第一篇:全等三角形教学案例
初中数学教学案例
【案例介绍:】课题:探索三角形全等的条件
一、教学设计:
1.学习方式:
为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2.教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。3 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。教学过程
创设情景 提出问题
怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
建立模型 探索发现
按照三角形“边、角” 元素进行分类,师生共同归纳得出:一个条件:一角,一边两个条件:两角;两边;一角一边三个条件:三角;三边;两角一边;两边一角
按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论: 只给出一个或两个条件时,都不能保证所画出的三角形一定全等。
归纳总结 得出新知
…..巩固运用 及其推广
反思小结 提炼规律
5教学反思
(1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2)在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3)“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才的以发展。
(4)“问题是数学的心脏”,同学们在不断解决问题中,得到了快乐。
第二篇:全等三角形
复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。
活动二:讲授新课 全等三角形的判定条件的探究 首先提出
问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。
问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的 情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。
问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。
活动三:题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题。
第三篇:三角形全等的条件教学案例分析
探索三角形全等的条件的教学案例
一、教学设计:学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。4 教学目标:
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
第四篇:全等三角形教学反思
初中一年级数学(北师版)(下)《全等三角形》
教学反思
涪阳中学:张长城
一、教学细节方面
1、在字体大小上,以前自己亲手制作的几何图形在字母大小的表示很小,学生看起来肯定是比较吃力;这样不利于学生对知识的阅读与理解。
2、在概念关键字上,比如能够重合的两个图形称为全等图形,全等图形的形状和大小都相等;上课的时候学生是直接给出,没有对概念的中关键词“形状”、“大小”加以强调,在课上学生是用声音重和慢来突出关键词“形状”、“大小”,并追问:“判断两个图形是不是全等图形关键是看这两个图形的什么?”提高学生对知识的理解深化。
二、课后反思
1、在上全等三角形这节课中,全等指的是两个图形之间的关系,直接给出两个图形,这样学生对全等图形是指两个图形之间的关系很模糊,而逐步呈现,这样有利于学生的理解全等图形是两个图形之间的关系有了更加深刻的认识。我认为在基本概念分析透彻上是非常有必要的。
2、拿出两个全等三角形纸片,当这两个全等三角形独立的时候,让学生找它们对应顶点、对应边、对应角;如果将两个全等的三角形摆放的位置发生变化:这时在课堂上呈现两个全等三角形摆放成“蝴蝶型”、“Z字型”等,让学生感受,进行分析;在最后增加利用全等三角形对应边相等、对应角相等练习。
3、练习部分的内容在课堂的时间上一般是后半部分,练习部分的题目设计上我认为最好的是既能将各个练习之间内在的关系挖掘出来,给学生呈现内在的美与气质,更需要将有气质的题目以新颖的形式呈现出来,;这样能够有效调动学生各方面的感官为学习服务。就能有效地提高教学的效率。
三角形全等判定(SSS)课后反思
三角形全等的判定方法一:边边边公理,是判定方法研究的第一课时,本课在教学时有三个难点:1.体会有一组量、两组量对应相等的两个三角形不一定全等;2.三组量对应相等的各种情况的分类;3.利用“边边边”判定全等推理的书写格式;
有学生前置学习的优势,难点1的突破还是可以很快进行的,但是反例的列举还是略显单薄。难点2是学生分类解决问题能力的检验,可以预料:学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是两边一角和两角一边中,由于相互位置的不同学生不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好,进一步的分类有教者强加的影子,课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的处理不较好,间接条件要推理到直接条件(如例1中由AD是中线,证得BD=CD),这在写两个三角形中的前面就要做好书写说明;直接条件直接写(如例1中AB=AC);隐含条件要挖掘(如例1中,公共边AD=AD)。
从本课的教学情况看,学生的前置学习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领,传给学生的不只是尺规作图的方法,更是严谨认真的精神;课堂容量的把握要一有度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于以知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。
本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。
在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础
三角形全等判定(ASA)(AAS)
课后反思
本堂课的教学是采用实验的方法进行的,本人认为这样处理教材的好处是:
1、让学生通过实验,自己发现ASA和AAS的识别方法,培养学生实践能力和观察能力。真正让每个学生都参与到学习中来,使数学学习不再单调枯燥,避免了教师讲学生听的机械注入。使学生在探索、发现知识的过程中体验到成功的乐趣,由于是在游戏中学到新知识,学生乐于学,这样有效地激发了学生的学习主动性。同时,使学生认识到生活中处处有数学,树立知识来源于实践又用于实践的观念,提高学习兴趣。这种从形象到抽象,一般到特殊的教学过程更符合学生的认知规律。
2、较好地体现了《新课程标准》的核心思想,符合课改的要求。在传统教材中《全等三角形的识别》是按排在《尺规作图》之后,另外,教师利用《尺规作图法》来解释,也不易于学生理解,因为《尺规作图》本身就是比较抽象的概念。而新教材却把《全等三角形的识别》按排在《尺规作图》之前,显然不适合用《尺规作图法》来解释,通过实验的方法巧妙地避开了这种山穷水尽的困境,开辟了新的教学模式。
3、课中给学生提供了主动探索的时间、空间。在实验的过程中给予了足够的观察思考的时间,拓展了学生研究三角形的空间,初步感知了ASA,揭示出隐藏在数学教材背后的数学概念,把书本上原本凝固的概念激活了,使数学知识恢复到那种鲜活的状态。实现了书本知识与学生发现知识的一种沟通,增强学生对几何图形的敏感性,这也是课改中所倡导的。
通过学生的活动实践,我发现小组活动有如下的优点:
1.小组活动课从课桌椅的布置和学生的座位安排来看,改变传统的“教师高 高在上,学生唯唯诺诺”课堂氛围,拉近师生、同学间的距离,融洽师生、同学感情,有利于调动学生学习的积极性、活跃气氛,让师生在较随和的气氛中传授和接受知识。
2.有利于体现小组成员之间的集体智慧,小组成员之间相互协作,共同完成任务,培养学生团结协作、积极向上,增强学生学习自信心。面向全体学生,让大家都参与,使小组每个成员都有事可做。激发学生的学习热情,使每个学生都能感受成功,体验成功的喜悦,激发学生的求知欲。
3.有利于师生之间和学生之间的互动和沟通。培养在学生交流中寻求帮助,既坚持自己观点、又听取别人建议。建立互相信任、团结互助的关系。这对培养良好的学习品质和良好的思想品质也是大有益处的。小组合作学习的缺点及解决办法:
小组合作学习确实具有上述的许多优点,同时也客观地存在一些不容忽视的缺点。因为,学生之间存在个体差异,好学生参与的机会更多,往往成了主角,困难学生成了配角,这可能导致小组成员间不团结,困难学生渐渐产生自卑感,导致学生间的个体差异更大,加剧了两极分化;也可能出现小组成员间的交流很少,基本上停留在独立学习的层次上,好学生怕该小组的名次落后,往往抢答,没有真正的讨论和合作,没有充分发挥小组合作的优势,其学习结果不能完全代表本小组的水平。
本人认为解决上述问题可采用以下方法:
1教师对全班学生的分组要进行认真的研究设计,最好按照异质分组,就是说每个组中成员的组织能力、学习能力、学习成绩、思维活跃程度、性别等都要均衡。要确定每个成员的分工,可以采取轮换制,如组长、记录员、资料员、报告员等由每个成员轮流做。
2在小组活动过程中,教师要加强对每个小组的监督和指导,尤其关注困难学生在活动中的表现,让他们多一些表现的机会。
三角形全等判定(SAS)
课后反思
本节课探索三角形全等的判定方法一,也是本章的重点也是难点。教材看似简单,仔细研究后才发现对八年级的学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。
反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容生活化。在课题的引入方面,然学生动手做、裁剪三角形。既提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。
2、把课堂充分地让给了学生。我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作一个两边长分别为6cm和8cm,并且这两边的夹角为45度的三角形,并要求相互之间互相比 较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:“边角边公理”,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称“SAS”。但也有几处是值得思考和在以后教学中应该改进的地方:
1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
2、课堂学生的操作应努力做到学生自发生成的,而不是老师说“你们比较下三角形的形状和大小”,应换为自发地比较更好。
3、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生任然是不理解。
第五篇:全等三角形教学设计
《12.1全等三角形》教学设计
一、内容和内容解析
(一)内容
1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形. 2.全等三角形的对应顶点、对应边、对应角:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.
3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
(二)内容解析
本节课是在学习了线段、角、相交线与平行线以及三角形的有关知识的基础上,学习全等三角形的概念和性质,全等三角形的对应边和对应角是后面判定三角形全等、应用三角形全等证明线段相等或角相等时常用到的概念,所以,要根据具体情况,针对两个全等三角形不同的位置关系,准确地找出它们的对应边和对应角.
对应边、对应角、对边、对角容易混淆.对应边、对应角是两个三角形的两条边之间或两个角之间的关系.而对边、对角是同一个三角形中边和角之间的关系,教学时要结合图形说清楚.
学生观察、发现生活中的全等形,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.在图形变换以及实际操作的过程中,获得全等三角形的体验,在探索全等三角形性质的过程中,发展学生的空间观念,培养学生的几何直觉,感受到数学的乐趣.
二、目标和目标解析
(一)目标
1.理解全等形和全等三角形的概念,能识别全等三角形中的对应边、对应角.
2.掌握全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
(二)目标解析
目标1的具体要求是:知道能够完全重合的两个三角形是全等三角形.能正确找出全等三角形中的对应边、对应角.
目标2的具体要求是:在得到全等三角形后,知道全等三角形的对应边和对应角相等.
三、教学问题诊断分析
对于八年级上学期的学生而言,前面我们已经学习了相关的一些几何知识,对几何图形也有了一定的观察分析能力,但是,让学生在比较复杂的图形当中正
确找出全等三角形的对应边和对应角也是有一定难度的.再一个,全等三角形的对应边、对应角是后面判定三角形全等、应用三角形全等证明线段相等或角相等常用到的概念,所以,要让学生根据具体情况,针对两个全等三角形不同的位置关系,总结出确定对应边和对应角的一些规律.
基于以上分析,本节课的教学重、难点是:正确找出全等三角形的对应顶点、对应边和对应角.
四、教学过程设计
(一)观察实践,得到概念
问题1:观察图案,找出这些图案中形状、大小相同的图形. 师生活动:学生说出图案中形状、大小相同的图形. 追问1:你能再举出一些类似的例子吗? 师生活动:学生根据生活实际举出类似的例子.
追问2:如果把这些形状、大小相同的图形放在一起,能够完全重合吗? 问题2:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?
师生活动:学生动手操作,通过实践说明形状、大小相同的图形放在一起是完全重合的.教师顺势说出概念:能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(板书课题)
【设计意图】学生通过生活经验判断、猜想,进而动手实际操作,得到这些图形是能够完全重合的.培养学生观察、动手能力.
(二)图形变换,加深理解 问题3:
(1)把△ABC平移,得到△PNM.(2)把△ABC绕点A旋转,得到△ADE.(3)把△ABC沿直线BC翻折180,得到△DBC.
追问:平移、翻折、旋转前后的图形,什么变化了,什么没有变化?它们全等吗?
师生活动:学生分组根据要求操作,小组讨论得到平移、翻折、旋转前后的图形位置变化了,形状和大小没变,它们依然全等.教师巡回指导,并利用多媒体动画展示给学生看,加深印象.
问题4:全等用符号“≌”表示,读作“全等于”.如,△ABC≌△DEF. 把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.
追问1:你能把图2和图3中全等三角形用符号表示出来,并说出它们的对应顶点、对应边和对应角吗?
师生活动:教师讲解两个三角形全等的符号表示,结合图1讲解找两个全等三角形的对应顶点、对应边、对应角的方法.学生完成图
2、图3中全等三角形的符号表示,并说出它们的对应顶点、对应边和对应角.
追问2:上述几对全等三角形,它们的对应边和对应角有什么关系?为什么?
师生活动:学生很容易得到全等三角形的对应边相等,全等三角形的对应角相等.教师板书指出这是全等三角形的性质.
追问3:全等三角形的性质怎样用几何语言表示? 因为
△ABC≌△DEF 所以 AB=DE,AC=DF,BC=EF,(全等三角形的对应边相等)∠A=∠D,∠C=∠F,∠B=∠E(全等三角形的对应角相等)【设计意图】利用三角形的平移、翻折、旋转的不变性,让学生通过具体操作直观感知,进一步理解全等三角形的概念.通过观察,猜测并验证全等三角形的性质,这种效果是抽象的讲授难以达到的.利用基本三角形变换出各种图形,然后观察它们的对应边、对应角的变化,有利于提高学生识别图形的能力.
(三)合作探究,突破难点
例1:如图,△ABC≌△DCB,指出所有的对应边和对应角.变式:若上图中△ABO≌△DCO,试写出这两个三角形中相等的边和相等的角.(四)展示交流,巩固所学
1.如图, △ABD ≌ △EBC,请找出对应边和对应角.2、如果AB=3cm,BC=5cm, 求BE、BD的长.师生活动:学生独立完成后,分组讨论答案,教师巡回指导.
【设计意图】通过练习,加强学生找全等三角形中对应边和对应角的能力,提高学生识别图形的能力.
(四)小结与反思
1.什么是全等形?什么是全等三角形? 2.全等三角形的性质是什么?
3.什么是全等三角形的对应顶点、对应边和对应角? 4.怎样找全等三角形的对应边和对应角?
【设计意图】通过小结,梳理本节课所学内容,总结方法,体会找全等三角形的对应边和对应角的一些具体方法.
(五)布置作业
教科书第33页习题12.1第1题,第2题.
五、目标检测设计
1.如图,△ABC≌△DEF,与AB相等的边是()
A . DE
B . DF
C . EF
【设计意图】考查全等三角形的对应边相等.
2.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠ A =40,∠ B =30,(1)说出另外的对应边和对应角;(2)求∠ ADC的大小.
【设计意图】该题综合程度较高,先是找到对应边和对应角,再由三角形全等得到对应角的度数,最后在三角形中利用三角形内角和定理求出角的度数.考查学生综合运用知识解决问题的能力.