第一篇:风力发电机电气控制系统
电气控制系统
电气控制系统的作用是确保风力机运行过程的安全性和可靠性,提高机组的运行效率和发电供电质量。离网型风力发电机组电气控制系统分为直流和交流系统。直流系统是由风力机驱动直流发电机、经过调压限流器向蓄电池充电及向电阻性负载供电。交流系统包括交流发电机、整流装置、控制器、分流卸载电阻箱、蓄电池组、逆变器和负载。它是一个由交流发电机经整流装置整流后向蓄电池充电及向电阻性负载供电,还可以在蓄电池之后连接逆变器向交流负载供电的交直流供电系统。发电机 按类型分为同步和异步发电机;励磁和永磁发电机;直流和交流发电机。按运行方式又分为内转子和外转子。现有国产离网型风力发电机多采用同步三相永磁式交流发电机,而且是直接驱动的低转速、内转子运行方式。这种发电机为永磁体转子,无励磁电流损耗,它比同容量电励磁发电机效率高、重量轻、体积小、制造工艺简便、无输电滑环,运转时安全可靠,容易实现免维护运行。它的缺点是电压调节性能差。
一种爪极无刷自励磁交流发电机,具备励磁电流自动调节功能。在为独立运行的小型风力发电机配套时,可以有效的避免因风速变化,发电机转速变化而引起的端电压波动,使发电机的电压和电流输出保持平稳。控制器功率容量几千瓦的离网型风电系统常配置简易的控制器。它包括三相全桥整流、电压限制、分流卸载电阻箱、对蓄电池充电时的充放保护和容量10kVA以下逆变电源。逆变电源输出的交流电波形分正弦波和方波,感性负载宜采用正弦波形的逆变电源。
比较完善的控制器采用:PWM斩波整流,使电气控制系统具备了AC-DC/DC-AC双向变换功能;(2)PWM升压型(Boost型)整流,弥补了永磁发电机在低风速、低转速时电压偏低的缺陷;(3)根据风力发电机的运行特性切入了最大功率跟踪技术(PTTP);(4)向蓄电池智能充电功能;(5)通过改善输出的交流波形,大幅提高风力发电系统的运行效率和年发电量;(6)设置风速及风力机转速传感器并在风速和转速达到限定值时启动执行机构实施制动停机;(7)设置了状态显示和主参数通讯接口。功能完善的控制系统能保障风力机技术性能可靠,运行稳定安全。
离网型风力发电系统对配套控制系统的基本要求如下:
(1)整流器件的耐电压、耐电流的高限值要有充足的裕度,推荐3倍以上;
(2)向蓄电池充电的控制系统,以充电电流为主控元素,控制蓄电池的均充、浮充转换,以均充电流、浮充电压、充电时间作为控制条件,按蓄电池的充电、放电技术规范进行充、放电;
(3)向逆变器供电的控制系统应满足逆变电源所需直流电压和容量的要求;
(4)卸荷分流要兼容电压调控分流和防止风力机超转速加载两项控制;
(5)检测风力机转速、输出电压、输出电流、机组振动等状态超过限定值或允许范围时,控制系统自动给风力机加载,同时实施制动;
(6)应具备短路、直流电压“+”、“-”反接、蓄电池过放电、防雷击等安全保护功能。蓄电池组风能是随机性的能源,高峰和低谷落差甚大,且具有间歇性,极不稳定。为有效地利用风能必须配备蓄能装置。当前风力发电系统可选择的蓄能方式有:蓄电池蓄能、飞轮蓄能、提水蓄能、压缩空气蓄能、电解水制氢蓄能等几种。离网风力发电系统广泛采用蓄电池作为蓄能装置。蓄电池的作用是当风力强劲、风力机发电量大,或用电负荷少时,将电能存入蓄电池;当风力较弱,或用电负荷较大时,蓄电池中的电能向负荷供电,以补充风电的不足,保持风力发电系统持续稳定供电的运行状态。
目前,离网风力发电系统较多采用储能型(固定)铅酸蓄电池,它的单体电动势为2V,单体容量从几百安时到数千安时。电池组配套时可根据风力发电系统的要求,以串、并联接方式组合成所需要的端电压(V)和总容量(Ah)。
蓄电池经多次充放电之后,其充放电转换效率和电池容量会迅速降低,寿命即终结,继续使用已很不经济。
影响蓄电池使用寿命的因素很多,其中主要有:
(1)未按技术规范配制符合要求的电解液;
(2)未严格实行均充、浮充分阶段充电规程;
(3)蓄电池过度充电、深度放电;
(4)蓄电池在亏电状态下,久置未及时充电。
参考书目
《风力发电》中国电力出版社2003年3月 王承煦张源 主编
《风力发电机组原理与应用》机械工业出版社2011年6月 姚兴佳 宋俊编著
《风能技术》[美]Tony Burton 等著 武鑫等译科学出版社
第二篇:运行风力发电机生产技术,控制方法,控制系统
广州绿欣风力发电机提供更多绿色环保服务请登录www.xiexiebang.com查询
运行风力发电机生产技术大全,控制方法,控制系统
兆瓦级直驱式变速变桨恒频风力发电机组
[技术摘要]本发明涉及一种兆瓦级直驱式变速变桨恒频风力发电机组,其结构由叶片、轮毂、变桨系统、永磁多级同步发电机、底座、机舱、偏航系统、液压系 统、润滑系统,测风系统、塔架及变速恒频控制系统等各部件组成。由叶轮直接驱动永磁多级同步发电机转子转动,永磁同步发电机定子通过逆变系统将风力发电机 组输出的电能送入电网,实现风能-机械能-电能的转换。风力发电机组控制采用微处理器,及时准确的获取环境外部所有信息,控制系统根据这些信息,调整风力 发电机组运行,保证风力发电机组一直在优化、安全的环境里运行。同时,也可以实现风力发电机组在不同风速段运行,使风能利用系数>0.47,更好的提高风 力发电机组的性价比。
[垂直风力发电机
[技术摘要]一种垂直风力发电机,其塔架结构由支撑杆组成,所述支撑杆上设有上、下二机座及安装在二机座之间的风轮;所述风轮包括旋转轴及安装在旋转轴上 的三片或三片以上的叶片,所述旋转轴与地平面垂直;所述风轮还设置有供叶片运行的导轨,所述导轨固定在机座上,所述叶片与导轨之间设置有滚动机构,其不会 轻易造成叶片的损坏,提高了使用寿命,且该塔架可以牢固地安装在地上,不会出现塔架倾倒,造*员及设备损伤的危险,且其使用寿命长,同时在使用过程中也可 方便维修和保养。
一种风力发电机及风光互补太阳能应用系统
[技术摘要]一种涉及风力发动机的风力发电机及风光互补太阳能应用系统,包括风力发电机本体,风力发电机本体至少包括叶片、发电机、支臂和尾驼,并依次相 连,发电机侧部安装托盘,其特征在于:叶片联接一个驱动部件,所述的驱动部件可实时调节叶片的桨距角;叶片与叶片轴相连,驱动部件与叶片轴之间连接传动机 构;第一基座卡套于发电机主轴中,其法兰面连接轴座,叶片轴套设于轴座中,第二基座与第一基座固定连接,该第二基座上安装驱动部件,传动机构包括第一齿 轮、中间齿套和第二齿轮,且依次通过齿轮啮合,第一齿轮与驱动部件相连接,中间齿套与第一基座相卡套,第二齿轮与叶片轴末端相连接,本发明实现智能控制叶 片桨距角与尖速比,使本发明保持运行在高效率状态。
车船用风力辅助发电机
[技术摘要]车船用风力辅助发电机,属于风力发电机技术领域。所要解决的技术问题是提供一种可以利用空气流所具有能量发电的车船用辅助发电机。解决其技术 问题的技术方案如下:车船用风力辅助发电机,包含发电机、两个风轮及转子轴;发电机安装在车船身上;两个风轮装在发电机转子两端的转子轴上,风轮采用离心 式叶轮。本发明应用于车船的辅助电源。有益效果是可以充分利用车船行进时所产生的流动空气中的能量,作为车船的辅助电源,节约车船行驶中燃料消耗。当行驶 速度达到38-60公里/小时,即可使发电机发出12伏电压,作为车船的辅助电源。运行中发电机受力平衡,不产生振动,不易磨损,输出功率为只装一个风轮 的两倍。
绕线转子风力发电机系统故障控制方法
广州绿欣风力发电机提供更多绿色环保服务请登录www.xiexiebang.com查询
[技术摘要]本发明涉及一种绕线转子风力发电机系统故障控制方法,风力发电机与电网连接,电网发生故障时,由故障控制器控制系统,使发电机转子在故障状态 下不直接与电网进行能量交换,减小电网故障对转子的影响、维持发电机定子和转子电流在可承受的水平,从而保护发电机的安全。同时通过控制方法的设计,发挥 发电机组的控制潜力,将其某些装置用于定子和电网控制,可以提高电网的稳定性,加快电网恢复,使发电机尽快投入正常运行,更好地利用风力发电。
风力、水流两用发电机
[技术摘要] 风力、水流两用发电机,本实用新型涉及风力和水流发电设备。它提供一种采用大面积截风的风帆,运转平稳,自动对准风向,风力、水流两用的卧式发电机。设有 两对链轮和一对链条;风帆悬吊在链条之间的横杠上,风帆由小叶片铰链而成,风帆受风或水流运转通过链轮和传动轮、传动带带动发电机运行。本机工作平稳,结 构简单,没有污染和噪音,能够实用,有推广应用价值。
永磁风力发电机
[技术摘要] 本实用新型公开了一种永磁风力发电机。它含有定子铁芯(1),转子整体磁极(2)、机座(3)、机轴(4)、装配螺钉(5)、后端盖(6)、风窗(8)、前端盖(9)、轴承(10)、定子绕组(11),定子铁芯(1)扭转角度为3.3°—5.5°,在后端盖(6)的内壁上设置有整流二极管(7)。在转子整 体磁极(2)上设置有12个或10个槽,槽内嵌有永久磁钢(16)。本实用新型的特点是,低速,结构简单,运行可靠,且成本低廉。
第三篇:风力发电机专业术语
风力发电机专业术语范围
本标准规定了风力发电机组常用基本术语和定义。
本标准适用于风力发电机组。其它标准中的术语部分也应参照使用。定义
本标准采用下列定义。
2.1 风力机和风力发电机组
2.1.1风力机windturbine
将风的动能转换为另一种形式能的旋转机械。
2.1.2风力发电机组windturbinegeneratorsystem;WTGS(abbreviation)将风的动能转换为电能的系统。
2.1.3风电场windpowerstation ; windfarm
由一批风力发电机组或风力发电机组群组成的电站。
2.1.4水平轴风力机horizontalaxiswindturbine
风轮轴基本上平行于风向的风力机。
2.1.5垂直轴风力机verticalaxiswindturbine
风轮轴垂直的风力机。
2.1.6轮毂(风力机)hub(forwindturbines)
将叶片或叶片组固定到转轴上的装置。
2.1.7机舱nacelle
设在水平轴风力机顶部包容电机、传动系统和其它装置的部件。
2.1.8 支撑结构(风力机)supportstructure(forwindturbines)由塔架和基础组成的风力机部分。
2.1.9关机(风力机)shutdown(forwindturbines)
从发电到静止或空转之间的风力机过渡状态。
2.1.10正常关机(风力机)normalshutdown(forwindturbines)全过程都是在控制系统控制下进行的关机。
2.1.11紧急关机(风力机)emergencyshutdown(forwindturbines)保护装置系统触发或人工干预下,使风力机迅速关机。
2.1.12空转(风力机)idling(forwindturbines)
风力机缓慢旋转但不发电的状态。
2.1.13锁定(风力机)blocking(forwindturbines)
第四篇:风力发电机技术
风力发电机
2.1恒速恒频的笼式感应发电机
恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。
恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。
2.2变速恒频的双馈感应式发电机
变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。
双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。
双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。
2.3变速变频的直驱式永磁同步发电机
变速变频式风力发电系统,特点是在有效风速范围内,发电机组的转速和发电机组定子侧产生的交流电能的频率都是变化的。因此,此类风力 需要在定子侧串联电力变流装置才能实现联网运行。通常该类风力发电系统中的发电机组为永磁同步发电机组。
直驱式风力发电机组,风轮与发电机的转子直接耦合,而不经过齿轮箱,“直驱式”因此而得名。由于风轮的转速一般较低,因此只能采用低速的永磁式发电机。因而无齿轮箱,可靠性高;但采用低速永磁发电机,体积大,造价高;而且发电机的全部功率都需要交流器送入电网,变流器的容量大,成本高。
如果将电力变流装置也算作是发电机组的一部分,只观察最终送入电网的电能特征,那么直驱式永磁同步发电机组也属于变速恒频的风力发电系统。
第五篇:风力发电机工作原理
北方电力论坛 bbs.cneclub.com 风力发电机工作原理
2007-04-16 15:57阅读1139评论1
字号: 大中小
现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电
网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。
最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些
问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。
齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这
样一个系统随时对准主风向也有相当的技术难度。
风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。
早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系
统逐步取代液压变距。
就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。
现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。
风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停
机,属于无人值守独立发电系统单元。