷凝是瞬间完成的分子蒸馏技术的特点:操作温度低;蒸气压强低;受热时间短;不可逆性;没有沸腾鼓泡现象;分离程度及产品收率高;无毒、无害、无污染、无残留
分子蒸馏器的模式
(1)降膜式—结构简单。液膜靠重力自然分布下降,较厚,效率低,目前已很少使用;
(2)刮膜式—依靠刮板成膜,较薄,分离效率高,但结构较降膜式复杂。现在国内、外的工业化装置以转子刮膜式为主。
(3)离心式—依靠离心力成膜,很薄,蒸发效率最高,但结构也最复杂,造价高 分子蒸馏设备设计原则
1)正确的选择真空泵组、管道尺寸及密封结构,以保证足够快地达到所需之工作真空度。
2)正确选择蒸发面与冷凝面的形状、距离及相对位置
3)分子蒸馏多用于分离热敏性物质,故要求被加工物料在蒸馏温度下停留较短的时间。
4)力求减少液层厚度及强化液层的流动
5)被蒸馏液体必须预先除气。
第四篇:制药工程
制药工程
1.工程项目从计划建设到交付生产的基本程序:项目建议书----批准立项----可行性研究----
审查及批准-----设计任务书-----初步设计-----设计终审----施工图设计-----施工----试车----竣工验收-----交付生产
2.上述基本工作程序分为3个阶段:设计前期(项目建议书,可行性研究,设计任务书)、设计期(初步设计,施工图设计)、设计后期(施工,试车,竣工验收,交付生产)
3.项目建议书重要性:是投资前对工程项目的轮廓设想,主要说明项目建设的必要性,同
时初步分析项目建设的可能性。
4.制药装置调试的总原则:从单机到联机到整条生产线,从空车到以水代料到实际物料
5.厂址选择重要性:是基本建设前期工作的重要环节,是工程项目进行设计的前提
6.厂址选择的基本原则:a、贯彻国家的政策方针 b、正确处理各种关系c、注意制药工业
对厂址选择的特殊要求d、充分考虑环境保护和综合利用e、节约用地 f、具备基本的生产条件g、节约用地
7.总平面设计:是在主管部门批准的厂址上,按照生产工艺流程级安全,运输等要求,经
济合理的确定各建(构)筑物、运输路线、工程管网的设施的平面及立面关系。
重要性:是工程设计的一个重要组成部分,其方案是否合理直接关系到工程设计的质量和建设投资的效果
8.建筑系数:指建筑用地范围内所有建筑物占地的面积与用地总面积之比。反映了厂址范
围内的建筑密度。
建(构)筑物占地面积堆场、作业场占地面积100% 全场占地面积
9.建筑坐标系:厂区和建(构)筑物方位一致的坐标系。
特点:以厂区和建(构)筑物的方位为坐标轴,故在确定厂区和建(构)筑物方位的位
置时可避免烦琐的换算,给现场施工带来方便。
10.洁净厂房:由于生产等原因,需要采用空气净化系统以控制室内空气的含尘量或含菌浓
度的厂房。
11.工艺流程设计的作用:在确定的原料路线和技术路线的基础上进行的,是整个工艺设计的中心。是工程设计中最重要、最基础的设计步骤,对后续的物料衡算、工艺设备设计、车间布置设计和管道布置设计等单项设计起着决定性的作用,并与车间布置设计一起决定这车间或装置的基本面貌。
12.确定工艺流程的重要性:确定工艺流程中个生产过程的具体内容、顺序和组合方式,是
工艺流程设计的基本任务。
13.工艺流程设计通常采用2阶段设计:即初步设计(绘制工艺流程框图,工艺流程示意图,物料流程图和初步设计阶段带控制点的工艺流程图)和施工图设计(绘制施工阶段带控制点的工艺流程图)。
14.物料的回收与套用:以降低原辅材料的消耗,提高产品收率,是降低产品成本的重要措
施
15.工艺流程框图的性质:在工艺路线和生产方法确定后,物料衡算开始之前表示生产工艺
过程的一种定性图纸。作用:定性的表示出由原料变成产品的路线和顺序,包括全部单元操作和单元反应。
16.工艺流程示意图概念:在工艺流程框图的基础上,分析各过程的主要工艺设备,在此基
础上,以图例、箭头、和必要的文字说明定性表示出由原料变成产品的路线和顺序,绘制出工艺流程示意图。阿司匹林工艺流程示意图见P38
17.初步设计阶段和施工阶段都要绘制带控制点的工艺流程图,区别是:初步设计阶段带控
制点的工艺流程图是在物料流程图的基础上,加上设备、仪表、自控、管路等设计结果设计而成,并作为正式设计成果编入初步设计文件中。而施工阶段带控制点的工艺流程图是根据初步设计的终审意见,对初步设计阶段带控制点的工艺流程图进行修改和完善,并充分考虑施工要求而完成。
18.物料衡算的重要性:是最先进行的一个项目,其结果是后续的能量衡算,设备选型与工
艺设计、车间布置设计、管道设计等各单项设计的依据,因此,物料衡算结果的正确与否直接关系到整个工艺设计的可靠程度。
19.物料衡算的依据:工艺流程示意图以及为物料衡算收集的有关资料。
20.物料衡算的作用:根据物料衡算的结果,将工艺流程示意图进一步深化,可绘制出物料
流程图。在物料衡算的基础上,可进行能量横算,设备选型与工艺设计,以确定设备的容积,台数和主要工艺尺寸,进而可进行车间布置设计和管道设计等项目。
21.物料衡算的意义:在实际应用中,根据需要,也可对已经投产的一台设备,一套装置,一个车间或整个工厂进行物料衡算,以寻找生产中的薄弱环节,为改进生产、完善管理提供可靠的依据,并可作为判断工程项目是否达到设计要求以及检查原料利用率和三废处理完善程度的一种手段。
22.浓度变化热:恒温恒压下,溶液因浓度发生待变而产生的热效应。
23.熔解热:恒温恒压下,将1mol溶质溶解于n mol 溶剂中,该过程所产生的热效应。
24.标准生成热:由标准状态下最稳定单质生成标准状态下单位物质的亮的化合物的热效应
或焓变。吸热为正,放热为负。
25.间歇操作的方式及特点:将反应所需要的原料一次加入反应器,达到规定的反应程度后
立即卸出全部物料。然后对反应器进行清理,随后进入下一个操作循环。间歇反应过程是一种典型的的非稳态过程,反应器内物料组成随时间变化,值得注意的是,对于单一反应,产物R的浓度随反应时间的增加而增大,但若反应体系中同时存在多个化学反应,这一结论就未必成立。如连串反应A-R(产物)-S,产物R的浓度先随反应时间的增加而增大,达一极大值后又随反应时间的增加而减小。间歇操作有反应过程中既无物料加入又无物料输出,装置简单,操作方便,适应性强的特点。
26.反应器计算方程式:反应动力学方程式均相反应P86到P88(rArBrcrD)止 acdb
27.理想混合器的特征:是物料达到完全混合,浓度、温度、和反应速度处处相等。
理想置换的特征:与流动方向垂直的截面上,各点的流速和流向完全相同,就像活塞平推一样。细长型的管式反应器可近似看成理想置换反应器。
28.空间时间不等于物料在反应器内的停留时间。只有对于等容过程,空间时间才与物料的停留时间相等,并为管式反应器内物料的反应时间cVR反应器的有效容积反应器的有效容积 Vh进料体积流量反应器中的物料的体积流量
k1a1a2CA k229.平行反应,如何提高产率?提高值。
(1)调节反应物浓度。.若a1a2,就提高CA,反之,降低CA。若a1a2,反应物
浓度对对R的收率没有任何影响。
(2)。改变操作温度。kAexp(E/RT)
E1E2,提高温度,增大值。反之,降低温度。若相等,则无影响。详见110
30.挡板的安装方式与液体粘度有关。对于低粘度,将挡板垂直纵向的安装在釜的内壁上,上部伸出液面,下部到达釜底;中等粘度,挡板离开釜系;高粘度,挡板离开釜壁并与壁面倾斜。
31.建筑物:凡用于人们在其中生产、生活或进行其他活动的房屋或场所。
构建物:人们不在其中生产、生活的建筑。
柱网:厂房建筑的承重柱在平面中排列索形成的网格。
厂房建筑的定位轴线包括纵向定位轴线和横向定位轴线,其中纵向定位轴线与厂房平
行,横向定位轴线与厂房的长度方向垂直。
32. 公称压力:是管子、阀门及管件在规定温度下的最大许用工作压力(表压)。
公称直径:是管子、阀门或管件的名义内直径。对阀门或法兰而言,公称直径是指与其
相配的管子的公称直径。
33.制药工业污染的特点:1.数量少、组分多、变动性大(化学原料药的生产具备反应多而
复杂、工艺路线较长等特点,因此所用原辅料的种类较多,反应形成的副产物也多,有的副产物连结构都难以搞清楚,这给污染的综合治理带来了很大的困难)2.间歇排放
3.pH不稳定4.化学需氧量高
34.绿色生产工艺指尽量采用那些污染小或者无污染的绿色生产工艺,改造那些污染严重的落后生产工艺,以消除或减少污染物的排放。
35.采用绿色生产工艺的4个内容:重新设计无污染或者少污染的生产工艺,并通过改进操
作方法、优化工艺操作参数等措施,实现制药过程的节能降耗,消除或减少环境污染的目的。
36.生化需氧量(BOD):在一定条件下,微生物氧化分解水中的有机物时所需的溶解氧的量。单位mg/L
37.化学需氧量(COD):在一定条件下,用强氧化剂氧化废水中的有机物所需的氧的量。
38.BOD和COD的区别:BOD反映了废水中可被微生物分解的有机物的总量,其值越大,表示水中的有机物越多,水体被污染的程度越高。COD能够更加精确地表示水中的有机物含量。
39.清污分流指将清水(如间接冷却用水、雨水和生活用水)与废水(如制药生产过程中排
出的各种废水)分别用各自不同的管路或渠道输送、排放或贮留,以利于清水的循环套用和废水的处理。
40.废水处理的的基本方法:物理法(指利用物理作用将废水中呈悬浮状态的污染物分离出
来,在分离过程中不改变其化学性质,包括沉降,气浮,过滤);化学法(利用化学反应原理来分离、回收废水中各种形态的污染物,包括中和,凝聚,氧化);物理化学法(指综合利用物理和化学作用出去废水中的污染物,包括吸附法,离子交换法和膜分离法);生物法(利用微生物的代谢作用,使废水中呈溶解和胶体状态的有机污染物转化为稳定无害的物质)
41.好氧生物处理基本原理:在有氧的条件下,利用好氧微生物的作用将废水中的有机物分
解为二氧化碳和水,并释放出能量的代谢过程。细看P252
42.好氧生物处理法:活性污泥法,生物膜法看P254-258
43.洁净厂房的耐火等级不能低于二级
44.制药工程设计的重要性:制药工程设计的水平高低,质量优劣,可通过技术经济分析和
编制工程概算来分析和评判。
45.技术经济分析:指借助于一系列技术经济指标,对制药工程设计的不同技术方案或措施
进行经济效果的分析、论证和评价,一寻求技术与经济之间的最佳关系,为确定技术上先进、经济上合理的最佳设计方案提供科学依据。
46.技术经济分析的根本目的是使拟建制药工程项目能以最小量的投入,生产出最大量的合格产品—药品,以实现最大的经济效益。
47.流动资金:项目建成投产后,在生产经营过程中不断循环周转的那部分资金,可分为定
额流动资金和非定额流动资金
48.估算流动资金的常用方法:一种,按月工厂成本的倍数估算,一般取1.5-3个月的工厂
成本作为流动资金的估算值,二种,按定额流动资金的3项组成计算。
49.定额流动资金=储备资金+生产资金+成品资金
50.成本的分类:按计量单位,按计算范围,按费用与产量的关系
51.总成本指生产一定种类和数量的产品所消耗的全部费用,该指标主要用于计算财务评价
中的毛利、净利、流动资金、静态指标和动态指标等。
52.静态分析法 自己看,P314
53.计算题,自己看,页数自己找。
第五篇:制药工程感想
药
理
学
制药工程感想
姓名:伍巍
学号:2011966816
班级:11级制药工程
院校:兴湘学院
2014年5月27日
制药工程感想
在高考填报志愿的时候并不知道制药工程是学什么的,而且每个学校开的课程也不一样,网上的信息也是以偏该全,通过大学三年对制药工程专业的学习使我对本专业有了一个深入的了解。
制药工程是一个化学、药学(中药学)和工程学交叉的工科类专业,以培养从事药品制造,新工艺、新设备、新品种的开发、放大和设计人才为目标。这个名称正式出现在教育部的本科专业目录是1998年。尽管制药工程专业在名称上是新的,但是从学科沿革来看她的产生并不是全新的,是相近专业的延续,也是我国科学技术发展到一定时期的产物。制药工程专业是以生命科学和化学工程的知识为主要理论依据,结合现代生物技术,用于研究开发与工业化生产和人类医疗保健相关的产品或提供服务的一门工程技术学科.本专业含生物工程制药、微生物制药、海洋生物制药、中药研制、化学合成制药等研究方向;其外延涵盖药用动植物细胞培养、组织工程、干细胞培养、生物芯片、药用高分子材料、药用机械及自动化设备等。制药工程专业主要培养从事医药、精细化工和生物化工等产品的生产、工程设计、科技开发、应用研究和经营管理等方面的高级工程技术人才。通过学习,使我们掌握本专业所需的基本理论、专业知识和专业技能,受到化学与化工实验技能、计算机应用、科学研究与工程设计方法的基本训练,具有对医药产品的生产、工程设计、新药的研制与开发的基本能力。初步掌握计算机在医药产品的开发及生产中的应用技术、熟练掌握一门外语,能阅读本专业外文资料。
根据制药工程的性质来说,制药工程专业在制药行业属于适应性强,覆盖面广的宽口径专业,其着眼点是解决药品生产过程中的工程技术问题和实施“药品生产质量管理规范”(GMP),实现药品的规模生产和规范化管理。本专业研究药品(原料药和制剂)生产过程共同的规律及理论基础,研究通过化学或生物反应及分离等单元操作制取药品的基本原理及实现工业化生产的工程技术。包括新工艺、新设备、GMP改造等方面的研究、开发、放大、设计、检控与优化。
根据制药工程培养人才方面来说,本专业要求我们学习有机化学、物理化学、生物化学、化工原理、药剂学、药理学、制药工艺设备等基本知识,接受化学和化工实与工程设计方法的基本训练,具有对医药品、保健品的生产营、工程设计、新药研发的基本能力。
在专业知识方面,我们应掌握化学制药、生物制药、生物技术、中药西做、药物制剂技术与工程的基本知识;在工艺设备方面要求学生掌握药物生产装置、工艺流程与设备设计方法;并具有对药品新资源、新产品、新工艺的研发或设计初步能力。熟悉国家关于化工与制药生产、设计、研发、营销、环保等方面的政策法规;了解本专业的发展动态与前沿,具有较强自学能力和创新意识了解制药工程与制剂方面的理论前沿,了解新工艺、新技术与新设备的发展动态。具有创新意识和独立获取新知识的能力。在外语和计算机应用能力要达标。我们还应具有一定的人文知识,较好人文素质。
具有了本专业的技能和知识后,我想谈谈关于我国制药业的现状。在当今,医药产业已成为世界经济强国竞争的焦点,世界上许多国家都把建立医药品工业视为国家强盛的一个象征。新药的不断发现和治疗方法(如基因研究)的巨大进步,促使医药工业发生了非常大的变化。随着现代医药工业的高速发展,医药生产企业要想在市场中生存,必须增强实力,形成规模经济,重视技术革新和新产品研制开发。因此,无论是药品,还是过程技术都需要新型制药工程师,这类人才掌握最新技术和交叉学科知识、具备制药过程和产品双向定位的知识及能力,同时了解密集的工业信息并熟悉全球和本国政策法规。这些企业都在近期和将来对制药工程专业人才有较大的需求量。
医药行业内企业数量众多,规模较小,行业内小型企业占据了一个很大的比例,行业大中型企业却只有很小一部分。销售收入和利润占比上看,行业的集中度相对欧美国家有很大的差距。行业还缺少领军企业,虽然在个别产品上,我国医药企业在全球占很高比重,但是这些产品通常情况下附加值比较低,由此造成了我国企业无法形成有效的竞争力。我国生产的中西要中,超过97%的为仿制药,几乎全部先进技术来源于国外。在我国制药业这样的一个现状下,制药业应该何去何从,应该如何去寻找一条通向灿烂辉煌明天的道路。在中国已加入了WTO以后,再进行仿制将受到专利法的牵制而无法进行,制药企业必须走自己研发新产品的道路,才能由大变强,才能立于不败之地。面对严峻的挑战,我国制药业不能悲观消极的等待,而应把握机遇,根据制药业的现状和未来的发展趋势,适时的制定相关对策,以适应制药业的发展。总的来说,对于当初填报志愿时选制药工程专业我没感到后悔,在这三年对制药工程专业的学习,让我学到了很多关于药的知识,不仅仅是如何研究制药的工艺,如何分析药物成分,如何用物理或化学的方法确定药物的结构,而且还学会了生病可以吃什么药而不用去医院,可以直接去药店自己拿药。还有就是关于毕业是考研还是就业,对于我来说能够考研是最好的,毕竟制药工程专业还是需要大量的学术知识才能有跟好的发展的。