第一篇:换元法证明不等式
换元法证明不等式
已知a,b,c,d都是实数,且满足a^2+b^2=1,c^2+d^2=4,求证:|ac+bd|≤
2a=cosA,b=sinA
c=2cosB,d=2sinB
|ac+bd|=2|cosAcocB+sinAsinB}=2|cos(A-B)|
<=2
得证
若x+y+z=1,试用换元法证明x²+y²+z²≥1/
3解法一:(换元法)
证明:因为
(x-1/3)^2+(y-1/3)^2+(z-1/3)^2≥0
展开,得
x^2+y^2+z^2-2/3*(x+y+z)+3*1/9≥0
x^2+y^2+z^2-2/3+1/3≥0
x^2+y^2+z^2≥1/3。
其中等号当且仅当x=y=z=1/3时成立
解法二:
因为:x+y+z=
1所以:(x+y+z)²=1
化解为:x²+y²+z²+2xy+2xz+2yz=1
又因为:
x²+y²≥2xy;
x²+z²≥2xz;
y²+z²≥2yz;
所以x²+y²+z²+2xy+2xz+2yz=1<=3(x²+y²+z²)
固x²+y²+z²≥1/3
例1:已知a+b+c=1,求证:a2+b2+c2≥1/3
证明:令a=m+1/3,b=n+1/3,c=t+1/3,则m+n+t=0
∴a2+b2+c2=(m+1/3)2+(n+1/3)2+(t+1/3)2
=m2+n2+t2+2(m+n+t)/3+1/3
=m2+n2+t2+1/3
∵m2+n2+t2≥0,∴a2+b2+c2≥1/3得证。
换元的目的:转化、化简已知条件,使已知条件更易于使用。
例2:已知a>b>c,求证:1/(a-b)+1/(b-c)≥4/(a-c)
证明:令x=a-b,y=b-c,则a-c=x+y且x>0,y>0
∴原不等式转化为:1/x+1/y≥4/(x+y)
因此,只要证明:(x+y)/x+(x+y)/y≥
4只要证:1+y/x+1+x/y≥4
只要证:y/x+x/y≥2,而y/x+x/y≥2恒成立。
∴1/(a-b)+1/(b-c)≥4/(a-c)得证。
换元的目的:
化简、化熟命题,把复杂的、不熟悉的命题化为简单的、熟悉的命题。
例3:已知(x2-y2+1)2+4x2y2-x2-y2=0,求证:(3-√5)/2≤x2+y2≤(3+√5)/
2证明:令x2+y2=t
由(x2-y2+1)2+4x2y2-x2-y2=0整理得:
(x2+y2)2-3(x2+y2)+1=-4x2
∴(x2+y2)2-3(x2+y2)+1≤0
∴t2-3t+1≤0,解之得:(3-√5)/2≤t≤(3+√5)/2
∴(3-√5)/2≤x2+y2≤(3+√5)/2得证。
换元的目的:转化条件,建立条件与结论间的联系。
例4:已知x-1=(y+1)/2=(z-2)/3,求证:x2+y2+z2≥59/1
4证明:设x-1=(y+1)/2=(z-2)/3=k,则x=k+1,y=2k-1,z=3k+2
∴x2+y2+z2=(k+1)2+(2k-1)2+(3k+2)2
=14k2+10k+6
=14(k2+5k/7)+6
=14(k+5/14)2+59/14≥59/14
∴x2+y2+z2≥59/14得证。
换元的目的:减少未知数的个数,直接利用已知条件。
例5:已知a>0,求证:(a+(a+(a+(a+…+a0.5)0.5)0.5)0.5)0.52
证明:设t1=a0.5,t2=(a+a0.5)0.5,……,tn=(a+(a+(a+(a+…+a0.5)0.5)0.5)0.5)0.5tn=(a+tn-1)0.5
tn2=a+tn-1,且tn>0,而tn>tn-
1∴tn20
∴tn2原不等式得证。
换元的目的:转换、化简命题
例6:已知a≥c>0,b≥c,求证:√c(a-c)+√c(b-c)≤√ab
证明:要证明原不等式,只要证明:
√c(a-c)/ab+√c(b-c)/ab≤
1只要证明:√(c/b)(1-c/a)+√c/a(1-c/b)≤1
令sinα=√c/b,sinβ=√c/a,且α、β∈(0,π]
只要证明:sinαcosβ+cosαsinβ≤
1只要证明:sin(α+β)≤1,而sin(α+β)≤1显然成立
∴原不等式得证。
换元的目的:利用两个正数的和等于1进行三角换元,可以将原问题得到极大
程度的化简,在各种命题的解题中有着广泛的应用。
例7:已知a2+b2=c2,且a、b、c均为正数,求证:an+bn2且n∈N
证明:设a=csinα,b=ccosα。α∈(0,π/2)
则:an+bn=cnsinnα+cncosnα=cn(sinnα+cosnα)
∵0
第二篇:不等式证明四(换元法)
Xupeisen110高中数学
教材:不等式证明四(换元法)
目的:增强学生“换元”思想,能较熟练地利用换元手段解决某些不等式证明问题。
过程:
一、提出课题:(换元法)
二、三角换元:
证一:证二:由x > 0 , y > 0,2x + y = 1,可设x
则2sin,2ycos2 11212(1cot2)(1tan2)22xysincos
3(2cot2tan2)32
2例三:若x2y21,求证:|x22xyy2|2
证:设xrsin,yrcos,(0r1),1则|x22xyy2||r2cos22r2cossinr2sin2|
r2|cos2sin2|2r2cos22r22 4
例四:若x > 1,y > 1,求证:xy1(x1)(y1)
证:设xsec2,ysec2,(0,)2)2
小结 若x2y21,则可令x = sec, y = tan(02)。
)。2
若xR,则可令x = tan()。22若x≥1,则可令x = sec(0
三、代数换元:
例六:证明:若a > 0,则a2112a2 2aa
1证:设xa,aya2
21,(a0,x2,y2)2a2121则x2y2aa22 aa
xya11a2222(当a = 1时取“=”)
aa
四、小结:
五、作业:
1.若a22. 若|a3. 若|x|4. 若a1 5. 6. 已知3
第三篇:怎样用换元法证明不等式
怎样用换元法证明不等式
陆世永
我们知道,无论在中学,还是在大学,不等式的证明都是一个难点。人们在证明不等式时创造了许多方法,其中有换元法。下面我们探索怎样用换元法证明不等式。
所谓“换元法”就是根据不等式的结构特征,选择适当的变量代换,从而化繁为简,或实现某种转化,以便证题。其换元的实质是转化,关键是构造和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
一、利用对称性换元,化繁为简
例1设a,b,cR,求证:abcbcacababc.分析:经过观察,我们发现,把a,b,c中的两个互换,不等式不变,说明这是一个对称不等式,如果我们令xbca,ycab,zabc,则原不等式可化为:
xyyzzx8xyz.这是一个较简单而且容易与已知不等式联系的不等式,因而可以按上述换元证明不等式。
证明:令xbca,ycab,zabc,则
a
12yz,b12xz,c12xy.a,b,cR,当xyz0时,有
xyyzzx8xyz;
当xyz0时,有x,y,zR(否则x,y,z中必有两个不为正值,不妨设x0, y0,则c0,这与c0矛盾), 因此
yz0,zx2zx0, xy2xy0,yz
2xyyzzx8xyz,综上所述,恒有
xyyzzx8xyz,把x,y,z代入上式得:
abcbcacababc.例2设a,b,cR,求证:
a
bc
a
bc
abbcca
abc2a2
bcabbcca.
分析:类似于例1,我们不难发现,这也是一个对称不等式,因此可考虑令
xabc,yabc,zabbcca,则原不等式可化为2yzz20.这是一个简单的不等式,由已知条件可证该不等式,因此我们可按上述换元证明原不等式。
证明:令xabc,ya2b2c2,zabbcca,则
x
y2z,yz
ab
bcca
0,原不等式可化为:
yyz
x
yz2,将x2y2z,代入上式得:
yyz
y2zyz,yzy2
yzy2zyz0,
2yzz0,又由已知条件可知,2yzz20成立,而上述过程可逆,因此原不等式成立。对于类似于例1与例2的对称不等式,可以结合不等式的具体形式换元,简化不等式的结构,使得不等式容易证明。
二、借助几何图形换元
例3已知a,b,c是ABC三边的长,求证:
abbccaabbcca
.分析:(如图)作ABC的内切圆,设D,E,F为切点,令xBD,yCD,zAE,(其中x,y,zR
则原不等式可转化为:
y2zz
z2
xx
x2
yy2x2y2z.
利用重要不等式:ab2ab可证该不等式,因此可以通过上述换元证明原不等式。
证明:设D,E,F为切点,令xBD,yCD,zAE,则原不等式可转化为:
y2
zz
z2
xx
x2
2x2y2z.1 yy
又因为x,y,zR,则有
y
z
z2y,z
x
x2z,x
y
y2x,所以(1)式成立,因此原不等式成立。
从例3可以看出,在证明不等式时,我们可以根据题意结合几何图形进行分析、换元,从而借助几何图形的性质来证明不等式。
三、借助三角函数的性质换元
例4已知:a1,b0,ab1,求证:0
1a
a
11b1.ab
分析:由于a1,b0,ab1,并且不等式中有a,b,因此我们联想三角函数的平方关系:sec2tan21.经过对比,发现a相当于sec2,b相当于
tan,因而可令:asec2,btan20
.2
证明:令asec2,btan20
1a
1a
, 则 2
ab
1 b
sec1tan
1
2sectansec
sin1,可见原不等式成立。
例5若x2y21,求证:x22xyy2
.分析:由x2y21,知点x,y在圆x2y21的内部或边界上,因此可以考虑变换:xrsin,yrcos 0r1,02.证明:设xrsin,yrcos 0r1,02, 则
x2xyy
rcos2sin2
2
2rcos2
42r
2.从例4,例5可以看出,证明不等式时,我们可以结合已知条件或不等式的结构与三角函数的性质进行分析,利用三角函数换元,从而借助三角函数的性质来证明不等式。
四、借助均值不等式换元
例6n个正数x1,x2,xn,它们的和是1,求证:
xn1xn1xn
x1
x1x2
x2
x2x3
xn
xnx1
.分析:就这个不等式而言,我们容易想到均值不等式,但是直接用均值不等
式却难以证明这个不等式,因此我们把分子变为两项,可令x1
x2x3
xnx1
n
x1x2
m1,x2
m2,,xn
mn(其中mi0).i1
证明:令x1
n
x1x2
m1,x2
x2x3
m2,,xn
xnx1
mn,则
m
i1
i
0.x1
x1x2
x2
x2x3
xn1xn1xn
xn
xnx1
1
xxm1n2n
xnx1
1
xxm2121
x1x2
1
xxm3222
x2x3
x1x2
x2x3
4mn
xnx1
m1m2mn
m1
x1x2
m2
x2x3
xnx1
2x1x2xn
,因而原不等式成立。
例6说明,在证明不等式时,可以从不等式的形式出发,借助均值不等式进行换元。
第四篇:换元法证明不等式09
换元法证明不等式
教学目标:
增强学生“换元”思想,能较熟练地利用换元手段解决某些不等式证明问题。教学重点:三角换元 教学过程:
一、提出课题:(换元法)
对所证不等式的题设和结论中的字母作、适当的变换,以达到化难为易的目的,这种方法叫换元法。
二、三角换元:
例
一、已知x > 0 , y > 0,2x + y = 1,求证:
1x1y
3
22证一:
1x
12xy(2xy)332yyx
即:
1x
1y
322
证二:由x > 0 , y > 0,2x + y = 1,可设x则
1x1y
2sin
sin,ycos
1cos
2(1cot)(1tan
)
3(2cottan
)32
例二:若x2证:设x则|
x
y
1,求证:|x
2xyy|
rsin,2
yrcos,2
(0r1)
2,2
2xyy||rcos2rcossinrsin
|
r
|cos2sin2|2r
cos2
4
2
2r
2
小结:若0≤x≤1,则可令x = sin(0(
2
2)或x = sin2)。
y
若x2若x2
1,则可令1,则可令
x = cos , y = sin(0x = sec, y = tan(0
2
2
2)。2)。
y
若x≥1,则可令x = sec(0若xR,则可令x = tan()。
2
)。
三、小结:
还有诸如“均值换元”“设差换元”的方法,有兴趣的课后还可进一步学习。
四、作业:
1.若a
2b
1,求证:asinxbcosx
1n
n
n
2. 若|x|≤1,求证:(1x)(1x)2 3. 已知a+b=1,求证:a4b4
1a
1b
4. 若正数a、b满足a+b=1,求证:
4
第五篇:比较法、分析法、综合法、换元法证明不等式
2a b 11ab
2a2 b22ab a2 b1(ab)2
22 2ab整式形
式 ab2 22ab ab2 a bab2 根式形式22 ba2(ab) b a分式形2(a,b同号) ab1 0a2aa 倒数形式1 a0a2a
1.比较法、分析法、换元法
一.比较法(作差比较或作商比较)
1)作差比较法:要证不等式abab,只需证ab0ab0即可。其步骤为:作差、变形、判断符号(正或负)、得出结论。
2)作商比较法:若b0,要证不等式ab,只需证
作商、变形、判断与1的大小、得出结论。
222222例1.设abc,求证:bccaabbccaab aa1,欲证ab,需证1。其步骤为:bb
22例2(1)证明不等式ababab
1abba(2)若a>b>0,求证:abab
ba
2abb(3)若a>b>0,求证:a
二.分析法
a3b3ab3()22例2已知a>0,b>0,求证:
2222证法二由(ab)0,得a2abb0,aabbab,2
∵a>0,b>0∴a+b>0,∴(ab)(aabb)ab(ab),33223322∴ababab,3a3b3ab3ab 22
∴4a4ba3ab3abb(ab),333223
3a3b3(ab)3
28∴,a3b3ab3()22∴。
2ab练习.1.已知ab0,求证:8aab abab28b2
2.求证
a2b2aa
均值不等式
例3已知a、b、cR,且a+b+c=1。
111(1)(1)(1)8bc求证:(1)a
(2)abc
例4设a、b、c、dR,令sabcdadbbcacdbdac,求证:1
114例5已知a>b>c,求证:abbcac
2.均值换元法:
使用均值换元法能达到减元的目的,使证明更加简捷直观有效。例2.已知a,bR且ab1,求证:a2b2
2225 2
例3.设a,b,c为三角形三边,求证:
4.增量换元法: abc3 bcaacbabc
例4.已知a2,b2,求证:abab