正弦定理学生用

时间:2019-05-15 07:59:21下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《正弦定理学生用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《正弦定理学生用》。

第一篇:正弦定理学生用

1.1.1正弦定理学案

学习目标:

①发现并掌握正弦定理及其证明方法;②会用正弦定理解决三角形中的简单问题。预习自测

1.正弦定理的数学表达式

2.一般地,把三角形的三个角A,B,C和它们的对边叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做.3.利用正弦定理可以解决两类三角形的问题(1)(2)

问题引入:

1、在任意三角形行中有大边对大角,小边对小角的边角关系.是否可以把边、角关系准确量化?

2、在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗? 结论★:。

二 合作探究:

1、探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?

2、探究二:能否推广到斜三角形?(先研究锐角三角形,再探究钝角三角形)

3、探究三:你能用其他方法证明吗?

4、正弦定理:

5、正弦定理的应用(能解决哪类问题):

三例题讲解

例1 已知在ABC中,c10,A450,C300,求a,b和B

例2 ABC中,c6,A450,a2,求b和B,C

例3(1)在ABC中,b3,B600,c1,求a和A,C

(2)b40,c20,C45,解这个三角形

absinC,并运用此结论解决下面问题:

2(1)在ABC中,已知a2,b3,C150,求SABC;

(2)在ABC中,已知c10,A45,C30,求b和SABC;

4、仿照正弦定理的证法一,证明SABC

(3)在△ABC中,已知a=2,cosC=S△ABC=43,则b=________.四 课堂练习:

4根据条件解三角形:

(1)c10,A45,C30,求边a,b.(2)A30,B120,b12,求边a,c.(3)a16,b163,A30,求角B,C和边c.(4)b13,a26,B30,解这个三角形。(5)b40,c20,C45,解这个三角形(6)c1,b

3,B60,求a,A,C。

1.1.2解三角形的进一步讨论学案

【学习目标】1.掌握已知三角形的两边及其中一边的对角时对解个数的讨论;2.三角形各种形状的判断方法; 【学习重难点】1.已知三角形的两边及其中一边的对角时对解个数的讨论;三角形各种形状的判断方法。

一、情景问题:

我们在解三角形时可以会出现一些我们预想不到的结果,现在请大家思考下面问题:在ABC中,已知a22cm,b25cm,A133,解三角形。

二、探索研究:

探究一.在ABC中,已知a,b,A,讨论三角形解的情况

结论:

探究二 你能画出图来表示上面各种情形下的三角形的解吗?

三、例题讲解

三角形解的情况的判定:

例1.根据下列条件,判断解三角形的情况(1)a=20,b=28,A=120°.(2)a=28,b=20,A=45°;(3)c=54,b=39,C=115°;(4)b=11,a=20,B=30°;

[变式练习1]

(1)在ABC中,已知a80,b100,A450,试判断此三角形的解的情况。(2)在ABC中,若a1,c,C400,则符合题意的b的值有_____个。

2(3)在ABC中,axcm,b2cm,B450,如果利用正弦定理解三角形有两解,求x的取值范围。

正弦定理的变形:例2.在ABC中,A,B,C的对边分别是a,b,c,已知3acosAccosBbcosC.求cosA的值;

例3.在ABC中,已知

[变式练习2]

1.△ABC中,sinAsinBsinC,则△ABC为()

A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形

2.已知ABC满足条件acosAbcosB,判断ABC的类型。

四.尝试小结

abc

,判断ABC的形状. cosAcosBcosC

五、课后作业:

1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于()

62C.3D.26 2.在△ABC中,已知a=8,B=60°,C=75°,则b等于()

32A.42B.43C.6D.3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为()

A.45°或135°B.135°C.45°D.以上答案都不对 4.在△ABC中,a∶b∶c=1∶5∶6,则sinA∶sinB∶sinC等于()

A.1∶5∶6B.6∶5∶1C.6∶1∶5D.不确定 5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b2,则c=()

1A.1B.C.224cos Ab

6.在△ABC中,若,则△ABC是()

cos Ba

A.等腰三角形B.等边三角形C.直角三角形D.等腰三角形或直角三角形

7.已知△ABC中,AB3,AC=1,∠B=30°,则△ABC的面积为()

33333B.C.或3D.或 242

428.△ABC的内角A、B、C的对边分别为a、b、c.若c=,b=,B=120°,则a等于()

6B.2C.3D.2π

9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=3,C=则A=________.4310.在△ABC中,已知a=,b=4,A=30°,则sinB=________.11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.12.在△ABC中,a=2bcosC,则△ABC的形状为________.

a+b+c

13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则________,sinA+sinB+sinC

c=________.ABC中,sin2A = sin2B +sin2C,则△ABC的形状为

15、在ABC中,若B60,b76,a14,则A=。

16、在ABC中,已知a

3,b2,B45,解三角形。

第二篇:用向量证明正弦定理

用向量证明正弦定理

如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤

1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤3.证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三级

记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2.在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4过三角形ABC的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB与向量AD的夹角为90°-B,向量AC与向量AD的夹角为90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB*向量AD=向量AC*向量AD即向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

第三篇:正弦定理证明

正弦定理证明1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到

a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。2.三角形的余弦定理证明:平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A作AD⊥BC于D,则BD+CD=a 由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。2 谈正、余弦定理的多种证法 聊城二中 魏清泉

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则(1)(正弦定理)= =;(2)(余弦定理)c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.一、正弦定理的证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。

所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=| j ||CB|cos(90°-∠C)=a•sinC,j•AB=| j ||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明

法一:在△ABC中,已知,求c。

第四篇:正弦定理证明

正弦定理

1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍,即

abc2R sinAsinBsinC

证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB90 在RtABD中 A sinCsinDc 2RD

b c c2R sinCab同理:2R,2R

sinAsinBabc所以2R

sinAsinBsinC2.变式结论

1)a2RsinA,b2RsinB,c2RsinC 2)sinAC

a

B abc ,sinB,sinC2R2R2R3)asinBbsinA,asinCcsinA,csinBbsinC 4)a:b:csinA:sinB:sinC

例题

在ABC中,角A,B,C所对的边分别是a,b,c,若(3bc)cosAacosC,求cosA的值.解:由正弦定理 a2RsinA,b2RsinB,c2RsinC得

(3sinBsinC)cosAsinAcosC

3sinBcosAsin(AC)sin(AC)sinB3sinBcosAsinBB(0,)0sinB1cosA33

第五篇:《正弦定理》教案

《正弦定理》教学设计

一、教学目标分析

1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。

2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。

3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。

二、教学重点、难点分析

重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。

难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。

三、教法与学法分析

本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。在学法上,采用个人探究、教师讲解,学生讨论相结合的方法,让学生在问题情境中学习,自觉运用观察、类比、归纳等思想方法,体验数学知识的内在联系,重视学生自主探究,增强学生由特殊到一般的数学思维能力,形成实事求是的科学态度和严谨求真的学习习惯。

四、学情分析

对于高一的学生来说,已学的平面几何,解直角三角形,三角函数等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。同时,由于学生目前还没有学习习近平面向量,因此,对于正弦定理的证明方法——向量法,本节课没有涉及到。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。

五、教学工具

多媒体课件

六、教学过程 创设情境,导入新课

兴趣是最好的老师。如果一节课有个好的开头,那就意味着成功了一半。上课一开始,我先提出问题:

工人师傅的一个三角形模型坏了,只剩下如图所示的部分,AB的长为1m,但他不知道AC和BC的长

是多少而无法去截料,你能告诉师傅这两边的长度吗? 教师:请大家思考,看看能否用过去所学过的知识解决

这个问题?(约2分钟思考后学生代表发言)学生活动一:

(教师提示)把这个实际问题抽象为数学模型——那就是“已知三角形中的两角及夹边,求另外两边的长”,本题是通过三角形中已知的边和角来求未知的边和角的这个过程,我们把它习惯上叫解三角形,要求边的长度,过去的做法就是把未知的边必须要放在直角三角形中,利用勾股定理或三角函数进行求解,即本题的思路是:“把一般三角形转化为直角三角形”,也就是要“作高”。

学生:如图,过点A作BC边上的高,垂直记作D

然后,首先利用题目中的已知数据求出角C的大小,接着把题目中的相关数据和角C的值代入上述等式,即可求出b,即AC的值,然后可利用AC、AB、角B、角C的值和三角函数知识可分别求出CD和BD的长度,把所求出的CD和BD的长度相加即可求出BC的长度。教师:这位同学的想法和思路非常好,简直是一位天才

(同时再一次回顾该同学具体的做法)

教师:能否像求AC的方法一样对BC进行求解呢? 学生:可以

教师:那么具体应该怎么做呢?

学生:过点B向AC作高,垂直记作E,如图:

接下来,只需要将相关的数据代入即可求出BC的长度 教师:总结学生的做法

通过作两条高线后,即可把AC、BC的长度用已知的边和角表示出来

接下来,只需要将题目中的相关数据代入,本题便迎刃而解。定理的发现:

oo教师:如果把本题目中的有关数据变一下,其中A=50,B=80大家又该怎么做

呢?

学生1:同样的做法(仍得作高)

学生2:只需将已知数据代入上述等式即可求出两边的长度 教师:还需要再次作高吗? 学生:不用

教师:对于任意的锐角三角形中的“已知两角及其夹边,求其他两边的长”的问

题是否都可以用上述两个等式进行解决呢? 学生:可以

教师:既然这两个等式适合于任意的锐角三角形,那么我们只需要记住这两个

等式,以后若是再遇见锐角三角形中的这种问题,直接应用这两个等式 并进行代入求值即可。

教师:大家看看,这两个等式的形式是否容易记忆呢? 学生:不容易

教师:能否美化这个形式呢?

学生:美化之后可以得到:

(定理)

教师:锐角三角形中的这个结论,到底表达的是什么意思呢? 学生:在锐角三角形中,各边与它所对角的正弦的比相等

教师:那么锐角三角形中的这个等式能否推广到任意三角形中呢?那么接下来就

让我们分别来验证一下,看看这个等式在直角三角形和钝角三角形中是否 成立。定理的探索:

教师:大家知道,在直角三角形ABC中:若 则:

所以:

故:

即: 在直角三角形中也成立

教师:那么这个等式在钝角三角形中是否成立,我们又该如何验证呢?请大家思考。

学生活动二:验证

教师(提示):要出现sinA、sinB的值

必须把A、B放在直角三角形中

即就是要作高(可利用诱导公式将

在钝角三角形中是否成立

转化为)

学生:学生可分小组进行完成,最终可由各小组组长

汇报本小组的思路和做法。(结论成立)

教师:我们在锐角三角形中发现有这样一个等式成立,接下来,用类比的方法对

它分别在直角三角形和钝角三角形中进行验证,结果发现,这个等式对于

任意的直角三角形和任意的钝角三角形都成立,那么我们此时能否说:“这

个等式对于任意的三角形都成立”呢? 学生:可以

教师:这就是我们这节课要学习的《正弦定理》(引出课题)定理的证明

教师:展示正弦定理的证明过程

证明:(1)当三角形是锐角三角形时,过点A作BC边

上的高线,垂直记作D,过点B向AC作高,垂直记作E,如图:

同理可得:

所以易得

(2)当三角形是直角三角形时;

在直角三角形ABC中:若 因为:

所以:

故:

即:

(3)当三角形是钝角三角形时(角C为钝角)

过点A作BC边上的高线,垂直记作D

由三角形ABC的面积可得 即:

故:

所以,对于任意的三角形都有

教师:这就是本节课我们学习的正弦定理(给出定理的内容)

(解释定理的结构特征)

思考:正弦定理可以解决哪类问题呢? 学生:在一个等式中可以做到“知三求一” 定理的应用

教师:接下来,让我们来看看定理的应用(回到刚开始的那个实际问题,用正弦

定理解决)(板书步骤)

成立。

随堂训练

学生:独立完成后汇报结果或快速抢答

教师:上述几道题目只是初步的展现了正弦定理的应用,其实正弦定理的应用相

当广泛,那么它到底可以解决什么问题呢,这里我送大家四句话:“近测

高塔远看山,量天度海只等闲;古有九章勾股法,今看三角正余弦.”

以这四句话把正弦定理的广泛应用推向高潮)

课堂小结:

1、知识方面:正弦定理:

2、其他方面:

过程与方法:发现

推广

猜想

验证

证明

(这是一种常用的科学研究问题的思路与方法,希望同学们在今

后的学习中一定要注意这样的一个过程)

数学思想:转化与化归、分类讨论、从特殊到一般

作业布置: ①书面作业:P52

②查找并阅读“正弦定理”的其他证明方法(比如“面积法”、“向量法”等)

③思考、探究:若将随堂训练中的已知条件改为以下几种情况,结果如何?

板书设计:

1、定理:

2、探索:

3、证明:

4、应用:

检测评估:

下载正弦定理学生用word格式文档
下载正弦定理学生用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    正弦定理说课稿

    正弦定理说课稿 正弦定理说课稿1 教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也......

    正弦定理证明

    新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中......

    正弦定理说课稿

    正弦定理说课内容一 教材分析 :本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生......

    正弦定理教案

    正弦定理教案教学目标:1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。2. 能......

    《正弦定理》说课稿

    《正弦定理》说课稿 一、说教材正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之......

    原创正弦定理证明

    1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=absinCacsinBbcsinA两边同除以abc即......

    《正弦定理》教学反思

    通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果: 1、学生对于正弦定理的发现、证明正弦定理的几何法、正弦定理的简单应用,能够很轻松地掌握;在......

    《正弦定理》 评课

    《正弦定理》视频课堂 评课 高三年曾灿波 本节课基本上实现了教学目标,从正弦定理的发现、向量法证明及正弦定理的简单应用实现了知识目标,并在教学过程中培养学生观察、分解......