第一篇:直角三角形全等的判定数学说课稿
直角三角形全等的判定
各位尊敬的老师:
你们好!我是来自xxxx的xxx,今天我给大家说课的内容是人民教育出版社九年义务教育六三制初中几何第二册第三章
第八节,直角三角形全等的判定。下面我从教材分析、教学目标的确定、教法与学法分析以及教学过程设计还有评价分析这几方面向各位老师汇报我对本课的设计和构思。
对教材分析我从以下三方面进行说明:
1、本节所学内容是直角三角形全等的判定,由于直角三角形是特殊的三角形,因而它还具备一般三角形所不具有的特殊性质,因为这是学生第一次阅读到有关特殊三角形的特殊性,所以在教学时我将渗透由一般到特殊的辩证思想,从而体现由一般到特殊出理问题的思想方法。
2、关于教材的地位及作用我是这样看的,直角三角形全等的判定是在前边学习了一般三角形全等判定的方法以后,作为直角三角形特殊的判定方法给出的一个内容,是对三角形全等判定所做出的进一步研究。通过本节课的学习,使三角形全等判定的知识相对完整,因此本节课的学习是前面学习的发展和深化,同时直角三角形在本章乃至整个平面几何教材中都有着重要的基础性的地位,它可以为我们今后解决实际问题进一步研究平面几何奠定一定的基础。
3、教学的重点和学生可能会遇到的困难,通过分析我们看到直角三角形全等的判定在教材中属于承上启下的作用,而如何选择恰当的方法,判定两个三角形全等又是掌握直角三角形全等判定的一个关键,所以我认为本课教学的重点是运用一般方法和斜边直角边公理判定两个直角三角形全等。由于直角三角形是特殊的三角形,但它也是三角形中的一类,因而它不仅具有一般三角形全等的判定方法,还具有它的特殊性及斜边直角边公理。这是一般三角形所不具有的,在证明问题时,要求学生利用已知条件和结合知识,大胆猜想,根据推论运用观察分析推理等手段获取结论,它要求学生具有一定的综合运用能力,对初二的学生有一定的难度,所以我认为在本课教学中的学生学习可能会遇到的难点是理解直角三角形的特殊性和证明思路的探索,以上是我对教材的分析。
下面我对教学目标的判定做简要说明:
根据学生已有的认知能力,学生对三角形全等的判定已经有了一定的认知基础,集合这堂课研究的增广度,根据教学大纲我确定如下的三方面的教学目标:
1、知识目标:因为三角形全等的判定是我们初中平面几何的一个重点,而直角三角形全等的判定,又是三角形全等判定的一个不可忽略的部分,所以本节课在知识的增广度上,我确定运用一般三角形全等判定的方法和斜边直角边公理判定两个直角三角形全等为掌握的层次,将通过一定的训练让学生,逐渐熟练掌握两个直角三角形全等判定的方法;另一方面,由于直角三角形的特殊性和证明思路的探索,是这节课学生可能会遇到的困难,所以我想把这一思路的探索和理解直角三角形特殊性确定为理解的层次。将通过今后一段时间的训练让学生逐步学会对证明思路的探索和理解直角三角形的特殊性。
2、能力目标:做为二十一世纪的教师,就应该培养学生的创新意识和探索精神作为我们的首要目标,在本课教学中,我想通过本节课的教学内容,进行猜想,画图、实验、归纳、运用从而影响学生的推理能力,提高学生的动手实践能力。我就想运用这堂课,特有的直角三角形全等判定的方法和一般三角形全等判定的方法的类比、推理等,创新意识和探索精神。
3、品质优化目标:各位评委各位老师,我想通过一般三角形全等的判定方法和直角三角形全等判定方法的对比,来培养学生思维的概括性、严谨性和灵活性,从而完善思维形式,发展思维能力。通过三角形是相似性和相对性,来渗透事物是普遍联系和变换发展的辩证唯物主义观点,通过教学实例中的一般例子,从而渗透由一般到特殊的辩证唯物主义认识观。
教法分析:
有了特定的教学目标,有了恰当的教学内容,一堂课的成功与否就取决于教学方法的选择和运用,从而考虑到本堂课教学的重点和学习中学生所遇到的困难,以及学生已经具备的一般三角形全等判定的认知基础。在教学中我始终遵循启发式教学原则,综合应用“启、读、究、讲、练”相结合的教学方法。
针对初中学生好奇心较强,通过教的初级中学的学生程度中等,但热情高的特点,在教学的一开始,我就创设情境,使学生的思维处于兴奋状态,最大限度的调动学生学习的积极性。将学生在课堂中多活动、多观察,主动参与到整个教学过程中,让他们自己动手实践,自己总结归纳出直角三角形全等判定的特殊性,从而培养学生的观察概括能力。最后,学生运用所学知识,培养他们分析问题、解决问题,综合运用知识的能力。另一方面,我考虑到初中学生的思维依赖于形象直观的特点,因此在教学中我准备采用多媒体辅助教学,动态直观演示,突出知识的产生过程,从而启发学生思维,激发学习动机。
学法分析:
二十一世纪是信息经济的时代,需要的是会学习的人,作为一名教师,在传授知识的同时就必须设法教给学生好的学习方法,让他们会学习。在本课的教学中,我主要引导学生大胆思维、积极探索、严格证明,多训练勤钻研的研讨式学习方法,这样做最大限度的调动学生思维的积极性,充分发挥他们的主体作用。也只有这样做才能使学生“学”有新“思”;“思”有所“得”;“练”有新“获”。
教学过程设计:
各位老师,这是我今天说课的主要内容。课前的教学设计,能体现一位教师教学思想的情况,本堂课我以教学目标为目的,培养学生思维能力为指导思想,整个教学过程建立在认知发展理论基础之上,我设定了一下几个教学环节。
1、创设情境 挖掘认知基础导入新课
2、动手实验验证公理
3、认识公理 发展认知基础探究新课
4、应用和掌握公理
5、反馈练习形成技能
6、课堂小结发展思维
第二篇:直角三角形全等的判定教学设计
直角三角形全等的判定教学设计
www.xiexiebang.com
〖教学目标〗
◆
1、探索两个直角三角形全等的条件.◆
2、掌握两个直角三角形全等的条件(HL).
◆
3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“HL”.◆教学难点:直角三角形判定方法的说理过程.〖教学过程〗
一、创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、合作学习:
(1)
回顾:判定两个直角三角形全等已经有哪些方法?
(2)
有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
教师归纳出方法后,要学生注意两点:<1>“HL”是仅适用于Rt△的特殊方法。
<2>应用“HL”时,虽只有两个条件,但必须先有两个Rt△的条件
教师引导、学生练习
P47
三、应用新知,巩固概念
例题讲评
例:已知:P是∠AoB内一点,PD⊥oA,PE⊥oB,D,E分别是垂足,且PD=PE,则点P在∠AoB的平分线上,请说明理由。
分析:引导猜想可能存在的Rt△;构造两个全等的Rt△;要说明P在∠AoB的平分线上,只要说明∠DoP=∠EoP
小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)
角的内部,到角的两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:P48
.2.P49
五、小结回顾,反思提高
(1)本节内容学的是什么?你认为学习本节内容应注意些什么?
(2)学习本节内容你有哪些体会?
(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)
(4)你现在知道的有关角平分线的知识有哪些?
六、布置作业:www.xiexiebang.com
第三篇:《全等三角形判定》说课稿
《全等三角形判定》说课稿
一、教材分析:
教材的地位和作用
这节课是一节新授课。
本节是初中几何第一册第三章“三角形”第二部分的重要内容。三角形是最常见的几何图形之一,在日常生活中有着广泛的应用。而证明全等三角形是证明线段相等和角相等的重要手段,本节作为证明两个三角形全等的依据之一,因此成为重中之重。
根据教学大纲,从这一章开始,学生要逐步学会几何证明,本节的教学为了初步培养学生逻辑推理的基本能力,引导学生学好这部分知识可以提高学生学习几何的兴趣和信心。
教学目标
知识目标:掌握ASA公理及推论,并且学会应用ASA,AAS证明两个三角形全等。
能力目标:通过组织学生自己总结出公理和推论,培养学生归纳总结的能力;培养学生对几何图形问题的演绎推理和综合分析能力。
情感目标:培养学生探索的学习精神,通过组织学生分组讨论培养学生团结合作的精神和创新意识。
教学重点和难点:
重点:本节课的重点是ASA,AAS判定方法的应用和推理过程的书写。
初中学生的认知水平还是对图形本身基本特征的认识。在学习这节之前,学生已经学习了三角形的基本概念以及三边关系及内角和定理,但是这都局限于一个图形自身各元素之间的关系。在上一节学生已经学习了全等三角形的判定
(一)SAS公理,这节课则继续学习判定的第二种方法。因此判定公理及推论是此节课的重点。
学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,因此在两个三角形全等证明的推理过程中,应该引导学生落实推理表达。通过推理证明的书写,培养学生有条理的思考与表达。
难点:引导学生找出解题的途径。
因为以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,因此在教学过程中应该引导学生自己通过观察探索,自己体验找出全等条件的过程。
二、教学方法
采取引导学生自主发现、师生互动和学生互相讨论相结合的方法来完成本节课的教学。因为新课的教学理论性较强,教师的讲解与引导分析很重要,但不能直接将知识传输给学生,教师只能作为组织者、合作者和引导者,引导启发学生自己归纳总结,在教学过程各个环节让学生多参与,激发学习的热情,体验成功的喜悦,使教师的主导作用和学生的主体地位相统一。
三、教学过程
教学流程:
情景导入————探索新知————合作讨论——————总结归纳
情景导入:
为了引发学生的学习热情,使学生能够理解数学在生活中的重要地位,因此在新课引入的环节设置了一个情景:老师三角形教具不小心被弄坏,然后让学生开动脑筋想出办法帮助老师把教具还原。(课件)
通过学生的方案,引导学生自己组织语言,归纳出全等三角形判定公理二的文字内容。
探索新知
(1)
1、通过课件的演示,把两个三角形经过第一次简单的变换,这部分主要目的一是引导学生通过对图形的观察,挖掘出图形隐藏条件——对顶角相等。二是落实学生推理过程的格式。这样可以使学生体验分析和推理的过程,增强了学生学习几何的自信心。
2、通过课件演示,使图形做第二次变换成为教科书的例一。在这个例题中,通过师生互动引导学生分析题目中的条件,挖掘隐含条件。这道题,学生容易通过上一题的顺应思维而想到直接证明这两条线段相等,通过初步推理发现条件不足,这条途径不成立。让学生在经历分析题目的过程中,感受证明的必要性。
3、在稍做停顿之后,图形继续变换。这道题目中需要用到两个相等的角加上公共角仍为相等的角的结论。
4、图形再次变换,这时通过上个例题,学生已经多掌握了一种挖掘隐含条件的方法,这次把线段相等的条件换成一条线段的中点。
这几个图形的变换的给出旨在让学生通过观察,自主探索,激发对图形的观察能力使学生通过动态的几何,更能理解图形的本质。
使学生在获得知识的同时学会学习。强调突出学生的发展,以学生发展为利于学生的终身学习。
(2)
给出一个练习,通过这个练习,使学生利用以前学习的三角形内角和定理,自己归纳出ASA公理的推论AAS,然后给出例二。
合作讨论
给学生合作讨论的时间,主题是,在刚才变换的图形中选择一个,每个小组自己编出一个证明两个三角形全等的题目,要求用AAS这个判定方法,在此过程中教师巡视,并挑出一组,口述给大家然后别的同学都做,这样促使学生经历题目形成的过程,激发学习的积极性,也通过资源共享实现生生互动。给予学生充分的思维空间。这个阶段的学生容易自我发展,可以培养学生合作与交流能力的同时调动每一个学生的参与意识和学习积极性。学生是学习的主人,增强自主创新能力。注重培养学生的独立性和自主性,使学习成为在实践中的学习。在教师指导下主动的,常有个性的过程,使每个学生都能得到充分发展。同时,这俄国教学环节关注学生学习的个性化特征,使学生在知识学习中,获得合理的个人经验的内化。
归纳总结
通过一节课的学习,帮助学生总结出现有的判定两个三角形的判定方法。
布置作业,书面以及一道思考题,为了达到巩固,强化所学内容,落实教学目标并为下节习题课做好铺垫。
第四篇:2.8 直角三角形全等的判定 教案(八上)
第2章 特殊三角形 瞿溪华侨中学 周龙云
2.8 直角三角形全等的判定
〖教学目标〗
◆
1、探索两个直角三角形全等的条件.◆
2、掌握两个直角三角形全等的条件(HL).
◆
3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“HL”.◆教学难点:直角三角形判定方法的说理过程.〖教学过程〗
一、创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、合作学习:
1.回顾:判定两个直角三角形全等已经有哪些方法?
2.有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
“斜边和一条直角边对应相等的两个直角三角形全等(HL)。” 教师归纳出方法后,要学生注意两点: <1>“HL”是仅适用于Rt△的特殊方法。
<2> 应用“HL”时,虽只有两个条件,但必须先有两个Rt△的条件
三、应用新知,巩固概念
例:已知:P是∠AOB内一点,PD⊥OA,PE ⊥OB,D,E分别是垂足,且PD=PE,则点P在∠AOB的平分线上,请说明理由。
分析:引导猜想可能存在的Rt△;构造两个全等的Rt△;要说明P在∠AOB的平分线上,只要说明∠DOP=∠EOP 小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)
角的内部,到角的两边距离相等的点,在这个角的平分线上。
四、学生练习,巩固提高
练一练:课本P82课内练习
五、小结回顾,反思提高
(1)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)?
(2)你现在知道的有关角平分线的知识有哪些?
六、作业:
1.作业本2.8 2.课后作业
第五篇:直角三角形全等的判定(HL)教学反思
直角三角形全等的判定(HL)教学反思
本节数学课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SSS、SAS、ASA、AAS、)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。在教学过程中,让学生充分体验到实验、观察、比较、猜想、总结、验证的数学方法,一步步培养他们的逻辑推理能力。新课程标准强调“从具体的情景或前提出发进行合情推理,从单纯的几何推理价值转向更全面的几何的教育价值”,为了体现这一理念,设计了几个不同的情景,让学生在不同的情景中探求新知,用直接感受去理解和把握空间关系。
探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程。数学教学应努力体现“从问题情景出发,建立模型、寻求结论、解决问题”。
纵观整个教学,不足的方面:第一,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮,延误了学生学习的最佳时机;第二,在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;第三,在评价学生表现时,不够及时,没有让他们获得成功的体验,丧失激起学生继续学习的很多机会。这些我在今后的教学中会争取改进。
大通民中:强玉琴
2015.10.19