直角三角形的判定说课稿(大全5篇)

时间:2019-05-13 07:10:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《直角三角形的判定说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《直角三角形的判定说课稿》。

第一篇:直角三角形的判定说课稿

直角三角形的判定说课稿

尊敬的各位评委:大家好!

我今天说课的内容是华师大版八年级上册第14章的第二节《直角三角形的判定》。下面我将从教材、目标、重点难点、教法、教学流程等几个方面阐述我对本节课的教学设想。

一、说教材。

“直角三角形的判定”也就是勾股定理的逆定理这节内容,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

二、说教学目标。

教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标:

1、探索并掌握直角三角形判别思想,会应用勾股定理及逆定理解决实际问题。

2、通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。

3、培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应

用价值。渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系。

三、说教学重点、难点。

本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点。

重点:理解并掌握勾股定理的逆定理,并会应用。

难点:理解勾股定理的逆定理的推导。

四、说教法。

在本节课中,我设计了以下几种教法学法:

情景教学法,启发教学法,分层导学法。

让学生实践活动,动手操作,看自己画的三角形是否为一个直角三角形。体会观察,作出合理的推测。同时通过引入,让学生了解古代都用这种方法来确定直角的。对学生进行动手能力培养的同时,引导命题的形成过程,自然地得出勾股定理的逆定理。既锻炼了学生的实践、观察能力,又渗透了人文和探究精神。

五、说教学流程。

1、动手实践,检测猜测。引导学生分别以 6cm,8cm,10cm;5cm,12cm,13cm;4cm, 6 cm, 8 cm;6cm,7cm, 8cm为边画出两个三角形,观察猜测三角形的形状。再引导启发学生从这两个活动中归纳思考:如果三角形的三边长a、b、c满足 a

 b

 c

,那么此三角形是什么三角形?在整个过程的活动中,尽量给学生充足的时间和空间,以平等的身份参与到学生活动中来,帮助指导学生的实践活动。

222

2、尝试运用,熟悉定理。

出示课本中的两个例题让学生进一步熟练掌握勾股定理的逆定理及其运用的步骤。

3、分层训练,能力升级。

有针对性有层次性地设置了四个练习题,及时反馈教学效果,查缺被漏,并对有困难的学生给予指导。

4、总结内容,强化认识。

使学生再次感悟勾股定理的逆定理,体会定理的互逆性,加深对“数形结合”的理解,更深刻地理解数学思想方法在解题中的地位和作用,激发学生学习数学的兴趣。

5、布置作业

我的说课完了,谢谢大家!

第二篇:直角三角形的判定优质课说课稿(通用)

直角三角形的判定优质课说课稿(通用5篇)

作为一位杰出的教职工,总不可避免地需要编写说课稿,说课稿可以帮助我们提高教学效果。我们应该怎么写说课稿呢?下面是小编整理的直角三角形的判定优质课说课稿(通用5篇),希望对大家有所帮助。

直角三角形的判定优质课说课稿1

一、教材分析

(一)、教材的地位与作用

HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。

(二)、教学目标

1、会已知直角三角形的一条直角边和斜边,作直角三角形

2、掌握直角三角形全等的判定方法----“HL”定理

3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题

4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数学活动的经验。

(三)、教学重难点:

重点:直角三角形全等的判定方法

难点:运用全等直角三角形的判定方法“HL”解决问题

二、说教学方法:自主学习、合作讨论、交流展示

通过动手操作,在合作中交流,比较中共同发现判定直角三角形全等的另一种特殊方法“HL”,通过例题和练习巩固这种判定方法。

三、说教学过程

(一)、创设情境,引入新课

1、复习思考

(1)、判定两个三角形全等的方法

(2)、如图,Rt△ABC中,直角边是AC、BC,斜边是AB

设计意图:通过简单的复习帮助学生回顾旧知识,为本节课内容做铺垫。

2、新课引入(情境)

(课件显示)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。

(1)你能帮他想个办法吗?

方法一:测量斜边和一个对应的锐角.(AAS)

方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)

……

学生活动:能从已经学过的判定两个三角形全等的方法入手,相互交流。

教师活动:引导学生发现,对有困难的同学提供帮助。

设计意图:发挥学生的课堂主动性及参与课堂的积极性,由于问题不难,学生参与会比较广。

⑵如果他只带了一个卷尺,能完成这个任务吗?

设计意图:由于学生能用到的工具减少了,学生会进入沉思,自然而然会进入新知识的探索中,吊足学生的胃口,集中学生的注意力,学生乐于学习。

师:工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?

设计意图:教师提供方案,挑战学生已有的知识,激发学生知识的火花,使其迫不及待的想来发现新知识。

下面让我们一起来验证这个结论。

(二)、合作交流,探索新知

1、探究:如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?

(1)动手试一试。利用尺规作一个RtΔABC,∠C=90°,AB=5cm,CB=3cm.按照步骤做一做:

①作∠MCN=90°

②在射线CM上截取线段CB=3cm

③以B为圆心,5cm为半径画弧,交射线CM于点A;

④连接AB.△ABC就是所求作的三角形

学生活动:按老师的要求画出图形

教师活动:规范作图,及时解决学生作图时遇到的困难

设计意图:培养学生的动手操作能力

探索交流

(2)剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?

(3)交流之后,你发现了什么?

学生交流,发现。已知什么前提,满足什么条件,得到什么结论。

(4)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法

定理:斜边和一直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)

(5)用数学语言表述上面的判定方法

∵∠B=∠E=90°

∴在Rt△ABC和Rt△DEF中

∴Rt△ABC≌Rt△DEF(HL)

教师规范板书,提醒学生规范书写。

(6)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法SAS、ASA、AAS、SSS还有直角三角形特殊的判定方法“HL”

设计意图:教师适时小结,能理顺学生的思路,从而形成学生自己的知识。

(7)练习:判断满足下列条件的两个三角形是否全等?为什么?

①一个锐角及这个锐角的对边对应相等的两个直角三角形.(全等,AAS)

②一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形(全等,ASA)

③两直角边对应相等的两个直角三角形(全等,SAS)

④有两边对应相等的两个直角三角形.分三种情况考虑:两个直角边对应相等,全等(SAS);一条直角边和斜边对应相等,全等(HL);一条直角边对应相等,第一个三角形的斜边与第二个三角形的直角边对应相等则不全等。

设计意图:趁热打铁,体会直角三角形全等的5种判定方法,练习④体现数学分类讨论思想,让学生进一步感受数学语言的严谨性及数学思维的严密性。

(三)、尝试应用,解决问题

例1、已知:如图∠BAC=∠CDB=90°,AC=DB求证:AB=DC

分析:要说明AB=DC,由于AB和DC分别在两个三角形中,只要他们所在的两个三角形全等就可以了,而这两个三角形是直角三角形,题目给了我们一条直角边相等,SAS、ASA、AAS、SSS都用不上,自然想到用HL定理来做,可还差一条斜边对应相等,经过观察发现,这两个三角形的斜边是公共边

证明:∵∠BAC=∠CDB=90°

∴△BAC,△CDB都是直角三角形

在Rt△BAC和Rt△CDB中

∵AC=DB

BC=CB

∴Rt△ABC≌Rt△DCB(HL)

∴AB=DC(全等三角形的对应边相等)

(四)、当堂检测,及时反馈

1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?

2、如图,两根长度为10米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。

(五)、收获分享,感悟困惑

学生谈谈本节课的收获,以及还有哪些疑问。

一般三角形全等的判定方法有SAS,ASA,AAS,SSS

直角三角形全等的判定方法有SAS,ASA,AAS,SSS,外加HL

灵活运用各种方法证明直角三角形全等

(六)、课后作业,应用提高

课本109页练习1、2、3

板书设计

14.2.5两个直角三角形全等的判定

∵∠B=∠E=90°

∴在Rt△ABC和Rt△DEF中

∴Rt△ABC≌Rt△DEF(HL)

投影区

SAS、ASA、AAS、SSS

例证明:∵∠BAC=∠CDB=90°

∴△BAC,△CDB都是直角三角形

在Rt△BAC和Rt△CDB中

∵AC=DB

BC=CB

∴Rt△ABC≌Rt△DCB(HL)

∴AB=DC

直角三角形的判定优质课说课稿2

说教学建议

直角三角形全等的判定

说重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)由“先教后学”转向“先学后教

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

说教学目标:

1、知识目标:

(1)掌握已知斜边、直角边画直角三角形的画图方法;

(2)掌握斜边、直角边公理;

(3)能够运用HL公理及其他三角形全等的`判定方法进行证明和计算.2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过知识的纵横迁移感受数学的系统特征。

说教学重点:

SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

说教学难点:

灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

教学用具:

说教法:

自学辅导

说教学过程:

1、新课引入

投影显示

问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

这个问题让学生思考分析讨论后回答,教师补充完善。

2、公理的获得

让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有斜边和一条直角边对应相等的两个直角三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、判定两个直角三角形全等的方法。

(3)特殊三角形研究思想。

3、公理的应用

(1)讲解例1(投影例1)

例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

证明:(略)

(2)讲解例2。学生分析完成,教师注重完成后的点评。)

例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.求证:BE=CF

分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

证明:(略)

(3)讲解例3(投影例3)

例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

(1)BD=DE+CE

(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

4、课堂小结:

(1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

(2)直角三角形判定方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

5、布置作业:

a、书面作业P79#7、9

b、上交作业P80#5、6

直角三角形的判定优质课说课稿3

一、说教材

本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。

二、说学情

在本节学习之前,学生已经经历了一周的推理证明的训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的引用练习的不是很多,因此学生还没有什么经验。

三、说教学目标

(一)教学目标:

1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。

2、能够应用“边边边”的基本事实解决实际问题。

(二)教学重点:

掌握“边边边”的基本事实。

(三)教学难点:

灵活运用“边边边”解决问题。

四、说教法学法

(一)教法

在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,(二)学法

我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。

五、说教学过程

复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。

明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。

定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。

精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。

巩固训练:在此环节中我着重加入了对辅助线的引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。

直角三角形的判定优质课说课稿4

各位老师:

你们好!今天我要为大家说的课题是《全等三角形的判定》

首先,我对本节教材进行一些分析:

一、教材分析(说教材):

1、教材所处的地位和作用:

这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。

2、教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。

②能够利用尺规画出全等的三角形,学生具有一定的作图能力。

③掌握并理解三角形全等判定定理中的SSS和SAS。

④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。

(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。

3、重点、难点:①掌握并理解三角形全等的判定定理

②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题

二、教学策略(说教法)

1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。

2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。

3、学情分析:(说学法)

(1)、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

(2)、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

(3)、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

4、教学程序:(说教学过程)

(1)复习回顾上节课内容:

定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角。

性质:全等三角形对应边和对应角相等

三角形全等的性质让我们知道AB=A’B’ BC=B’C’ AC=A’C’∠A=∠A’ ∠B=∠B’ ∠C=∠C’,满足六个条件中这一部分,能确定△ABC≌△A’B’C’,先让学生画出△ABD,再让学生在画△A’B’C’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A’B’ BC=B’C’ AC=A’C’时,只能画出一个A’B’C’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成SSS。

(3)得出定理,我通过讲解简单的例题,让学生懂得定理SSS定理的运用。

(4)探究2:

得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS

(5)通过解决生活实例,讲解三角形全等的运用

(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。

(7)小结:通过本节课的学习,你有哪些收获?

(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。

(9)布置作业:P15,第1,3题,预习P10—P12的内容。

直角三角形的判定优质课说课稿5

尊敬的各位领导、教育同仁:

大家好:我来自于北安管理局龙门农场中学。

今天,我就我们团队《三角形全等的判定(二)》就是用SAS的方法判定两个三角形全等这一节课的课件制作和使用向大家做一下说明,希望能和大家共勉!

一、课件设计的意图:

现在教学中我们使用的是新教材,新教材向我们提供的是一种教学素材,新教材有些知识点较旧教材难度有所降低,但对知识的手段要求更高了,灵活性更强了,解决问题的方法更多了,这就要求教师备课时要充分挖掘教材,领会课程标准的要求,深入揣摩编者的意图,由于八年级的学生已经具备了抽象思维能力,实践能力和探索能力,这就要求教师把教学内容要重新进行整合。数学《新课程标准》要求数学教学是数学活动的教学,教学过程中从实际出发,关注学生自主学习合作交流的意识,充分体现教师是学生学习活动的组织者,引导者、合作者,本节课是结合具体的数学活动内容采用“问题情境—建立模型—解释—应用拓展”的模式和结构展开,让学生经历知识的形成与应用的过程,从而增强学生学习数学的热情。这就要求数学教师在实际数学教学中充分利用现代化教学手段,创造性地使用教材,积极开发、利用各种教学资源,合理利用现代信息技术,把信息技术更好地应用到数学教学中去。

二、课件的作用:

多媒体辅助教学在现代化数学教学中起着越来越重要的作用,其教学手段具有直观性,内容具有丰富性,特别是在许多无法用实物教学的过程中起着无可替代的作用。它能极大地激发学生的学习兴趣,以形象具体的图、文、声、动等手段活跃课堂气氛,在数学教学中能克服许多常规教学中无法解决的困难,便于在短时间内让不同层次的学生得到相应的知识,同时增大课堂容量,对于提高学生的知识水平,培养学生的创新思维有着传统教学中无法比拟的优势,因此,我们把这一节课以课件的形式展示给学生们,学生们在这些丰富多彩以及动感的学习环境中,对教学内容更容易领会和掌握。

三、课件效果预测:

我们的课件制作采用当今操作比较简单,应用比较广,省时、省力的POWERPORT软件,该软件动感也比较强,是非常易于操作的一个软件平台。

首先,我们用激励性的语言和一只展翅飞翔的鹰做了一个片头,这为学生们学习本节课的知识充满了自信,也很给力,同时使心情得到放松,让学生在轻松愉快中去学习。

接着,我们用一个生活当中的实际问题导入这节课,让学生体会到数学来源于现实生活,同时又反作用于现实生活。由于这个问题在课堂上是无法用实物教学的,所以我们把这一问题制作成幻灯片,让学生通过联想,眼前呈现现实情境,使学生身临其境,同时,提高了学生的学习兴趣,激活了学生学习探究的欲望。

同时,我们把其它的内容也制作成了幻灯片,来实现图形和文字等一些要素的结合,使教师利用多媒体教学实现和学生更好地互动,并节省了一些时间,扩充了知识的范围,增加了课堂的容量,优化了课堂教学,从而高效地完成教学目标的过程。

在课件的制作上,我们把有的图形设计成动画,使学生对知识的理解更直观,更形象了,避免传统式枯燥的说教,使学生在轻松愉悦中掌握了知识,同时,难点得到突破。并在文字的设计上,我们把关键的字和词配上颜色,加深对学生的印象,使重点得到突出,详略得当。

四、课件的制作力求创新:

我们对这节课的课件制作上尽量简洁实用,突出实效性,避免出现一些花哨的画面,干扰学生的学习,分散学生的注意力,达到课件使用与课堂教学的完美结合。同时,我们并没有完全依赖于课件教学,还是以教材为主线,以课件为辅的教学理念充实课堂教学。

谢谢大家!

第三篇:直角三角形全等的判定数学说课稿

直角三角形全等的判定

各位尊敬的老师:

你们好!我是来自xxxx的xxx,今天我给大家说课的内容是人民教育出版社九年义务教育六三制初中几何第二册第三章

第八节,直角三角形全等的判定。下面我从教材分析、教学目标的确定、教法与学法分析以及教学过程设计还有评价分析这几方面向各位老师汇报我对本课的设计和构思。

对教材分析我从以下三方面进行说明:

1、本节所学内容是直角三角形全等的判定,由于直角三角形是特殊的三角形,因而它还具备一般三角形所不具有的特殊性质,因为这是学生第一次阅读到有关特殊三角形的特殊性,所以在教学时我将渗透由一般到特殊的辩证思想,从而体现由一般到特殊出理问题的思想方法。

2、关于教材的地位及作用我是这样看的,直角三角形全等的判定是在前边学习了一般三角形全等判定的方法以后,作为直角三角形特殊的判定方法给出的一个内容,是对三角形全等判定所做出的进一步研究。通过本节课的学习,使三角形全等判定的知识相对完整,因此本节课的学习是前面学习的发展和深化,同时直角三角形在本章乃至整个平面几何教材中都有着重要的基础性的地位,它可以为我们今后解决实际问题进一步研究平面几何奠定一定的基础。

3、教学的重点和学生可能会遇到的困难,通过分析我们看到直角三角形全等的判定在教材中属于承上启下的作用,而如何选择恰当的方法,判定两个三角形全等又是掌握直角三角形全等判定的一个关键,所以我认为本课教学的重点是运用一般方法和斜边直角边公理判定两个直角三角形全等。由于直角三角形是特殊的三角形,但它也是三角形中的一类,因而它不仅具有一般三角形全等的判定方法,还具有它的特殊性及斜边直角边公理。这是一般三角形所不具有的,在证明问题时,要求学生利用已知条件和结合知识,大胆猜想,根据推论运用观察分析推理等手段获取结论,它要求学生具有一定的综合运用能力,对初二的学生有一定的难度,所以我认为在本课教学中的学生学习可能会遇到的难点是理解直角三角形的特殊性和证明思路的探索,以上是我对教材的分析。

下面我对教学目标的判定做简要说明:

根据学生已有的认知能力,学生对三角形全等的判定已经有了一定的认知基础,集合这堂课研究的增广度,根据教学大纲我确定如下的三方面的教学目标:

1、知识目标:因为三角形全等的判定是我们初中平面几何的一个重点,而直角三角形全等的判定,又是三角形全等判定的一个不可忽略的部分,所以本节课在知识的增广度上,我确定运用一般三角形全等判定的方法和斜边直角边公理判定两个直角三角形全等为掌握的层次,将通过一定的训练让学生,逐渐熟练掌握两个直角三角形全等判定的方法;另一方面,由于直角三角形的特殊性和证明思路的探索,是这节课学生可能会遇到的困难,所以我想把这一思路的探索和理解直角三角形特殊性确定为理解的层次。将通过今后一段时间的训练让学生逐步学会对证明思路的探索和理解直角三角形的特殊性。

2、能力目标:做为二十一世纪的教师,就应该培养学生的创新意识和探索精神作为我们的首要目标,在本课教学中,我想通过本节课的教学内容,进行猜想,画图、实验、归纳、运用从而影响学生的推理能力,提高学生的动手实践能力。我就想运用这堂课,特有的直角三角形全等判定的方法和一般三角形全等判定的方法的类比、推理等,创新意识和探索精神。

3、品质优化目标:各位评委各位老师,我想通过一般三角形全等的判定方法和直角三角形全等判定方法的对比,来培养学生思维的概括性、严谨性和灵活性,从而完善思维形式,发展思维能力。通过三角形是相似性和相对性,来渗透事物是普遍联系和变换发展的辩证唯物主义观点,通过教学实例中的一般例子,从而渗透由一般到特殊的辩证唯物主义认识观。

教法分析:

有了特定的教学目标,有了恰当的教学内容,一堂课的成功与否就取决于教学方法的选择和运用,从而考虑到本堂课教学的重点和学习中学生所遇到的困难,以及学生已经具备的一般三角形全等判定的认知基础。在教学中我始终遵循启发式教学原则,综合应用“启、读、究、讲、练”相结合的教学方法。

针对初中学生好奇心较强,通过教的初级中学的学生程度中等,但热情高的特点,在教学的一开始,我就创设情境,使学生的思维处于兴奋状态,最大限度的调动学生学习的积极性。将学生在课堂中多活动、多观察,主动参与到整个教学过程中,让他们自己动手实践,自己总结归纳出直角三角形全等判定的特殊性,从而培养学生的观察概括能力。最后,学生运用所学知识,培养他们分析问题、解决问题,综合运用知识的能力。另一方面,我考虑到初中学生的思维依赖于形象直观的特点,因此在教学中我准备采用多媒体辅助教学,动态直观演示,突出知识的产生过程,从而启发学生思维,激发学习动机。

学法分析:

二十一世纪是信息经济的时代,需要的是会学习的人,作为一名教师,在传授知识的同时就必须设法教给学生好的学习方法,让他们会学习。在本课的教学中,我主要引导学生大胆思维、积极探索、严格证明,多训练勤钻研的研讨式学习方法,这样做最大限度的调动学生思维的积极性,充分发挥他们的主体作用。也只有这样做才能使学生“学”有新“思”;“思”有所“得”;“练”有新“获”。

教学过程设计:

各位老师,这是我今天说课的主要内容。课前的教学设计,能体现一位教师教学思想的情况,本堂课我以教学目标为目的,培养学生思维能力为指导思想,整个教学过程建立在认知发展理论基础之上,我设定了一下几个教学环节。

1、创设情境 挖掘认知基础导入新课

2、动手实验验证公理

3、认识公理 发展认知基础探究新课

4、应用和掌握公理

5、反馈练习形成技能

6、课堂小结发展思维

第四篇:直角三角形说课稿

《解直角三角形》说课稿

一、教材分析:

1、教材内容

本节内容选自人民教育出版社《义务教育课程标准试验教科书(五四学制)数学》九年级下册第二十四章第二节。本节内容是在第一节锐角三角函数的基础上来进行学习的,共4课时。教材从实际问题入手,给学生创设学习情境,接着研究直角三角形的边、角关系,最后利用勾股定理及锐角三角函数的知识来解决实际问题。比如:方向角问题、仰角俯角问题、坡度问题等。从这些问题中,我们要理解解直角三角形的方法,了解方向角、仰角、俯角、坡度等相关名词的意义,掌握将实际问题转化为数学模型的思想方法。本节内容为第一课时,主要通过问题情境来研究直角三角形中边、角之间的关系,着重解决实际问题中的方向角问题。

2、教材的地位和作用

本节课是在学习了锐角三角函数的基础上来进行学习的。让学生通过简单的问题情境,利用锐角三角函数的内容来研究直角三角形的边、角关系,最后利用勾股定理及锐角三角函数的知识来解决实际中提出的:如测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题。这些实际问题的数量关系往往归结为直角三角形中边和角的关系问题。研究图形之中各个元素之间的关系(如边和角之间的关系),把这种关系用数量的形式表示出来(即进行量化),是分析问题和解决问题过程中常用的方法,通过这一部分内容的学习,学生将进一步感受数形结合的思想,体会数形结合的方法。

二、教学目标及教学重难点

1、教学目标 【知识与能力目标】

(1)弄清解直角三角形的含义,理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)利用构造直角三角形的方法解决与之相关的实际问题。本课着重解决方向角问题。【过程与方法目标】

(1)经历观察、猜想等数学活动过程,发展合情推理的能力,能有条理地、清晰地阐述自己的观点。

(2)体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。

【情感目标】通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,通过选式的诀窍,可简便计算,从而体会探索,发现科学的奥秘和意义。

2、教学重点与难点

教学重点:使学生学会将简单的实际问题转化为数学问题,并能选用适当的锐角三角函数关系式解决,提高他们分析和解决实际问题的能力。

教学难点:将实际问题抽象为数学问题,以及有关名词概念:如“方向角”的理解是难点。

三、说教法和学法

1、教法分析:为了充分调动学生的学习积极性,发挥他们的主观能动性,使他们变被动接受为主动愉快学习,因而让学生通过观察,引导他们思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。

2、学法指导:通过引导学生自己动脑、动口进行观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。

3、教学手段:利用多媒体辅助教学。

四、教学设计

1、创设情境,激发求知欲

问题:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角

一般要满足50°≤a≤75°(如图)。现有一个长6 m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到 0.1 m)?(2)当梯子底端距离墙面 2.4 m 时,梯子与地面所成的角等于多少(精确到0.1)?这时人是否能够安全使用这个梯子?

设计意图:通过这个实际问题的展示,帮助学生从实际生活中发现并提出数学问题,给学生以深刻的印象,使学生产生一种迫切想知道这个问题解决方法的想法,从而激发学生的求知欲,同时也引出了本节课的内容。

2、合作交流,探索新知

(1)探究讨论:如图,RtABC中,根据∠A=75,斜边AB=6,你能求出这个直角三角形的其他元素吗?根据AC=2.4,斜边AB=6,你能求出这个直角三角形的其他元素吗?

设计意图:在此探究活动中,教师通过引导学生观察、讨论,通过步步设问,引发学生思考。通过对以上问题的讨论,引导学生总结解直角三角形的方法,为教师给出解直角三角形的概念和方法奠定基础。(2)讲授新知:

1、解直角三角形:在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来。这样就可以由已知元素求出其余的三个元素,在直角三角形中,由已知元素求未知元素的过程,就是解直角三角形。

2、五种基本类型:

类型一:已知两直角边;类型二:已知直角边和斜边;类型三:已知锐角和对边;类型四:已知锐角和邻边;类型五:已知锐角和斜边 设计意图:此时给出这些概念和方法已是水到渠成,在此教师要提醒学生注意:①解直角三角形中,五个元素知二求三②熟记五种基本类型帮助学生进行解题,将复杂问题简单化。

3、归纳小结,整理反思 本节课你有哪些收获?

(1)直角三角形除直角外,其余五个元素知二求三(2)直角三角形中边与角的关系(3)解直角三角形的五种基本类型

设计意图:在此活动中,让学生分小组小结,各组代表发言交流,教师及时给予肯定、赞扬,并在一边引导、补充、纠错。教师应重点关注:①不同层次学生对本节知识的掌握情况。②学生对本节课不同方面的感受。让学生自己小结,有利于培养学生的概括能力,使学生自主构建知识体系,养成良好的学习习惯。

6、布置作业

三道练习题,由易到难。

设计意图:第一题让学生在课下巩固今天的内容。第二题加深解直角三角形的方法。第二题让学生进一步理解与方向角有关的解直角三角形中的实际问题如何抽象成数学问题的方法。

五、教学设计说明:

新课程改革提出的要求是:让学生通过交流、合作、讨论的方式,积极探索,改进学习方法,提高学习质量,逐步形成正确地数学价值观。本着这一基本理念,在本课的教学中,我严格遵循由感性到理性,由抽象到具体的认识过程,启发学生审清题意,将解直角三角形的知识与现实生活中学生熟悉的实际问题相结合,不断提高他们运用数学方法分析、解决实际问题的能力。在重视课本例题的基础上,适当对题目进行延伸,使例题的作用更加突出。同时根据新课程标准的评价理念,我在整个教学过程中,始终注重的是学生的参与意识,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题。同时利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。在课堂上,尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。

第五篇:直角三角形的判定教学设计[定稿]

直角三角形的判定

教学目标:

知识与技能目标:掌握直角三角形的判定条件,并能进行简单运用. 过程与分析目标:经历探索直角三角形的判定条件的过程,理解勾股定理.

情感与态度目标:激发学生解决的愿望,体会勾股定理逆向思维所获得的结论,明确其应用范围和实际价值.教学重点:

理解和应用直角三角形的判定方法 教学难点:

运用直角三角形判定方法解决问题. 教学关键:

运用合情推理的方法,对勾股定理进行逆身思维,形成一种判定方法.教学准备:

教师准备:投影片、直尺、圆规

学生准备:复习勾股定理,预习本课内容 教学过程:

一、创设情境

神秘的数组(投影)

在美国哥伦比亚大学图书馆里收藏着一块编号为 符号实际上是一些数组。这些数组提示了一个什么奥秘呢?

经过专家潜心研究,发现其中2列数字竟然是直角三角形的勾和弦,只要添加一列数(如下表所示)左边的一列,那么每行的3个数就是一个直角三角形的三边的长.例:60,45,75是这张表中的一组数,而且602452752,小明画了以60mm、45mm、75mm为边长的△ABC,如图所示:

古巴比伦泥板

“普林顿322”的古巴比伦泥板,泥板上一些神秘

请你猜想.小明所画的△ABC是直角三角形吗?为什么? 教师活动:操作投影仪,提出问题,引导学生思考. 学生活动:观察问题,小组合作交流,思考上述问题的解答. 思路点拨:

思路一:用量角器量三角形的3个内角,看有无直角.

思路二:动手画一个直角三角形.使它的2条直角边的长为60mm和45mm,看能否

与△ABC全等.

媒体使用:投影显示“普林顿322”泥板的图片,以及数字. 古埃及人实验(投影显示)

古埃及人曾经用下面的方法画直角: 将一根长绳打上等距离的13个结,然后如图那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.

你知道这是什么道理吗? 教师活动:提出问题,引导思考 学生活动:继续探究,感悟其中的道理

形成共识:如果三角形的三边长为a、b、c,满足 a2+b2=c2,那么这个三角形的是直角三角形(勾股逆定理)

学生活动:通过小组讨论,分析,发现它与勾股定理恰好是条件与结论互相对换的一个语句.教师点拨:实际上它是勾股定理的逆定理,用它可以判定一个三角形是否是直角三

角形.从神秘的数组中的数据可以发现它们都是勾股数,也就是满足a2+b2=c2的3个正整数a,b,c称为勾股数,古埃及勾股也体现出这个特征.可见利用勾股数可以构造直角三角形.

二、范例学习

例 设三角形三边长分别为下列各组数.试判断各三角形是否是直角三角形.

(1)7,24,25;(2)12,35,37;(3)13,11,9 思路点拨:判断的依据是勾股逆定理,但是应该是将两个较小数的平方和与较大数

平方进行比较,若相等,则可构成直角三角形,最大边所对的角是直角,这一点应该明确.

教师活动:引导学生完成例,然后提问学生,强调方法. 学生活动:动手计算,对照勾股逆定理进行判断.

三、随堂练习

课本P54练习第1,2题

四、课堂总结

1.勾股定理的逆定理:如果三角形的三条边长a,b,c,有下列关系:a2+b2=c2,那么这个三角形是直角三角形.

2.该逆定理给出判定一个三角形是否是直角三角形的判定方法. 3.利用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行

代数运算,通过学习加深对“数形结合”的理解.

五、布置作业

勾股定理的逆定理

(一)1、以下面每组中的三条线段为边的三角形中,是直角三角形的是()A 5cm,12cm,13cm B 5cm,8cm,11cm C 5cm,13cm,11cm D 8cm,13cm,11cm

2、⊿ABC中,如果三边满足关系BC2=AB2+AC2,则⊿ABC的直角是()A ∠ C B ∠A C ∠B D 不能确定

3、由下列线段组成的三角形中,不是直角三角形的是()A a=7,b=25,c=24 B a=2.5,b=2,c=1.5 52 C a=,b=1,c= D a=15,b=20,c=25

434、三角形的三边长a、b、c满足(ab)2c22ab,则此三角形是()A 直角三角形 B锐角三角形 C钝角三角形 D等腰三角形

5、若一个三角形的三边长分别是m+1,m+2,m+3,则当m=,它是直角三角形。

6、在⊿ABC中,若a2b225,a2b27,c5,则最大边上的高为。

7、一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积是

cm2。

8、三角形的两边长为5和4,要使它成为直角三角形,则第三边的平方为。

9、小明画了一个如图所示的四边形,其中AB=4,BC=12,CD=13,DA=3,∠A=90,你能求出四边形ABCD的面积吗? BCAD

10、已知在⊿ABC中,AB=AC=5,BC=6,求⊿ABC的面积。

下载直角三角形的判定说课稿(大全5篇)word格式文档
下载直角三角形的判定说课稿(大全5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《解直角三角形》说课稿

    《解直角三角形》说课稿一、教材分析:《解直角三角形》是人教版九年级(下)第二十八章《锐角三角函数》中的内容。教学内容是能利用直角三角形的边角关系(勾股定理、两锐角互余......

    解直角三角形说课稿

    解直角三角形说课稿 各位老师下午好! 今天我说课的内容是九年级数学《锐角三角函数》中《解直角三角形及其应用》第一节课。下面分四个部分来说说我对这节课的教学设计:1、 教......

    《解直角三角形》说课稿

    《解直角三角形》说课稿 一、说教材 新人教版教材将《解直角三角形》安排在第二十八章《锐角三角函数》的第二节,是在学习了勾股定理、锐角三角函数的基础上进行的。教材首先......

    解直角三角形说课稿

    《解直角三角形》说课稿 李占云 新人教版教材将《解直角三角形》安排在第二十八章《锐角三角函数》的第二节,是在学习了勾股定理、锐角三角函数的基础上进行的。教材首先从实......

    解直角三角形说课稿

    《解直角三角形》说课稿 各位老师: 你们好!非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。我今天说课的题目是解直角三角形,我准备从以下六个方面进行说明:一......

    直角三角形全等的判定教学设计

    直角三角形全等的判定教学设计 www.xiexiebang.com 〖教学目标〗 ◆1、探索两个直角三角形全等的条件. ◆2、掌握两个直角三角形全等的条件(HL). ◆3、了解角平分线的性质:角的......

    能得到直角三角形吗 说课稿

    能得到直角三角形吗 说课稿 各位评委:早上好 今天我说课的题目是能得到直角三角形吗 ,这节课所选用的教材为北师大版义务教育课程标准八年级上册教科书。 一、 教材分析 1、......

    直角三角形全等说课稿[五篇范例]

    直角三角形全等说课稿(精选9篇)作为一名优秀的教育工作者,通常需要准备好一份说课稿,借助说课稿我们可以快速提升自己的教学能力。那么你有了解过说课稿吗?以下是小编帮大家整理......