第一篇:初二几何全等三角形测试题
初二几何全等三角形检测
姓名:
一、填空题:
1、在△ABC中,若AC>BC>AB,且△DEF≌△ABC,则△DEF三边的关系为___<___<___。
2、如图1,AD⊥BC,D为BC的中点,则△ABD≌___,△ABC是___三角形。
13、如图2,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件____或____。
4、如图3,已知AB∥CD,AD∥BC,E、F是BD上两点,且BF=DE,则图中共有___对全等三角形,它们分别是_____。
图图图
55、如图4,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有___对全等三角形。
6、如图5,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=____。
7、如图6,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=____。
图图68、在等腰△ABC中,AB=AC=14cm,E为AB中点,DE⊥AB于E,交AC于D,若△BDC的周长为24cm,则底边BC=____。
9、若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是______,从而AD=A′D′,这说明全等三角形____相等。
10、在Rt△ABC中,∠C=90°,∠A、∠B的平分线相交于O,则∠AOB=____。
二、选择题:
11、如图7,△ABC≌△BAD,A和B、C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()
A、4cmB、5cmC、6cmD、以上都不对
12、下列说法正确的是()
A、周长相等的两个三角形全等
B、有两边和其中一边的对角对应相等的两个三角形全等
C、面积相等的两个三角形全等
D、有两角和其中一角的对边对应相等的两个三角形全等
13、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()
A、∠AB、∠BC、∠CD、∠B或∠C14、下列条件中,能判定△ABC≌△DEF的是()
A、AB=DE,BC=ED,∠A=∠D
B、∠A=∠D,∠C=∠F,AC=EF
C、∠B=∠E,∠A=∠D,AC=EF
D、∠B=∠E,∠A=∠D,AB=DE15、AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()
A、AD>1B、AD<5C、1<AD<5D、2<AD<1016、下列命题错误的是()
A、两条直角边对应相等的两个直角三角形全等;
B、一条边和一个锐角对应相等的两个直角三角形全等
C、有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等
D、有两条边对应相等的两个直角三角形全等
17、如图
8、△ABC中,AB=AC,BD⊥AC于D,CD⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为()
A、3对B、4对C、5对D、6对
图
8三、解答题与证明题:
18、如图,已知AB∥DC,且AB=CD,BF=DE,求证:AE∥CF,AF∥CE19、如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论。
20、如图,已知AB=DC,AC=DB,BE=CE
求证:AE=DE
A21、已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF
求证:AC与BD互相平分
22、如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F
求证:EF=CF-AE
参考答案:
1、DF,EF,DE;
2、△ACD,等腰;
3、∠B=∠DEC,AB∥DE;
4、三,△ABE≌△CDF,△ADE≌△CBF,△ABD≌△CDB;
5、4;
6、90°;
7、108°;
8、10cm;
9、AAS,对应边上的高;
10、135°。
11、B;
12、D;
13、A;
14、D;
15、C;
16、D;
17、D;
18、∵AB∥DC ∴∠ABE=∠CDF,又DE=BF,∴DE+EF=BF+EF,即BE=DF; 又AB=CD,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴AE∥CF,再通过证△AEF≌△CFE
得∠AFE=∠CEF,∴AF∥CE19、猜想:CE=ED,CE⊥ED,先证△ACE≌△BED
得CE=ED,∠C=∠DEB,而∠C+∠AEC=90°
∴∠AEC+∠DEB=90°
即CE⊥ED20、先证△ABC≌△DCB
得∠ABC=∠DCB
再证△ABE≌△DCE,得AE=DE21、由BF=DF,得BE=DF
∴△ABE≌△CDF,∴∠B=∠D
再证△AOB≌△COD,得OA=OC,OB=OD
即AC、BD互相平分
22、证△ABE≌△BCF,得BE=CF,AE=BF,∴EF=BE-BF=CF-AE
第二篇:全等三角形测试题
全等三角形测试题
(出题人孟令震2011 9 12)
一.选择题:
1. 在△ABC和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保证△ABC
≌△A’B’C’, 则补充的这个条件是()
A.BC=B’C’B.∠A=∠A’C.AC=A’C’D.∠C=∠C’
2. 直角三角形两锐角的角平分线所交成的角的度数是()
A.45°B.135°C.45°或135°D.都不对
3. 现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列四
根木棒中应选取()
A.10cm的木棒B.40cm的木棒C.90cm的木棒D.100cm的木棒
4.根据下列已知条件,能惟一画出三角形ABC的是()
A.AB=3,BC=4,AC=8;B.AB=4,BC=3,∠A=30;
C.∠A=60,∠B=45,AB=4;D.∠C=90,AB=6
二、填空题:
5.三角形ABC中,∠A是∠B的2倍,∠C比∠A+∠B还大12度,则这个三角形是__三角形.
6.以三条线段3、4、x-5为这组成三角形,则x的取值为____.
三、解答题:
7. 已知:如图13-4,AE=AC,AD=AB,∠EAC=∠DAB,求证:△EAD≌△CAB.
8. 如图13-5,△ACD中,已知AB⊥CD,且BD>CB, △BCE和△ABD都是等腰直角三角形,王刚同学说有下列全等三角形:①△ABC≌△DBE;②△ACB≌△ABD;
③△CBE≌△BED;④△ACE≌△ADE.这些三角形真的全等吗?简要说明理由.
9. 已知,如图13-6,D是△ABC的边AB上一点, DF交AC于点E, DE=FE, FC∥AB,求证:AD=CF.F
B B CB图13-6 图13-5 图13-4
10. 阅读下题及证明过程:已知:如图8,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,∵EB=EC,∠ABE=∠ACE,AE=AE,∴△AEB≌△AEC……第一步∴∠BAE=∠CAE……第二步
问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.
11.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点,交AD于点F,求证:∠ADC=∠BDE.
D
图8 CD 图9 图9 E B
第三篇:全等三角形
复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。
活动二:讲授新课 全等三角形的判定条件的探究 首先提出
问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。
问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的 情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。
问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。
活动三:题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题。
第四篇:初二数学全等三角形证明
初二数学全等三角形证明
班别_______姓名_______学号_______2007-5-1
51.如图,AB=CD,AD、BC相交于点O,(1)要使△ABO≌△DCO,应添加的条件为.(添加一个条件即可)
(2)添加条件后,证明△
ABO≌△DCO
2.已知:如图,AB//DE,且AB=DE.(l)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是.(2)添加条件后,证明△ABC≌△DEF.3、如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为,你得到的一对全等三角形是
证明:ABOCD(第12题)
4、如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E,DF∥AC交AB于点F.(1)证明:△BDF≌△DCE ;AFE
BC D
(第4 题图)
5.如图9,已知∠1 = ∠2,AB = AC.求证:BD = CDBDA
图 9
6.如图,已知∠1=∠2,∠C=∠D,求证:AC=BD.
A
B7、如图,在ABCD中,BEAC于点E,DFAC于点F.
求证:AECF;AD
BC8、如图,已知点M、N分别是平行四边形ABCD的边AB、、DC的中点,求证: ∠DAN=∠BCM.9.如图,AC和BD相交于点E,AB∥CD,BE=DE。求证:AB=CD
A
B E
第9题图
10、已知:如图10,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.
求证:AD=AE.
_B
_C
_ M
_N
_A
_D
D
C
图10
C12、如图(4),在△ABD和△ACE中,有下列四个等式:○
1AB=AC○2AD=AE○31=∠2○4BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程)
第五篇:全等三角形说课稿
《全等三角形(第一课时)》说课稿
一、教材简介:
义务教育课程标准实验教科书鲁教版五四学制初中数学七年级下册第十章第一节《全等三角形》第一课时。
二、教学目标:
1、课程标准的要求:
本节课是关于全等三角形的证明的相关知识,需要从全等三角形的三个基本事实出发,利用它们的结论进行一些相关的几何结论。通过本节课的学习,要使学生能够掌握证明的基本步骤和书写格式,能灵活地运用三个基本事实和一个定理来判定两个三角形全等,并得到相关结论。课标要求尽可能地降低学生的学习难度。对于定理的证明,应该让学生进行,以便于学生熟悉证明的基本要求和步骤,为今后的做题做准备。
2、对教材的进一步研究:
本节课的教材内容共分三部分:一是有关全等三角形的三个基本事实。这一部分内容在初二上册的内容中已经接触过,学生完成的难度不是太大,基本上都能掌握。在教学过程中教师在引导学生掌握内容的同时可以根据学生的实际情况,复习一下这三个基本事实在运用的过程中的一般思路,为下面定理的证明以及运用定理解题打下基础。二是AAS定理的证明过程,定理的证明过程虽然比较简单,也应让学生进行证明,以熟悉证明的基本要求和步骤,为下面的推理证明做准备。本章课本的证明过程没有标注理由,在实际的教学过程中,教师可以根据学生的实际情况,让学生有选择性地对一些步骤加上理由。三是运用有关全等三角形的基本事实和定理来解决相关的问题。在这一部分中,教师的主要职责是帮助学生学习解题思路,交给学生去寻找判定两个三角形全等的条件,并进一步规范学生的证明过程,让学生养成良好的学习习惯。
3、学情分析:
在初二上学期时已经学过了关于全等三角形的几个基本事实,并能运用这几个事实来说明两个三角形全等。本节课实在前面学习过的基础上进一步学习AAS定理并能加以运用。本节课学生学习的重点是熟悉证明的基本要求和步骤,掌握证明线段相等或角相等的一般思路。学生在掌握证明的基本要求和步骤时难度较大,很多学生不能准确、清晰、简洁地组织证明步骤。教师在教学过程中可以让学生先自己写出AAS定理的证明过程,然后对照课本的步骤,查漏补缺,找到自己存在的不足,然后加以改正,从而提升学生的写步骤的能力。同时可以通过本节课的内容帮助学生养成严谨的学习习惯。
4、自我背景性经验剖析:
本节课的内容难度不大,但是是今后解决几何问题的重要依据和方法,在一些实际问题中也经常需要用到全等三角形的模型,在教学过程中可以加入适当的情景导入,激发学生的学习兴趣,通过一些小的例子,使学生明白养成严谨的做题习惯的必要性,努力地使学生乐于接受本节课的相关内容。
5、制定本节课具体的课时目标:
(1)全体学生都能说出证明三角形全等的三条基本事实,60%的学生能写出AAS命题的证明,49&的学生能灵活应用SAS,ASA,SSS和AAS来判定两个三角形全等。
(2)三分之二的学生能掌握命题证明的基本步骤和格式,会根据命题写出已知、求证和证明,并画出图形。
(3)30%的学生能认识部分和全等三角形有关的基本图形,掌握分析法解题的思路。
(4)全体学生养成规范、严谨的解题习惯。
三、教材重整:
本节课的内容是在原有的证明三角形全等的基本事实的基础之上,进一步来证明“AAS”定理,并能加以运用,之后可以综合运用相关的定理进行全等的证明,并掌握证明的基本步骤和书写格式。为了培养学生的解题思路,为下面命题的证明做准备,我对三条基本事实进行了深加工,用视频演示的方法对“重叠法”证明全等进行了讲解,并让学生进行模仿,对另外的基本事实进行了简单的证明,重点培养了 部分学优生的解题思路。这一部分对中等生和学困生的完成情况不做进一步的追究,体现出了差异性。
四、教学过程:
(一)教学范型:本节课是初二数学差异教学的课程,这是根据我校的数学成绩较为落后,学困生较多、学习积极性不高的现状,所采取的促进不同水平的学生共同发展的一种举措,倡导差异合作来促进学生的差异化发展,属于分组共建的模式。
(二)课堂的整体架构:本节课的内容分为四大部分:自主探究、合作交流、巩固练习、当堂测评。
(1)自主探究:
在这一环节中,先让学生通过一个知识链接对以前学过的知识做一个简单的回顾,并为后面的学习进行一些知识储备。这一环节内容难度不大,需要让全体同学都参与进去,让全班同学都掌握这一部分。然后进入到本节的探究题目中。
探究分为两大部分,第一部分是对三条基本事实的证明过程的探究,学生利用自己制作的全等三角形的纸片,结合视频教学的内容,探讨基本事实的证明过程,这一部分的难度较大,在学法指导上明确学生的分工,对于优等生尝试去解决证明方法的问题,并努力用语言进行交流展示,中等生大致上可以了解证明的一般思路即可,而对于学困生,只需要利用手中的纸片,能进行两个三角形的重叠,明确两个三角形全等即可。
【细节一】学生通过观看视频,学习基本事实的证明过程,观看较为认真,为下面的问题解决提供了思路。
设计理念:关注学生在自学能力方面的差异,让学生通过本环节,学会用模仿的方式来解决数学问题,进一步理解证明两个三角形全等的几种方法,为下面定理的证明做准备,同时通过让学生交流,初步了解证明的一般思路和过程,明确应该从哪些方面来说明两个三角形全等。
第二部分是探究“AAS”定理的证明过程。这一部分需要学生首先明确对于命题的证明的一般步骤,这一内容对学生思维能力的要求不高,全体学生基本上都能完成,学困生能明确这一点就可视为合格;中等生在小组合作的前提下能找到相应的证明思路即可,由优等生进行评价、补充;学优生在完成前面内容的基础上能规范、完整地写出解题步骤,并能类比这一步骤进行相关的证明方可达标。
【细节二】学生在完成探究二的题目时,由于对以前的知识点不够熟悉,在不同水平的学生之间存在较大的差异,在小组合作学习时采取一对一的方式,让学优生帮忙解决。
设计理念:关注学生的基础差异,防止学生不参与小组合作学习或者直接照抄学优生的答案,努力提升学生的学习积极性。(2)合作交流:
在这一环节中,学生交流展示在上一环节中的学习成果,在展示的过程中,首先教师依据小组合作情况点名展示,主要是对中等生的成果展示,学生的展示重点是对定理证明过程中的操作演示,展示后由其他同学进行补充,补充的内容仍然是以操作为主,优等生可以对证明的思路进行讲解。这一环节关注的是不同层次的学生在小组合作学习中的参与度,让不同水平的学生都能得到参与课堂、展示自我的机会。学生的总体表现较为理想,主动交流的效果比较显著。
【细节三】学生交流基本事实的证明过程,第一名同学的思路出现较大的问题,由其他同学加以补充,尽管都不是很理想,但是对不同水平的学生的表现都给予肯定。
设计理念:关注学生的思维能力差异和语言表达能力的差异,尽量使全体同学都能参与到课堂中来,提升学生的自信心。多给学困生展示 自我的机会。
【细节四】学生交流探究二的问题的答案,学困生答案很疑惑,通过同学的补充才得以完成。
设计理念:关注班内差异。点名让学生回答,找出学生容易出现的问题,学生可以主动加以改正。
(3)巩固练习:
在这一环节中设置的是和本节课内容关系紧密的练习题,让学生通过解题的形式对本节课的相关知识点加以巩固。练习题的设置紧扣本节课的知识点,以A、B、C的标记作为题目分层设计的依据,让不同层次的学生选择适合自己的学习水平和认知结果的题目。题目的设计做到了分类、分层,使学优生有选择地多做练习,认识不同的题目类型,中等生有自己的选择目标和上升的空间,给他们努力地动力,学困生有题可做,能找到自己会做的题目,在掌握基础知识的同时给自己学习的信心。
(4)当堂检测:
这一环节是对本堂课学生对知识的掌握情况的一个反馈,检测题的设置仍然贯彻分类、分层的原则,不同的学生有选择性地进行测试。在题目上有清晰地分类标志,满足不同学生的需要。检测的时间大约为5分钟,检测完成后集体批改,把测试的结果进行小组合作学习的量化。在量化的过程中不是单纯地以做对题目的数量来进行加减分,而是以不同层次的学生的总体表现来进行小组考核。比如说每组5/6号同学能完成A组题目即可得到满分,中等生完成A、B组题目也可得到满分的形式进行,在很大程度上也保存了学困生的学习兴趣。
【细节五】布置作业。
设计理念:正视学生的差异,关注差异。给学习程度不同的学生布置不同的作业,让其都能在不同层面上得到发展。
五、自我反思:
本节课上完以后,发现了不少存在的问题,下面对比较突出的问题进行一个总结反思,以便于今后加以改进。
1、本节课的课堂内容设计较为合理,但是课前对学生的基础与能力预估不够,对学生有较为严重的高估,导致学生不能按时、顺利地完成每一环节的要求和内容,从而导致课堂教学时间的安排不够合理,最后时间较为仓促、紧张,教学内容没能全部完成。
2、在关注学生的差异性方面,能够力求关注全体学生,不让学生有无从下手的感觉,使学困生有事做、有收获,但是在实际的操作过程中,过于紧张课堂时间,在很多环节上,给学困生的发挥展示空间和时间不足,学生的整体差异体现不够清楚。
3、课堂气氛的调度不够,学生的参与积极性不够高,小组合作学习时,不能很好地进行交流,课堂不够活跃。
4、对于学生解题步骤的规范性要求不到位,对于几何语言的表述强调不够,会影响今后学生的证明思路。