第一篇:广东2011年中考数学试卷的分析与思考
广东2011年中考数学试卷的分析与思考
2011年6月21日9:00至10:40是广东省数学中考的时间。这100分钟,不知凝聚了多少学子的心血,也不知吸引了多少家长期盼的眼神。因为数学一直是众多学子的弱项,许多有识之士疾呼:得数学者得天下。如果学子能学好数学,那么他的觉悟性就很好,他的聪明可以化为智慧,学其他科目就不在话下了。
2011年中考试卷有什么特点呢?
一、分值设置合理。代数占57分,几何占53分,统计与概率占10分。在代数中,数与式占29分,方程与不等式组占13分,函数占15分;几何中三角形占29分,四边形占14分,圆占10分。
二、难易度与梯度明显。试卷是前面基础题,后面是中档题和爬坡题呈递进状态。其中基础题和常规题占80分左右,其余为中高档题。
三、突出了对学子的基础知识、基本能力和基本的数学思想方法的考查。试卷重点对转化思想,数形结合思想,方程与函数思想,相似变换思想,分类思想,运动变化思想进行了考查。
学生答题状况如何呢?
一、基础题容易丢分。有同学觉得基础题很容易而导致审题不严,如抛物线与x轴没有交点学生误以为有交点。统计中问调查的总体是什么学生误以为是班上被调查的50名同学上学路上话费的时间,实际上是班里学生的作息时间。
二、中档题易会而不对,对而不全。如应用题,学生会根据总价除以数量等于单价列出分式方程,但转化为一元二次方程后解错或解不出来,还容易漏掉检验。
三、爬坡题只能完成一部分或没时间完成。后面三道九分题是比较难的,学生一旦卡了壳,思维受到阻碍,容易急躁,导致解题受到严重影响。这三道题中前两道好多学生能做出前两问,后面一问经过苦思冥想没想出来,再做最后一道题已经没时间了。
从学生反馈的思想情绪看,普遍认为难。难在什么地方?主要是试卷一反常态,常规题中因式分解、分式化简、一次函数与反比例函数的组合题今年没有出现,出现在相似三角形中的考题占了16分,其中一道是4分找规律题,还有一道9分题。尤其是后面三道9分题更是标新立异,第一题从数式中找规律,数字呈现三角形状,学生平时没见过,考场上肯定被吓了一跳;第二题是两个等腰直角三角形,一个绕另一个旋转,要找相似,列函数关系式,找等腰三角形成立的条件;第三题是二次函数与动点的结合,也是近几年中考中没有出现的。
今后从哪些方面突破呢?
一、规律型问题要加强。近三年每年都是两道题,4分加9分共计13分。从图形中找规律一般是找相似图形,从数字中找规律显得更复杂,题型多变,要多让学生见识。
二、两块三角板的组合图形中一般含有旋转变换,里面蕴含许多规律,要重点关注。近两年这种题型都是出现在9分题中。还要熟练求特殊直角三角形的边长。
三、动点问题趋向出现在抛物线中。从今年中考看,动点问题设置的是抛物线背景,这也是近几年没有出现的
第二篇:中考数学试卷分析
中考数学试卷分析
**年的荆门市数学中考试题在继承我市近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、以人为本”的命题原则,贯彻《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)和《荆门市**年初中毕业生学业考试数学科大纲》(以下简称《数学科》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识。
一、总体评价
试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现
和落实新课程改革的理念和精神、整套试题覆盖面广,题量适当,难度与《数学科大纲》的要求基本一致、在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、应用性、综合性。
1、整体稳定,局部调整
今年中考,荆门市实行网上阅卷,为此,今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:填空题由原来的10个小题减至8个;解答题由原来的8个小题减至
7、部分试题的分值和考查重点,也作了相应的调整。
2、全面考查,突出重点
整套试题所关注的内容,是支撑学科的基本知识、基本技能和基本思想、强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法,回避了大阅读量的题目。
试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念、试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查。
3、层次分明,确保试题合理的难度和区分度
同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度。
4、科学严谨,确保试题的信度、效度
试卷题目陈述简明,图形、图象规范美观、凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握,这就确保了考试具有较高的信度。
试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的
解答习惯、学习水平和承受能力、除压轴题以外的几道解答题,设2~3问,形成问题串,起点很低,循序渐进,层层铺垫;压轴题思维含量较高,具有一定的挑战性,要解答完整、准确,则需要具备较强的数学能力、这样的布局,能确保考试具有较高的信度和效度。
具体情况见下表:(略)
二、试题的主要特点
1、注重“三基”核心内容的考查,恰当渗透人文性、教育性。
2、贴近生活实际,考查学生数学应用意识。
应用数学解决问题的能力既是《课程标准》中的一个重要的课程目标,也是学生对相关教学内容理解水平的一个标志。数学课程标准明确指出:中学阶段的数学教学应结合具体的教学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,教学中要创造这种模式的教学情境,让学生经历数学知识的发生、形成与应用过程,新课程
标准特别强调数学背景的“现实性”和“数学化”。如第21题,以学生日常生活中的常见事例为题材,设置的一道背景公平的实际问题,主要考查考生的商品意识和建模意识,考查的知识有方程与不等式、方程,通过这类试题的考查,使学生更加关注身边的数学,生活中的数学,用数学的眼光去观察、分析社会,用所学的数学知识去解决实际问题,培养学生的数学应用意识。
3、设置开放探究问题,关注学生的数学思考。
承认差异,尊重个性,给每一位学生充分的发展空间是《课标》提倡的一个基本理念,而给学生以更多的自主性,让不同类型,不同水平的学生尽可能地展示自己的数学才能是近年来提倡的一个命题原则。试卷在这方面作了一些努力,通过设计开放探究性问题,打破单一的思维模式,形成灵活多样的思维结构,使学生对问题的思考更自由、更发散、更创新,从而进一步发展学生 的思维个性。如第18题属规律探究归纳题,要求考生具备有从特殊到一般的数学思考方法和有较强的归纳探究能力,才能正确地作出解答。
4、设置图形变换,考察学生实践操作能力。
《课标》一再强调学生学习方式的变革,认为:“有效的数学学习活动不能以单纯的模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。对学生动手操作和探究能力的培养和考查,是素质教育所要求的重要内容之一,让学生亲自参与活动,进行探索与发现,以自己的体验获取知识与技能是新课标的目标,为了体现新课标精神,试卷设计了计算量小、思维空间大的操作探索题目。如第3题旨在考查三角形中角之间的关系,但打破过去单一的问题呈现方式,而是与折叠操作相结合,有机的融入了轴对称变换的相关知识。
5、设置字母参数,考查综合能力
对于初中毕业生来说,不仅要掌握必要的数学基础知识和基本技能,还应具备有一定的分析问题和解决问题的能力及数学综合素质,对这种要求的考查,一般都是放在压轴题来实现。而这类压轴题都以所学的重点知识为载体,融数形结合为一体,以探究性试题形式呈现。在设计方法上注重创新,都善于放在主干知识的交汇点上;在考查意图上,极力让学生探索研究问题的实质,突出对学生发展思维能力、探索能力、创新能力、操作能力的考查。
第25题压轴题,融方程、函数、数形结合,分类讨论等重要数学思想于其中的综合题,考查的知识主要有:抛物线的对称性、抛物线的平移、一元二次方程等重点知识,此题对学生的能力要求较高,只要把抛物线的解析式用含m的式子表示出来,所有问题便迎刃而解,但如果考生的思维走入了“求出m的具体值”这一误区,此题的失分就在所难免了,这就要求考生仔细分析题目,正
确把握“m为常数”这一信息,才能作出正确的解答。
三、教学建议
(一)命题建议:
2、表述上应更加严密些。压轴题的第(1)小问中“求抛物线的解析式”若用括号说明“用含m的式子表示”,那么第(1)小问的难度将会大大降低。
(二)教学建议:
1、加强研究,转变观念
想要提高学生的数学能力,适应当前中考的变化,最有效的途径就是加强对《课程标准》、《数学科大纲》和教材自身的学习与研究,不断转变我们的教学观念、《课程标准》、《数学科大纲》和教材既是中考命题的依据,也是衡量日常教学效果的重要标尺、我市近几年中考数学的试题,均严格遵循《课程标准》、《数学科大纲》的要求,紧扣教科书、也就是说,《课程标准》、《数学科大纲》和教材才是编拟中考数学试题的真正
“题源”、所以,我们的教学要紧扣课标,吃透考试要求,回归教材,发挥其示范作用、唯有这样,教学和复习才会起到事半功倍的作用、2、正确认识数学基础知识、基本技能和常用的数学方法中蕴涵的数学思想
当前中考试题考查的重点,仍是数学的基础知识和基本技能和常用的数学方法中蕴涵的数学思想、加强“三基”的训练是提高数学成绩的一个重要环节,但我们首先要对加强“三基”有一个正确的认识。
中考中要求的基础知识、基本技能和常用的数学方法中蕴涵的数学思想,是解决常规数学问题的“通法通则”,而并非特殊的方法和技巧,因此抓好“三基”,绝不是片面追求解偏题、难题和怪题,更不是刻意去补充课标和教材要求之外的知识与方法。
加强“三基”,很重要的一个方面是对学生解题规范性的培养、只有做到
答题规范、表述准确、推理严谨,才能保证学生考试时会做的题不丢分、建议教师在日常的教学中,充分重视对学生解题步骤和解题格式的规范要求。
加强“三基”,不能通过要求学生机械记忆概念、公式、定理、法则来实现,而是要将这些核心知识的理解与掌握,置于解决具体数学问题的过程中,所以适当的解题训练是必要的、但加强“双基”,又不能仅靠大量的不加选择的解题来完成,更不能把数学课变成习题课,搞题海战术。
要认识到,“三基”的提升不是一蹴而就的,需要一个循序渐进的过程、在日常教学中,学生对数学知识的初次认知尤为重要,因此一定要留给学生充分的探究发现、归纳概括的时间,扎扎实实地掌握好每一个数学概念、任何匆忙追求教学进度、最后依靠机械性的强化训练的做法,都不可能取得真正良好的效果。
3、关注数学方法和数学思想的渗
透
要想在中考取得理想的成绩,除了理解基础知识,掌握基本技能外,还必须关注数学方法和数学思想,而这正是目前教学中较为薄弱的环节之一。
值得注意的是,对数学方法和数学思想的教学不能孤立进行,它应以具体的数学知识为载体,所以我们要注意在日常教学中对数学方法和数学思想的渗透、如在“分式”教学中渗透类比思想(与分数的类比),在方程组的教学中渗透转化思想(与方程的转化)等等、只要我们平时注重这一点,数学思想方法就会自然的“内化”在学生的思维方式之中。
4、注重过程教学,培养思维品质
“重结论、轻过程”,仍是当前教学中的一个重要误区、这种忽视知识形成过程的教学,会导致学生只重视结论本身,甚至死记硬背结论,“只知其然而不知其所以然”,也就更谈不上在考场上灵活运用与迁移转化了。
因此在教学过程中,一定要从重视知识结论转向重视知识的形成过程、要真正改变现有的教学方式,关注学生的学习方式,使教学的过程变成一个学生思维方式不断发展的过程。
培养思维能力,还应在提高学生的思维品质上下功夫、如培养学生思维的灵活性、全面性、严密性,以及思维的广度和深度等等。
中考数学试卷分析
(二)为了解我县初中数学教学的现状,及时掌握初中数学教学中存在的问题,探索提高初中数学教学水平的方法,并以此推动初中数学教育教学改革,提高初中数学教育教学质量。下面从以下几个方面对河南省**中考数学试卷作以分析:
一、试卷总体评价
**年的中考数学试题,与去年相比,试卷考查的内容有改变,但试卷的体例结构、考题的数量均较稳定,试题注重通性通法、淡化特殊技巧,解答题
设置了多个问题,形成入口宽、层次分明、梯度递进的特点,有较好的区分度。有利于高中阶段学校综合、有效地评价学生的数学学习状况。所有试题的考查内容及试题编排由易及难,坡度平缓,一部分试题情景来源于教材,对考生具有相当的亲和度,有利于考生获得较为理想的成绩。
1、试题题型稳中有变
2、试题贴近生活,时代感强
3、试卷积极创设探索思考空间
4、试卷突出对数学思想方法与数学活动过程的考查
二、学生答题得分统计
基本情况(抽样分析不计零分和缺考人数)
三、试题错因分析
1、选择题失分情况分析
2、填空题失分情况分析
填空题涉及的知识面较广注重对学生双基能力的考查。其中7、8、9、10、11答题较好,出现的错误集中反应在第 14、15两题。这两题也可称作为填选题的压轴题,属于拉开学生成绩档次的题目。其中14题求点A’可移动的最大距离,我们可以用折叠的方式找出起点和终点,这样就迎刃而解了。大部分学生看到这样的题就怕了。也不动手去折一下,而在给出的图形上思考,而给出的图形既不是起点也不是终点。
第三篇:2008年广东高考数学试卷分析
2008年广东高考数学试卷分析及2009年高考备考建议
方壮彬
广东普宁二中数学组
515300
Tel:***
E-mail:fangzhuangbin@163.com
摘要:本文通过08年广东高考数学(文、理)试卷的阅读,在数据处理和试卷分析的基础上,结合新课标实行以来的06、07两年广东数学考题,从梯度合理,高考要求没变、重视基础,回归教材、统计概率稳定,关注新增内容、突出能力立意,注重探究四个方面进行阐述,并结合本人的教学实践,对09年高考数学备考提出了五点粗浅的建议,试图为新课改高考数学备考把握命题导向提供实践模式的参考。
关键词:
梯度
阅读能力
知识的迁移
一、数学卷的特点与分析
1、梯度合理,高考要求没变
2008年广东省高考数学卷保持了07年的试卷结构,试题内容较为传统,数学理科试题除了一道小题(理
5、文7)、三道大题(理
19、理
21、文21)突出考查学生应变思维能力之外,其他的题目都较常规。
选择题、填空题基本上来源于教材。题目内容主要包括集合、函数性质、命题及充要条件、复数、平面向量、圆锥曲线、立体几何、数列、统计和概率、算法、线性规划、不等式等主干知识。集合和函数的定义域知识出现在文科题中,理科题中却是近几年来第一次没有出现集合考点。圆锥曲线连续三年在试卷I部分出现,06年研究第二定义,07、08连续求方程,涉及圆、双曲线和抛物线,难度逐渐减少。线性规划在04年、06年分别求最小值点(x,y)的坐标和约束条件
存在着参数s的问题,变化的可行域使解题过程显得麻烦,而08年的考题则变得平常化。
解答题方面,还是遵循三角函数、应用题、立体几何、导数的应用、数列的应用、解析几何六大版块命题。数列的应用是压轴题,而立体几何放在理科第20题则有点让人感到意外。文科要求“线段PD的长;求三棱锥P-ABC的体积”,相对而言,理科求“BD与平面ABP所成角θ的正弦值;证明:△EFG是直角三角形;当
时,求△EFG的面积”难度进一步加大,体现出文理科的差异。解析几何题目是理科的第18题(文20),06年、07年、08年连续三年考求轨迹方程和研究存在性问题,虽然解题过程使用的方法、运用的技巧、依据的知识点不同,但却都有似曾相识的感觉。
按照今年评卷中各主观题统计的数值(下表)来看,文理科得分的变化情况很符合正态分布的命题规律,梯度设置较为合理。按照新课标的要求,新高考数学试卷难易合理,试题低起点,立足基础,全面考查,总的教学指向没有变化。
理科:
题号9-12
13-15 16171892021
平均分16.23
6.348.939.655.482.613.770.71
文科;
题号11-1314-***21
平均分11.612.645.393.375.067.41.760.14
2、重视基础,回归教材
根据考试大纲要求、课程标准的理念和教学实际,今年的高考试卷加强对基础知识的考查,加大了试题中基础知识内容的比重,并合理调节选择题、填空题的难度,不在这部分题型里设置难题,对支撑学科知识体系的主干知识综合地进行了重点考查。
教材中的基础知识、主干知识,在新标准的理念下,比重不断提高。试卷I部分必做题中,复数基本概念与运算考查了复数 的模,与07年的难度差不多,但比起06年的复数开立方运算,难度降低了;理科题2(文4)是考查等差数列 的前6项和Sn,比07年的讨论和06年的递推,显然减少计算量;函数奇偶、周期性质综合题体现在08高考文第9题简谐运动的最小正周期T和初相Ψ问题以及08高考文第5题函数,x∈R的奇偶性判断、理科第12题求函数,x∈R的最小正周期中,强调数学知识基础性的用意很明显。
尽管今年的文理科题目创新题型不是很多,没有偏题、怪题和高难度题。试题着重对基础知识、基本技能进行考查,所考知识点基本上都是学生平时经常接触到的典型和重要的内容,是从中学数学的基础知识、重点内容、基本方法出发,在知识的交汇点处设计命题。
3、统计概率稳定,关注新增内容
去年开始高考数学实行新教材统一考试,我们密切关注考试内容及考试特点,关注新知识点的难易情况。从广东高考两年的试卷来看,命题尽量覆盖新增内容,难度控制与中学教改的深化同步,并逐步提高要求,体现新增内容在解题中的独特功能。
今年试卷中多个地方体现新增内容,其中框图与条形图连续两年考查,今年出现在文科试卷中的11题、15题、理科的第9题中。比较往年,07年是两者结合起来,解决条件填写的问题,而今年则是输出结果和区域人数的问题。框图与条形图有很多技巧点,比如说,与迭代、数列、函数等的结合,但今年的试卷没有渗透太大的难度。线性规划、三视图也出现在理科题中的第4题和第5题(文科7、12)中,二项式定理的含参数问题则出现在理科中的第10题。新增内容在高考试卷中出现的频率较高,应当引起我们足够的重视。
在概率与统计方面,这几年在考题中都较为稳定。06年没有分文理科,考了概率、求x 的分布列和x 的数学期望Ex
;07年文科第8题、理科第9题考查了数字之和为3或6的概率及两球都是红球的概率的问题,解答题考查了线性回归方程;08年文科第11题、19题考了概率统计中的频率分布直方图、分层抽样和女生比男生多的概率,理科第3题、17题考了分层抽样、分布列和x 的数学期望,今年文理科概率与统计的考点占分值分别为17分、18分,分值比例较大。推而广之,概率与统计的其它的方面,如独立性检验、正态分布、独立重复试验、条件概率、几何概型等相关内容很值得期待。
4.突出能力立意,注重探究
加强立意意识的培养与考察是时代的需要,是教育改革的需要,也是数学科的特点所确定的。通过设计适度开放的探索性问题,给考生创设进行数学探究的空间,进而检测考生的数学素养,如文科的第20小题,在求数列通项公式和求数列 的前n项和 的常规问题中,考查了学生的阅读能力及分类思想等数学技巧;2008年理科的数学的21题:设p,q为实数,α,β是方程 的两个实根,数列 满足
(1)证明:
(2)求数列 的通项公式;
(3)若 求 的前n项和.虽然存在一些争论:第一小题的表述方式有歧义;第二小题和第三小题能不能换位,更符合学生的思维习惯;题中是要求学生用p,q还是用α,β来表示呢?,两者计算量不可同日而言;第三小步的问题的解法多种多样,有利于参加奥赛学生,对于考生选拔不公等等。但是,我们可以看到:该题突出能力立意,有利于选拔,更重要的是:该题体现新课程理念,密切联系教材,考察数学的重点知识,贴近教学生活,具有强烈现实意义。通过下列来源于课本的图片,我们可以看到,该题在必修五中可以找到拓展前的原型(如下)。
该解答题注重知识之间的交叉、渗透和拓广,创新意识很强,能突出变化,适度综合。近几年的设计创新、增加能力型的试题,融知识、方法、思想、能力于一体,注意知识的发生过程,重视学生自主探究、自主学习能力的培养,全面检测考生的数学素养。
二、以后备考的启示与建议
1、正确把握高考复习的方向
备考过程中要重视对新课标背景下《考试大纲》的研究,理解高考命题新的要求、范围和重点,通过对近几年高考题的认真分析,深化对高考题命题方向的认识,进一步明确考试要求。例如突出新增知识的应用、理论性或实际奥赛背景、高等数学与中学数学的联系等方面,07年文21(理20)的函数求导题,其背景是牛顿迭代法;08年理科21题数列研究,背景则是高中奥赛中的k阶线性递归数列。
2、复习要讲科学,重视教育科研
复习过程要加强教学模式有效性的探索,查漏补缺。随着教学的深入,自我认识能得以不断完善,在掌握高中数学基本概念、基本技能和基本方法等数学基础知识的同时,注重了对学科的内在联系和知识的综合、重点知识的训练,并达到了必要的深度。
高三教学中,我们会接触很多题,应该根据实际进行精选或重组。如08理科第三题(文19)的分层抽样问题,它的核心是等比。那么,简单随机抽样、系统抽样的核心是什么?形如函数、数列可以和算法综合起来命题一样,统计中的茎叶图、正态分布等内容的核心是什么?和哪些实际生活相关?和哪些传统的数学知识可以交错命题?也就是说,重视教育科研,自我归纳、分析、整理,目的明确地进行研究,能在一定程度上起到有效作用。
3、强调阅读能力,注意书写规范性训练
数学试卷中,因为知识点的不同,会影响对试题表达的理解。如今年试题中理18题、20题和文科17题、20题得分率低,理科第18题是一道解析几何几题,全省29万多考生只有7478人得满分,比率只占2.4%。其中对题意不能正确理解造成失误,因为书写不规范,没条理失分的现象十分普遍,表现在:丢三拉
四、只求三言两语,无关键步骤(方程),不求推理有据,更谈不上整齐、清洁、美观。
备考过程要注重数学解题过程的规范性、准确性、完整性训练,高考数学试卷的评分标准有着规范化的步骤,强调分步得分,并严格按着该要求组织评卷。在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行阅读理解的强化训练、复习才有实效。
重视试题的准确表达和理解以养成良好的解题习惯。如仔细阅读题目,看清数字,规范解题格式。常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服。08年理科19题:
设 函数
试讨论函数 的单调性。
该题难度中等,主要考查求导及分类思想,解题过程较为复杂。从今年评卷的情况看,广东29万多理科考生该题得满分的考生只有105人。这说明了一个什么问题?
因此说,强调阅读能力,注意书写规范性训练,是高三数学备考复习中的重中之重。
4、强化主干知识,突出新增内容
备考中一定要突出重点,夯实基础,建立各部分内容的知识网络,准确地把握概念,在理解的基础上加强记忆,加强对易错、易混知识的梳理,要多角度、多方位地去理解问题的实质。综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。
新课程的试题,反映出中学课程新增加的数学内容在解决实际问题中的应用。08年理科第5题(文7),将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体按图2所示方向的侧视图(或称左视图)为()
该题主干知识点为立体几何与新增内容三视图的有机结合,考查了学生的空间思维能力,提炼了数学思想,优化了思维策略。
5、加大变式题训练力度,重视知识的迁移
今年的高考试卷在知识与能力考查的同时,体现了对新课改新理念的实践与创新发展,它要求学生通过日常的数学活动,理论联系实际,能综合应用所学数学知识、活动实验情景、乃至于高中数学联赛题目的解题思想和方法。
如果08年广东高考数学题和其他省市的高考题进行比较,广东卷显得传统、保守。上海卷中的第10题导航灯问题、第17题某住宅小区问题就较有生活气息和数学探究内涵;江苏卷出现了古典概型(2)、几何概型(6)、频率分布表(7)、归纳推理(10)、污水处理厂问题(17)等内容,看起来很明亮。当然,和07年广东高考数学卷比较,08年广东高考数学卷暗淡了很多,但是也有新课改的味道。从07、08连续两年新课改后的高考试题中,我们可以感受到,备考过程加大变式题训练力度势在必行,为实现知识的合理迁移,可以通过一定的逻辑分析和推理来进行变式训练和组题,可以从教材中的典型例题、社会生活中热点问题、经典的数学问题、数学竞赛的一些内容和方法等方面入手,动手实践、自主探索与合作交流,从数学的角度观察、思考和分析以提高解决实际问题的能力。
主要参考文献:
[1].国家数学课程标准制定组 《高中数学课程标准》(实验稿)[M] 北京师范大学2002.5
[2].教育部基础教育司 《走进新课程------与课程实施者对话》[M]
北京师范大学出版社 2003.3
[3].广东省考试中心 《2008年普通高等学校招生全国统一考试(广东卷)考试大纲的说明》[M]
广东高等教育出版社
2007.12
[4].广东省考试院《广东省2008年普通高等学校招生考试试卷及参考答案》[M] 广东高等教育出版社
2008.6
阅读全文: 52 评论: 3
相关评
第四篇:2012年中考数学试卷分析
2012年中考数学试卷分析
分值分析:
选择题6题,4分/题,难度系数A级,预防粗心,共24分;填空12题,4分/题,共48分,第18题难度B+,正确率为50%;计算题19题,10分;解方程20题,10分;21题解直角三角形,10分;22题一次函数的实际应用10分,23题简单的几何证明和计算10分;24题函数和平面直角坐标系的混合运用,难度系数C,12分;25题第一问较简单,难度系数A,第2问难度系数C,第3问难度系数C+,共14分。
知识点分析:
1、单项式和多项式,初一上册内容;2、概率和统计,中位数、众数和平均数;3、解不等式,解集的确定;4、二次根式、分母有理化、化简和求值;5、轴对称图形和中心对称图形;6圆与圆的位置关系;7、计算,求绝对值;8、因式分解-提取公因式法;9、函数的增减性;10、解根式方程;11、一元二次方程根的情况;12、函数的平移;13、概率的计算;14、频率分布和统计;15、向量的计算-三角形法则和平行四边形法则;16、相似三角形性质的运用;17、正三角形多心合一的问题及应用;18、平移和翻折的运用(画图能力);19、计算,细心,难度系数A-;20、解方程,难度系数A;21题解直角三角形的运用,建立直角三角形,难度系数A+;22、应用题或一次函数的运用,难度系数A+;23、三角形一边平行线、比例线段的运用和平心四边形,几何部分,难度系数B;
24、函数。平面直角坐标系和锐角三角比的综合运用,难度系数不是很大,但是因涉及知识点和计算较多,故定为B+或C,25、圆的综合运用,往往会和相似三角形混合运用,但是今年没有涉及到,圆的比重增加;
分数占比:初一上118分,初一下20分,初二上20分,初二下30分,初三上32分,初三下30分;难易比例为:2:8
做试卷要求:1-6必须全部正确;12-17全部正确,18题正确率50%,19-23全部正确,24,前两问,25题第一问,只要准确率保证,学员基本能考到130分。
解题技巧:前17题必须要十分的仔细,整体难度系数和含金量较低,但却是粗心学生的噩梦;18题多解和画图能力;19-20,考验学生的基本功,技术含量低;21-23解题步骤的设置很重要。24-
25、先做前2问,最后一问哪怕不会做,也要写出相关的步骤。25题侧重辅助线的作法.重难点:
重点:函数、解方程、三角形的全等的证明和运用、函数、相似三角形、圆、四边形。难点:旋转和翻折、三角形的相似的证明和运用。圆与四边形的综合运用。函数和几何的综合运用。
第五篇:2014年中考数学试卷分析
2014年中考数学试卷分析
北陶中学:崔敬芳
一、试卷总体分析
2014年聊城市中考数学试卷,延续了去年的平稳趋势,较2013年聊城市中考数学试卷相比,题型结构稳定,总体难度略难,灵活性提高。本套试卷在保持对基本知识的考察力度上,重视数学思想方法和学科综合能力的考察。在题型的设计上,注重与现实生活的联系,同时也体现了“实践与操作、综合与探究、创新与应用”的命题特点。(如第2题,第12题,第18题,第21题,第22题,第24题,第25题)。试题基本上无“偏、难、繁、旧”的题目。
在简单题和中档题方面,题型变化不大,都是学生比较熟悉的题型,体现了中考试卷重视“双基”特点。在难度比较大的压轴题方面,如第22题,第24题,第25题,强化了对数学思想方法和数学综合能力的考察,试题比较人性化,无繁琐的计算,但具有很高的灵活性,体现了“入口宽、出口窄”的特点,具有很好的区分度。总体来说,2011年的中考试卷体现了“稳重有变,变中有新”的特点。
本次试卷的试题结构、题型题量分布、以及考点内容分布等基本符合今年的考试说明,这里不详述。今年中考试卷的部分考察内容及难度和去年中考略有变化,在第二部分的典型试题点评部分会有介绍。
二、典型试题点评
在选填压轴题等稍难的题目方面,第8题(选择题的最后一道),考察的是动点与函数图象的题目,第12题(填空题的最后一道),考察的是新概念和新定义的题目,背景是高等数学中的线性代数,比较新颖,体现了知识的衔接。这两道题都属于近年来比较热门的题型,特别是第12题,要求学生能够“活学活用”,能很好地考察学生接收新知识的能力。这两道题的难度和2010年的难度相当,不是很难。
在图形操作与探究题(第22题)方面,考察了平移变换和面积问题,较2010年考察的轴对称变换要难一些。这类题目,大都与图形变换有着密切的关系,能很好地体现了近年来中考试卷“实践与操作”的特点。本题第一问比较简单,属于梯形中比较常见的辅助线,即平移腰,后两问有一定的难度(带有三角形重心的背景),需要学生能灵活运用平移的思想去分析问题、解决问题,部分学生可能会感觉第一问和后两问有一定的跨度,不够连贯。因此学生在平时的学习中要重视三大几何变换的学习,达到“灵活运用”的程度,同时也要加强“三角形的三线四心”的学习。值得说明的是,本题来源于一道类似的竞赛题,原题是已知三角形三条中线的长度,求三角形的面积。从中考到竞赛,也是近年来部分中考压轴题的特色,不少经典的竞赛题能够很好地体现数学中的思想方法,因此对于一些想突破高分的学生来说,可以关注部分经典性的竞赛题目。
在代数综合压轴题方面(第23题),主要考察了二次函数、一次函数以及不等式的相关知识。这类题型大都与函数、方程不等式以及代数式的恒等变形等有关,通常考察数形结合思想以及相关的画图识图能力。本题难度不大,第3问需要学生在平时养成良好的审题读题习惯,培养将文字语言转化成数学语言能力,进而在解题时能抓住出题意图,提高分析问题、解决问题的能力。
在几何综合题方面(第24题),主要考察了旋转思想,等腰三角形的性质及判定等相关知识。相对于2010年的几何综合题(第25题),2011年的几何综合题要简单一些。本题属于探究题,第1问比较简单,第2问略难,考察的是一个比较隐蔽的旋转类全等模型,需要学生在平时的学习中积累一些经典几何辅助线的做法经验,同时注意培养观察、猜想、分析、论证的能力。需要提醒的是,在积累经验的同时,一定要重视能力的培养,这样才能提高解题的灵活性,进而从容应对一些比较新颖的题目。事实上,如果前2问都做出来的话,第3问并不难。此类探究题,通常是从特殊到一般,而且前后问的条件和结论具有很大的相似性和连贯性。因此,在解此类题目时一定要仔细注意前后问之间的共性和差异,抓住前一问解法的本质特点,进而将解法灵活地迁移到后一问中。
在代几综合题方面(第25题),主要考察了平行线间的距离、直线与圆的位置关系、平移、平行四边形的判定等相关的知识。同时本题也考察了数形结合思想、分类讨论的思想以及画图识图的能力。本题前两问难度不大,第三问难度较大,需要学生能灵活运用第2问的结论,同时结合分类讨论思想进行解答,此问能很好地考察学生的思维缜密程度和细致程度,可能不少学生会感到纠结。和2010年中考数学的代几综合题(第24题)相比,今年的难度要大一些,具有很高的区分度,第3问能够全部做出的学生应该很少。因此,学生在平时的学习中,一定要注意归纳总结,将这部分的题型分类归纳,积累相应的解题经验,同时要强化数学思想方法和综合能力的培养,提高解题的灵活性。
三、学习方法指导
总体来说,鉴于中考重视对“双基”的考察,而且简单题加中档题大概有96分,因此对于基础知识这部分,学生在平时的学习中一定要夯实基础,概念要理解透彻,知识之间的联系和区别要梳理清楚,并养成认真审题解题的习惯。同时也要注意这类题目解题的正确率和熟练程度,以便为突破部分难度较大的题目做准备。对于难度较大具有区分度的题目,学生在平时的学习中,一定要注意数学思想方法和综合能力的培养,同时在实践与操作、探究与综合,以及找规律、归纳与概括等之类的题目上,好好练习,积累丰富的经验,还有一定要提高解题的灵活性。最后,也是不容忽视的一点,需要学生培养一定的考试技巧,找到自己的考试状态和节奏,确保考试稳定发挥。2014、07、04