机械专业论文谢词

时间:2019-05-15 09:10:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《机械专业论文谢词》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《机械专业论文谢词》。

第一篇:机械专业论文谢词

经过几个月的查询资料、整理材料、写作论文,今天终于顺利的完成设计的最后的辞谢了,想了很久,要写下这一段谢词,表示可以进行毕业答辩了,自己想想求学期间的点点滴滴,历历在目,时光匆匆飞逝,在亳州职业技术学院学习期间,努力与付出,随着论文的完成,终于让我的大学生活,有了一个完美的句号。

论文得以完成,首先要感谢马兵老师,因为毕业设计在你们的悉心教导下才能顺利完成,老师渊博的专业知识,严谨的治学态度,精益求精的工作作风,晦人不倦的高尚师德,严以律己、宽以待人的高尚风范、朴实无华、平易近人的人格魅力对我的影响非常深远。

另外,要感谢在大学期间所有传授我知识的老师,是你们的谆谆教导才是我有了良好的专业课知识,这也是我的论文完成的基础。

通过此次的论文,我学到了很多的知识,跨越了传统方式下的教与学的体制束缚,在论文的写作过程中,通过查资料和搜索有关的文献,培养了自学能力和动手能力,并且由原来的被动接收知识转换为主动的寻找知识,这可以说是学习上的伟大突破,在以往的传统学习模式下,我们学会了如何将学来的知识转化为自己的东西,学会了怎么更好地处理知识和实践相结合的问题。

在论文的写作过程中也学到了多任何事情所要有的态度和心态,首先做论文要一丝不苟,对于发展过程中出现的任何问题和偏差都不要轻视,要通过正确的途径去解决,在做事情的过程中要有耐心和毅力,不要一遇到困难就打退堂鼓,只要坚持下去就可以找到思路去解决问题。

总之,此次论文的写作过程,我收获了很多,即为大学学习画上了一个完美的句号,也为人生之路做好了一个很好的铺垫。

再次感谢亳州职业技术学院的所有帮助过我,给我鼓励的老师、同学和朋友,谢谢你们。

第二篇:机械专业论文中英文对照

Gearbox NoiseCorrelation with Transmission Error and Influence of Bearing Preload

ABSTRACT The five appended papers all deal with gearbox noise and vibration.The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears.Finite element analysis was used to predict the dynamic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an experimental study.Eleven test gear pairs were manufactured using three different finishing methods.Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted.The test rig was used to measure gearbox noise and vibration for the different test gear pairs.The measured noise and vibration levels were compared with the predicted and measured transmission error.Most of the experimental results can be interpreted in terms of measured and predicted transmission error.However, it does not seem possible to identify one single parameter,such as measured peak-to-peak transmission error, that can be directly related to measured noise and vibration.The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise and vibration considerably.This finding indicates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated.Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0.15 mm bearing preload.The results show that the bearing endplay and preload

influence the gearbox vibrations.With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay.Finite element simulations show the same tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error.Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances.Static and dynamic transmission error, noise, and housing vibrations were measured.The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2500 rpm at constant torque.No correlation was found between dynamic transmission error and noise.Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.Keywords: gear, gearbox, noise, vibration, transmission error, bearing preload.ACKNOWLEDGEMENTS This work was carried out at Volvo Construction Equipment in Eskilstuna and at the Department of Machine Design at the Royal Institute of Technology(KTH)in Stockholm.The work was initiated by Professor Jack Samuelsson(Volvo and KTH), Professor Sören Andersson(KTH), and Dr.Lars Bråthe(Volvo).The financial support of the Swedish Foundation for Strategic Research and the Swedish Agency for Innovation Systems – VINNOVA – is gratefully acknowledged.Volvo Construction Equipment is acknowledged for giving me the opportunity to devote time to this work.Professor Sören Andersson is gratefully acknowledged for excellent guidance and encouragement.I also wish to express my appreciation to my colleagues at the Department of Machine Design, and especially to Dr.Ulf Sellgren for performing simulations and contributing to the writing of Paper D, and Dr.Stefan Björklund for performing surface finish measurements.The contributions to Paper C by Dr.Mikael

Pärssinen are highly appreciated.All contributionsto this work by colleagues at Volvo are gratefully appreciated.1 INTRODUCTION 1.1 Background Noise is increasingly considered an environmental issue.This belief is reflected in demands for lower noise levels in many areas of society, including the working environment.Employees spend a lot of time in this environment and noise can lead not only to hearing impairment but also to decreased ability to concentrate, resulting in decreased productivity and an increased risk of accidents.Quality, too, has become increasingly important.The quality of a product can be defined as its ability to fulfill customers’ demands.These demands often change over time, and the best competitors in the market will set the standard.Noise concerns are also expressed in relation to construction machinery such as wheel loaders and articulated haulers.The gearbox is sometimes the dominant source of noise in these machines.Even if the gear noise is not the loudest source, its pure high frequency tone is easily distinguished from other noise sources and is often perceived as unpleasant.The noise creates an impression of poor quality.In order not to be heard, gear noise must be at least 15 dB lower than other noise sources, such as engine noise.1.2 Gear noise This dissertation deals with the kind of gearbox noise that is generated by gears under load.This noise is often referred to as “gear whine” and consists mainly of pure tones at high frequencies corresponding to the gear mesh frequency and multiples thereof, which are known as harmonics.A tone with the same frequency as the gear mesh frequency is designated the gear mesh harmonic, a tone with a frequency twice the gear mesh frequency is designated the second harmonic, and so on.The term “gear mesh harmonics” refers to all multiples of the gear mesh frequency.Transmission error(TE)is considered an important excitation mechanism for gear whine.Welbourn [1] defines transmission error as “the difference between

the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” Transmission error may be expressed as angular displacement or as linear displacement at the pitch point.Transmission error is caused by deflections, geometric errors, and geometric modifications.In addition to gear whine, other possible noise-generating mechanisms in gearboxes include gear rattle from gears running against each other without load, and noise generated by bearings.In the case of automatic gearboxes, noise can also be generated by internal oil pumps and by clutches.None of these mechanisms are dealt with in this work, and from now on “gear noise” or “gearbox noise” refers to “gear whine”.MackAldener [2] describes the noise generation process from a gearbox as consisting of three parts: excitation, transmission, and radiation.The origin of the noise is the gear mesh, in which vibrations are created(excitation), mainly due to transmission error.The vibrations are transmitted via the gears, shafts, and bearings to the housing(transmission).The housing vibrates, creating pressure variations in the surrounding air that are perceived as noise(radiation).Gear noise can be affected by changing any one of these three mechanisms.This dissertation deals mainly with excitation, but transmission is also discussed in the section of the literature survey concerning dynamic models, and in the modal analysis of the test gearbox in Paper B.Transmission of vibrations is also investigated in Paper D, which deals with the influence of bearing endplay or preload on gearbox noise.Differences in bearing preload influence a bearing’s dynamic properties like stiffness and damping.These properties also affect the vibration of the gearbox housing.1.3 Objective The objective of this dissertation is to contribute to knowledge about gearbox noise.The following specific areas will be the focus of this study: 1.The influence of gear finishing method and gear modifications and errors on noise and vibration from a gearbox.2.The correlation between gear deviations, predicted transmission error, measured transmission error, and gearbox noise.3.The influence of bearing preload on gearbox noise.4.Optimization of gear geometry for low transmission error, taking into consideration robustness with respect to torque and manufacturing tolerances.2 AN INDUSTRIAL APPLICATION − TRANSMISSION NOISE REDUCTION 2.1 Introduction This section briefly describes the activities involved in reducing gear noise from a wheel loader transmission.The aim is to show how the optimization of the gear geometry described in Paper E is used in an industrial application.The author was project manager for the “noise work team” and performed the gear optimization.One of the requirements when developing a new automatic power transmission for a wheel loader was improving the transmission gear noise.The existing power transmission was known to be noisy.When driving at high speed in fourth gear, a high frequency gear-whine could be heard.Thus there were now demands for improved sound quality.The transmission is a typical wheel loader power transmission, consisting of a torque converter, a gearbox with four forward speeds and four reverse speeds, and a dropbox partly integrated with the gearbox.The dropbox is a chain of four gears transferring the powerto the output shaft.The gears are engaged by wet multi-disc clutches actuated by the transmission hydraulic and control system.2.2 Gear noise target for the new transmission Experience has shown that the high frequency gear noise should be at least 15 dB below other noise sources such as the engine in order not to be perceived as disturbing or unpleasant.Measurements showed that if the gear noise could be decreased by 10 dB, this criterion should be satisfied with some margin.Frequency analysis of the noise measured in the driver's cab showed that the dominant noise from the transmission originated from the dropbox gears.The goal for transmission noise was thus formulated as follows: “The gear noise(sound pressure level)from the dropbox

gears in the transmission should be decreased by 10 dB compared to the existing transmission in order not to be perceived as unpleasant.It was assumed that it would be necessary to make changes to both the gears and the transmission housing in order to decrease the gear noise sound pressure level by 10 dB.2.3 Noise and vibration measurements In order to establish a reference for the new transmission, noise and vibration were measured for the existing transmission.The transmission is driven by the same type of diesel engine used in a wheel loader.The engine and transmission are attached to the stand using the same rubber mounts that are used in a wheel loader in order to make the installation as similar as possible to the installation in a wheel loader.The output shaft is braked using an electrical brake.2.4 Optimization of gears Noise-optimized dropbox gears were designed by choosing macro-and microgeometries giving lower transmission error than the original(reference)gears.The gear geometry was chosen to yield a low transmission error for the relevant torque range, while also taking into consideration variations in the microgeometry due to manufacturing tolerances.The optimization of one gear pair is described in more detail in Paper E.Transmission error is considered an important excitation mechanism for gear whine.Welbourn [1] defines it as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” In this project the aim was to reduce the maximum predicted transmission error amplitude at gear mesh frequency(first harmonic of gear mesh frequency)to less than 50% of the value for the reference gear pair.The first harmonic of transmission error is the amplitude of the part of the total transmission error that varies with a frequency equal to the gear mesh frequency.A torque range of 100 to 500 Nm was chosen because this is the torque interval in which the gear pair generates noise in its design application.According to Welbourn [1], a 50% reduction in transmission error can be expected to reduce gearbox noise by 6 dB

(sound pressure level, SPL).Transmission error was calculated using the LDP software(Load Distribution Program)developed at the Gear Laboratory at Ohio State University [3].The “optimization” was not strictly mathematical.The design was optimized by calculating the transmission error for different geometries, and then choosing a geometry that seemed to be a good compromise, considering not only the transmission error, but also factors such asstrength, losses, weight, cost, axial forces on bearings, and manufacturing.When choosing microgeometric modifications and tolerances, it is important to take manufacturing options and cost into consideration.The goal was to use the same finishing method for the optimized gears as for the reference gears, namely grinding using a KAPP VAS 531 and CBN-coated grinding wheels.For a specific torque and gear macrogeometry, it is possible to define a gear microgeometry that minimizes transmission error.For example, at no load, if there are no pitch errors and no other geometrical deviations, the shape of the gear teeth should be true involute, without modifications like tip relief or involute crowning.For a specific torque, the geometry of the gear should be designed in such a way that it compensates for the differences in deflection related to stiffness variations in the gear mesh.However, even if it is possible to define the optimal gear microgeometry, it may not be possible to manufacture it, given the limitations of gear machining.Consideration must also be given to how to specify the gear geometry in drawings and how to measure the gear in an inspection machine.In many applications there is also a torque range over which the transmission error should be minimized.Given that manufacturing tolerances are inevitable, and that a demand for smaller tolerances leads to higher manufacturing costs, it is important that gears be robust.In other words, the important characteristics, in this case transmission error, must not vary much when the torque is varied or when the microgeometry of the gear teeth varies due to manufacturing tolerances.LDP [3] was used to calculate the transmission error for the reference and optimized gear pair at different torque levels.The robustness function in LDP was used to analyze the sensitivity to deviations due to manufacturing tolerances.The “min, max, level” method involves assigning three levels to each parameter.2.5 Optimization of transmission housing Finite element analysis was used to optimize the transmission housing.The optimization was not performed in a strictly mathematical way, but was done by calculating the vibration of the housing for different geometries and then choosing a geometry that seemed to be a good compromise.Vibration was not the sole consideration, also weight, cost, available space, and casting were considered.A simplified shell element model was used for the optimization to decrease computational time.This model was checked against a more detailed solid element model of the housing to ensure that the simplification had not changed the dynamic properties too much.Experimental modal analysis was also used to find the natural frequencies of the real transmission housing and to ensure that the model did not deviate too much from the real housing.Gears shafts and bearings were modeled as point masses and beams.The model was excited at the bearing positions by applying forces in the frequency range from 1000 to 3000 Hz.The force amplitude was chosen as 10% of the static load from the gears.This choice could be justified because only relative differences are of interest, not absolute values.The finite element analysis was performed by Torbjörn Johansen at Volvo Technology.The author’s contribution was the evaluation of the results of different housing geometries.A number of measuring points were chosen in areas with high vibration velocities.At each measuring point the vibration response due to the excitation was evaluated as a power spectral density(PSD)graph.The goal of the housing redesign was to decrease the vibrations at all measuring points in the frequency range 1000 to 3000 Hz.2.6 Results of the noise measurements The noise and vibration measurements described in section 2.3 were performed after optimizing the gears and transmission housing.The total sound power level decreased by 4 dB.2.7 Discussion and conclusions It seems to be possible to decrease the gear noise from a transmission by

decreasing the static loaded transmission error and/or optimizing the housing.In the present study, it is impossible to say how much of the decrease is due to the gear optimization and how much to the housing optimization.Answering this question would have required at least one more noise measurement, but time and cost issues precluded this.It would also have been interesting to perform the noise measurements on a number of transmissions, both before and after optimizing the gears and housing, in order to determine the scatter of the noise of the transmissions.Even though the goal of decreasing the gear noise by 10 dB was not reached, the goal of reducing the gear noise in the wheel loader cab to 15 dB below the overall noise was achieved.Thus the noise optimization was successful.3 SUMMARY OF APPENDED PAPERS 3.1 Paper A: Gear Noise and Vibration – A Literature Survey This paper presents an overview of the literature on gear noise and vibration.It is divided into three sections dealing with transmission error, dynamic models, and noise and vibration measurement.Transmission error is an important excitation mechanism for gear noise and vibration.It is defined as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate” [1].The literature survey revealed that while most authors agree that transmission error is an important excitation mechanism for gear noise and vibration, it is not the only one.Other possible time-varying noise excitation mechanisms include friction and bending moment.Noise produced by these mechanisms may be of the same order of magnitude as that produced by transmission error, at least in the case of gears with low transmission error [4].The second section of the paper deals with dynamic modeling of gearboxes.Dynamic models are often used to predict gear-induced vibrations and investigate the effect of changes to the gears, shafts, bearings, and housing.The literature survey revealed that dynamic models of a system consisting of gears, shafts, bearings, and gearbox casing can be useful in understanding and predicting the dynamic behavior of a gearbox.For

relatively simple gear systems, lumped parameter dynamic models with springs, masses, and viscous damping can be used.For more complex models that include such elements as the gearbox housing, finite element modeling is often used.The third section of the paper deals with noise and vibration measurement and signal analysis, which are used when experimentally investigating gear noise.The survey shows that these are useful tools in experimental investigation of gear noise because gears create noise at specific frequencies related to the number of teeth and the rotational speed of the gear.3.2 Paper B: Gear Test Rig for Noise and Vibration Testing of Cylindrical Gears Paper B describes a test rig for noise testing of gears.The rig is of the recirculating power type and consists of two identical gearboxes, connected to each other with two universal joint shafts.Torque is applied by tilting one of the gearboxes around one of its axles.This tilting is made possible by bearings between the gearbox and the supporting brackets.A hydraulic cylinder creates the tilting force.Finite element analysis was used to predict the natural frequencies and mode shapes for individual components and for the complete gearbox.Experimental modal analysis was carried out on the gearbox housing, and the results showed that the FE predictions agree with the measured frequencies(error less than 10%).The FE model of the complete gearbox was also used in a harmonic response analysis.A sinusoidal force was applied in the gear mesh and the corresponding vibration amplitude at a point on the gearbox housing was predicted.3.3 Paper C: A Study of Gear Noise and Vibration Paper C reports on an experimental investigation of the influence of gear finishing methods and gear deviations on gearbox noise and vibration.Test gears were manufactured using three different finishing methods and with different gear tooth modifications and deviations.Table3.3.1 gives an overview of the test gear pairs.The surface finishes and geometries of the gear tooth flanks were measured.Transmission error was measured using a single flank gear tester.LDP software from Ohio State University was used for transmission error computations.The test rig described in Paper B was used to measure gearbox noise and vibration for the different test gear pairs.The measurements showed that disassembly and reassembly of the gearbox with the same gear pair might change the levels of measured noise and vibration.The rebuild variation was sometimes of the same order of magnitude as the differences between different tested gear pairs, indicating that other factors besides the gears affect gear noise.In a study of the influence of gear design on noise, Oswald et al.[5] reported rebuild variations of the same order of magnitude.Different gear finishing methods produce different surface finishes and structures, as well as different geometries and deviations of the gear tooth flanks, all of which influence the transmission error and thus the noise level from a gearbox.Most of the experimental results can be explained in terms of measured and computed transmission error.The relationship between predicted peak-to-peak transmission error and measured noise at a torque level of 500 Nm is shown in Figure 3.3.1.There appears to be a strong correlation between computed transmission error and noise for all cases except gear pair K.However, this correlation breaks down in Figure 3.3.2, which shows the relationship between predicted peak to peak transmission error and measured noise at a torque level of 140 Nm.The final conclusion is that it may not be possible to identify a single parameter, such as peak-to-peak transmission error, that can be directly related to measured noise and vibration.3.4 Paper D: Gearbox Noise and Vibration −Influence of Bearing Preload The influence of bearing endplay or preload on gearbox noise and vibrations is investigated in Paper D.Measurements were carried out on a test gearbox consisting of a helical gear pair, shafts, tapered roller bearings, and a housing.Vibration measurements were carried out at torque levels of 140 Nm and 400 Nm with 0.15 mm and 0 mm bearing endplay and with 0.15 mm bearing preload.The results shows that the bearing endplay or preload influence gearbox vibrations.Compared with bearings

with endplay, preloaded bearings show an increase in vibrations at speeds over 2000 rpm and a decrease at speeds below 2000 rpm.Figure 3.4.1 is a typical result showing the influence of bearing preload on gearbox housing vibration.After the first measurement, the gearbox was not disassembled or removed from the test rig.Only the bearing preload/endplay was changed from 0 mm endplay/preload to 0.15 mm preload.Therefore the differences between the two measurements are solely due to different bearing preload.FE simulations performed by Sellgren and Åkerblom [6] show the same trend as the measurements here.For the test gearbox, it seems that bearing preload, compared with endplay, decreased the vibrations at speeds below 2000 rpm and increased vibrations at speeds over 2000 rpm, at least at a torque level of 140 Nm.3.5 Paper E: Gear Geometry for Reduced and Robust Transmission Error and Gearbox Noise In Paper E, gearbox noise is reduced by optimization of gear geometry for decreased transmission error.The optimization was not performed strictly mathematically.It was done by calculating the transmission error for different geometries and then choosing a geometry that seemed to be a good compromise considering not only the transmission error, but also other important characteristics.Robustness with respect to gear deviations and varying torque was considered in order to find gear geometry with low transmission error in the appropriate torque range despite deviations from the nominal geometry due to manufacturing tolerances.Static and dynamic transmission error as well as noise and housing vibrations were measured.The correlation between dynamic transmission error, housing vibrations, and noise was investigated in a speed sweep from 500 to 2500 rpm at constant torque.No correlation was found between dynamic transmission error and noise.4 DISCUSSION AND CONCLUSIONS Static loaded transmission error seems to be strongly correlated to gearbox noise.Dynamic transmission error does not seem to be correlated to gearbox noise in speed

sweeps in these investigations.Henriksson [7] found a correlation between dynamic transmission error and gearbox noise when testing a truck gearbox at constant speed and different torque levels.The different test conditions, speed sweep versus constant speed, and the different complexity(a simple test gearbox versus a complete truck gearbox)may explain the different results regarding correlation between dynamic transmission error and gearbox noise.Bearing preload influences gearbox noise, but it is not possible to make any general statement as to whether preload is better than endplay.The answer depends on the frequency and other components in the complex dynamic system of gears, shafts, bearings, and housing.To minimize noise, the gearbox housing should be as rigid as possible.This was proposed by Rook [8], and his views are supported by the results relating to the optimization of a transmission housing described in section 2.5.Finite element analysis is a useful tool for optimizing gearbox housings.5 FUTURE RESEARCH It would be interesting to investigate the correlation between dynamic transmission error and gearbox noise for a complete wheel loader transmission.One challenge would be to measure transmission error as close as possible to the gears and to avoid resonances in the connection between gear and encoder.The dropbox gears in a typical wheel loader transmission are probably the gears that are most easily accessible for measurement using optical encoders.See Figure 5.1.1 for possible encoder positions.Modeling the transmission in more detail could be another challenge for future work.One approach could be to use a model of gears, shafts, and bearings using the transmission error as the excitation.This could be a finite element model or a multibody system model.The output from this model would be the forces at the bearing positions.The forces could be used to excite a finite element model of the housing.The housing model could be used to predict noise radiation, and/or vibration at the attachment points for the gearbox.This approach would give absolute values, not just relative levels.REFERENCES [1] Welbourn D.B., “Fundamental Knowledge of Gear Noise −A Survey”, Proc.Noise & Vib.of Eng.and Trans., I Mech E., Cranfield, UK, July 1979, pp 9–14.[2] MackAldener M., “Tooth Interior Fatigue Fracture & Robustness of Gears”, Royal Institute of Technology, Doctoral Thesis, ISSN 1400-1179, Stockholm, 2001.[3] Ohio State University, LDP Load Distribution Program, Version 2.2.0, http://www.xiexiebang.com/ , 2007.[4] Borner J., and Houser D.R., “Friction and Bending Moments as Gear Noise Excitations”,SAE Technical Paper 961816.[5] Oswald F.B.et al., “Influence of Gear Design on Gearbox Radiated Noise”, Gear Technology, pp 10–15, 1998.[6] Sellgren U., and Åkerblom M., “A Model-Based Design Study of Gearbox Induced Noise”, International Design Conference – Design 2004, May 18-21, Dubrovnik, 2004.[7] Henriksson M., “Analysis of Dynamic Transmission Error and Noise from a Two-stage Gearbox”, Licentiate Thesis, TRITA-AVE-2005:34 / ISSN-1651-7660, Stockholm, 2005.[8] Rook T., “Vibratory Power Flow Through Joints and Bearings with Application to Structural Elements and Gearboxes”, Doctoral Thesis, Ohio State University, 1995.

第三篇:机械专业论文课题选择

四川文理学院

机械工程及自动化专业毕业论文选题指南

课题的选择:

1、毕业设计(论文)课题的选择应与机械专业方向及专业岗位群需求紧密结合,学生可结合企业生产、管理、服务实际情况及自己的兴趣爱好,在指导教师的指导下完成毕业设计(论文)选题及毕业设计(论文)。

2、在掌握文献资料的基础上,做好实际调查研究。

3、学生根据已掌握的资料,针对已选择课题进行分析、论证,提出独立见解,在指导教师指导下完成毕业设计(论文)。

毕业设计(论文)部分参考选题方向:

(一)机械设计类毕业设计选题目录:

01.8英寸钢管热浸镀锌自动生产线设计 02.27m3矿用挖掘机斗杆结构有限元分析 03.140吨悬挂悬挂提升机及传感器 04.200米安全钻机

05.205t桥式起重机控制线路设计

06.300.400数控激光切割机XY工作台部件及单片机控制设计 07.1041普通货车制动器设计 08.“包装机对切部件”设计 09.AWC机架现场扩孔机设计

10.BW-100型泥浆泵曲轴箱与液力端特性分析、设计 11.CA-20地下自卸汽车工作、转向液压系统 12.CG2-150型仿型切割机

13.DTⅡ型固定式带式输送机的设计 14.DTⅡ型皮带机设计

15.GBW92外圆滚压装置设计 16.GCPS20型工程钻机

17.J45-6.3型双动拉伸压力机的设计 18.MQ100 门式起重机总体

19.NK型凝汽式汽轮机调节系统的设计

20.PF455S插秧机及其侧离合器手柄的探讨和改善设计 21.PLC控制电梯 22.QG6F切割机

23.QWJ300型直切机的设计 24.SFY-B-2锤片粉碎机设计 25.SPT120推料装置

26.UGII中三维建模部分CAI制作

27.UG的三维CAD设计和CAM自动编程 28.UG应用模块课件的设计与制作

29.WE67K-5004000板料折弯机 30.WY型滚动轴承压装机设计 31.XQB小型泥浆泵的结构设计 32.XS80双出风口笼形转子选粉机 33.YZJ压装机整机液压系统设计 34.ZL15型轮式装载机 35.板材送进夹钳装置 36.棒料切割机

37.笔记本电脑主板装配线(输送带)及其主要夹具的设计 38.拨叉加工自动线设计 39.播种机设计

40.插秧机系统设计

41.茶树重修剪机的开发研究

42.柴油机数字化快速设计系统中实例库的建立 43.柴油机专用换向阀工艺结构设计 44.铲平机的设计

45.常规量检测与控制工程专业综合实验设计 46.车载装置升降系统的开发 47.城镇污水处理厂设计 48.冲击回转钻进技术

49.抽油机机械系统设计(常规型)50.出租车计价器系统设计

51.大型水压机的驱动系统和控制系统 52.大型制药厂热电冷三联供 53.大直径桩基础工程成孔钻具 54.带式输送机传动滚筒的防滑处理 55.带式输送机传动装置设计 56.带式输送机自动张紧装置设计 57.单轨抓斗起重机设计 58.弹簧CAD软件的开发

59.地下升降式自动化立体车库 60.电动自行车调速系统的设计 61.电脑主板回焊炉及控制系统设计

62.复合化肥混合比例装置及PLC控制系统设计 63.电液比例阀设计 64.钉磨机床设计

65.多功能自动跑步机(机械部分设计)66.二级电液比例节流阀 67.钢筋调直机 68.钢筋弯曲机

69.钢筋弯曲机设计及其运动过程虚拟 70.隔水管横焊缝自动对中装置 71.隔振系统实验台总体方案设计 72.工程钻机的设计

73.管套压装专机

74.管套压装专机结构设计 75.滚针轴承自动装针机设计

76.机器人多用途气动机器人结构设计 77.机器人工业机器人 78.机器人焊接机器人

79.机器人集装箱波纹板焊接机器人机构运动学分析及车体结构设计 80.机器人送料机械手设计

81.机器人五自由度机器人结构设计 82.机械手PLC控制机械手设计

83.机械手-数控机床上下料机械手设计

84.机械手-送料机械手设计及Solidworks运动仿真 85.机械手-液压机械手

86.机油冷却器自动装备线压紧工位装备设计 87.基于PLC高速全自动包装机的控制系统应用

88.基于ProE的装载机工作装置的实体建模及运动仿真 89.基于普通机床的后托架及夹具设计开发

90.集成电路塑封自动上料机机架部件设计及性能试验 91.减速器2级(带式运输机传动设计)92.减速器2级(三维建模)

93.减速器200米液压钻机变速箱的设计 94.减速器单级圆柱齿轮 95.减速器的整体设计

96.减速器环面蜗轮蜗杆减速器 97.减速器减速器的整体设计 98.减速器减速器锥柱二级传动 99.减速器三级圆柱齿轮减速器 100.减速器实验用减速器的设计 101.减速器双齿减速器设计 102.减速器同轴式二级圆柱齿轮

103.减速器同轴式二级圆柱齿轮减速器的设计

104.减速器用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器 105.减速器运输机械用减速器 106.减速器轧钢机减速器的设计

107.减速器自动洗衣机行星齿轮减速器的设计 108.减速器二级斜齿圆柱齿轮减速器设计 109.搅拌器的设计

110.轿车双摆臂悬架的设计及产品建模

111.教育型加工中心总体结构方案与主轴部件设计 112.精密播种机 113.卷板机设计

114.康明斯发电机组控制箱系统的设计 115.可调速钢筋弯曲机的设计

116.课程多媒体课件通用框架的研制(机械类)

117.空气压缩机V带校核和噪声处理 118.空压机机械系统设计 119.连杆平行度测量仪

120.链驱动双层升降横移式车库

121.螺旋管状面筋机总体及坯片导出装置设计 122.马路保洁车

123.膜片式离合器的设计 124.磨粉机设计

125.某大型水压机的驱动系统和控制系统 126.普通式双柱汽车举升机设计 127.普通钻床改造为多轴钻床 128.汽车离合器(EQ153)的设计 129.汽车离合器(螺旋430)的设计 130.桥式起重机小车运行机构设计 131.清淤船的设计

132.全自动洗衣机控制系统的设计 133.全自动制袋机 134.乳化液泵的设计

135.三自由度圆柱坐标型工业机器人设计 136.三坐标测量机 137.升降机的设计

138.生产线上运输升降机的自动化设计 139.石油管螺纹保护帽旋压专用设备设计 140.数控轴承磨床砂轮修整装置设计 141.双齿辊破碎机的设计

142.双铰接剪叉式液压升降台的设计 143.双柱机械式汽车举升机 144.双柱式机械式举升机设计

145.四层楼电梯自动控制系统的设计 146.铁水浇包倾转机构的设计 147.外行星摆线马达结构设计 148.外圆磨床设计

149.万能外圆磨床液压传动系统设计 150.涡轮盘液压立拉夹具 151.卧式钢筋切断机的设计 152.无轴承电机

153.五吨电动单梁桥式起重机的设计 154.巷道堆垛类自动化立体车库 155.巷道式自动化立体车库升降部分 156.小型轧钢机设计 157.钢筋校直机设计

158.新KS型单级单吸离心泵的设计

159.新型组合式选粉机总体及分级部分设计 160.旋耕机的设计

161.旋耕机设计(2)162.旋转门的设计

163.压燃式发动机油管残留测量装置设计 164.盐酸分解磷矿装置设计 165.液位平衡控制系统实验

166.液位平衡控制系统实验装置设计 167.液压绞车设计

168.液压式双头套皮辊机 169.液压缸设计

170.玉米脱粒机设计 171.轧钢机设计

172.榨汁机设计(无图)173.振动打桩锤的设计 174.知识竞赛抢答器设计

175.直动式单级(常规型 6升)比例控制压力阀的设计 176.中单链型刮板输送机设计 177.设计自动冲孔机 178.自动立体车库设计 179.自动售货机设计 180.设计自动跳绳机

181.设计自动涂胶机器人系统(控制)182.设计自动弯管机

183.-自动弯管机装置及其电器设计 184.-自行车变速系统的设计 185.20米T梁毕业设计

186.设计R175型柴油机机体加工自动线上多功能气压机械手 187.半自动液压专用铣床液压系统设计

188.带式运输机用的二级圆柱齿轮减速器设计 189.单螺杆饲料膨化机的设计 190.二级直齿轮减速器设计

191.设计二维影象仪的发展和应用 192.机械手的设计 193.设计家用空调

194.设计金属切削加工车间设备布局与管理 195.颗粒状糖果包装机设计 196.螺旋千斤顶设计

197.设计内蒙古包头市磴口水厂 198.平面关节型机械手设计 199.桥梁式集装箱起重机设计 200.桥式起重机副起升机构设计 201.设计青饲料切割机

202.设计数控机床自动夹持搬运装置 203.四柱压机液压系统设计

204.设计椭圆盖板的宏程序编程与自动编程

205.设计五层教学楼

206.设计斜齿圆柱齿轮减速器装配图及其零件图 207.设计一用于带式运输机上的传动及减速装置 208.轴向柱塞泵设计

209.自行车无级变速器设计 210.绞肉机的设计

211.YTP26气腿式凿岩机机体工艺及夹具设计 212.压力机与垫板间夹紧装置的设计 213.双头车床的液压系统设计 214.内曲面砂带磨削装置设计 215.变量施肥机械的设计

216.地埋式环保垃圾箱装置液压 217.滚轮式离心铸造机设计 218.夹体自动卸料机的设计 219.取物机械手的液压控制系统

220.φ300高钢度小型棒材轧机主传动装置的设计 221.小型钢坯步进式加热炉液压传动系统 222.人力手推式草坪割草机

223.卧式单面多轴钻孔机床液压系统设计 224.高炉料钟液压启闭同步系统 225.与中马力配套的喷雾机的研究

226.1300毫米热锯机液压传动系统的设计 227.中型汽车修理举升台 228.200米钻机回转器设计

229.NMNC—1型数控铣床设计 230.汽车离合器的设计 231.增力清洁三轮车

232.法兰盘加工的回转工作台设计 233.液压加紧动力装置

234.组合机床液压系统毕业设计

235.GCD-1500工程钻机启动过程中的主离合器

236.MG250591-WD型采煤机右摇臂壳体的加工工艺规程及数控编程 237.YA32-315四柱万能液压机 238.YN32200四柱式液压机 239.泵体多轴钻设计

240.泵体多轴钻设计(卧)

241.变频试验台直线运动机构及基于S7-200速度示教系统控制软件与上位监控系统设计

242.并联机床设计

243.并联机床实验台总体结构设计 244.自上式垃圾运输车

245.玻璃横切结构及人机界面系统设计 246.薄煤层采煤机设计输出 247.磁力管道爬行机器人

248.大尺寸多工步自动推料进给装置及控制数据管理系统设计 249.电葫芦机械系统设计文件 250.风机状态测试系统的总体设计 251.蜂窝煤成型机设计 252.钢筋调直机

253.高低压道路清洗车系统设计输出 254.辊式矫平机

255.换刀机械手设计 256.化工换热器

257.机床夹具柔性化技术研究及设计

258.基于虚拟测试技术的风机状态测试系统的设计 259.交流永磁直线电机及其伺服控制系统的设计 260.静液压三驱伸缩臂叉车驱动方案的设计 261.卷筒卫生纸自动包装机

262.立体车库的内部机械结构的优化设计 263.螺旋液压沉桩机机械部分设计 264.模具转位盘驱动器设计 265.喷涂机械手的设计

266.啤酒桶清洗机的设计及PLC控制 267.平压印刷机设计

268.气动机械手回转臂结构设计 269.气动机械手升降臂结构设计 270.气浮式动平衡机设计 271.气压传动机械手设计 272.塑料粉末静电喷涂生产线 273.探测机器人系统的设计 274.推土机设计

275.五菱微车后门导滑槽液压机设计

276.小型多工步自动推料进给装置及温控、上位显示系统设计 277.小型风力发电机总体结构的设计 278.小型风力发电机组动力结构设计 279.小型模具柔性制造系统设计 起重机 280.新型叉车门架系统设计输出 281.旋转型灌装机的设计 282.液压旋铆机设计 283.圆柱机械手设计

284.支撑目标运动机构技术设计 285.中成药瓶盖旋紧机械手设计 286.自动更换芯模机械手设计 287.排污车自动清污装置设计

288.电冰箱门体发泡自动化生产线进行改进设计 289.机器人手腕及夹持器的设计 290.油管运输机器人设计 291,农用三轮车设计

292,OCL功率放大器.doc 293,直流稳压电源的设计.doc 294,果蔬原料去皮机设计

295.C620普遍车床的数控化改造(本科)296.组合件数控车工艺与编程 297.汽车变速箱上盖工艺夹具设计

299.流水线工位上料机液压系统设计设计输出 300.双面卧式攻丝机床设计

301.dt250斗式提升机全套 毕业设计(水泥谷物)U70449.rarU70449 302.qy40型液压起重机液压系统设计计算说明书.附cad图3v2l1e 303.TGSS-50型水平刮板输送机---机头段设计U70449 304.汽车安全气囊应用研究学 305.毕业设计-花生去壳机 306.采煤机截割部的整体设计 307.叉车设计

308.齿辊破碎机详细设计6w5y2t 309.带式二级圆锥圆柱齿轮减速器设计 310.飞机起落架设计 311.风力发电机

312.钢筋弯曲机(发客户)313.谷物运输机传动装置设计 314.静扭试验台的设计

315.可调速钢筋弯曲机的设计 316.矿井水仓清理工作的机械化 317.矿用液压支架的设计

318.纳米粉体的实验装置毕业设计U70449 319.齐齐哈尔大学传动剪板机设计 320.起重机设计3n6l9x 321.起重机总体设计及金属结构设计 322.汽车差速器及半轴设计 323.切管机毕业设计 324.青饲料切割机

325.清车机毕业设计(打印)326.双螺杆压缩机的设计 327.提升机制动系统 328.稳罐装置

329.铣床的数控x-y工作台设计 330.液压控制阀的理论研究与设计 331.移动式x光机总体及移转组件设计 332.轴向柱塞泵设计

333.株洲工学院XK5040数控立式铣床及控制系统设计 334.常用机构认识,分析与测绘(PPT)

335.10KW圆锥-圆柱齿轮减速器的设计(只论文)336.plc铣床(只论文)

337.茶叶修剪机(只论文)

338.齿轮泵的研究与三维造型设计(只论文)339.齿轮链轮套件设计(只论文)340.多功能刷地机设计(只论文)341.管道清灰机器人设计(只论文)

342.普通带式输送机的设计论文(只论文)343.巧克力包装机设计(只论文)344.送料机(只论文)

345.2J550×3000双轴拌合机设计 346.液压综合实验台设计

(二)工艺类毕业设计选题目录

CA6140车床尾座体工艺工装设计

1.MG250591-WD型采煤机右摇臂壳体的加工工艺规程及数控编程 2.WH212减速机壳体加工工艺及夹具设计

3.X62W铣床主轴机械加工工艺规程与钻床夹具设计 4.X5020B立式升降台铣床拔叉壳体工艺规程制订 5.C6410车床拨叉.卡具设计 6.车床手柄座加工夹具设计 7.盖套类零件知识库及工艺 8.曲轴工艺设计及夹具设计

9.曲轴箱零件加工工艺及夹具设计 10.数控铣床编程实例分析 11.铣断夹具设计

12.“填料箱盖”零件的工艺规程及钻孔夹具设计 13.CA6140机床后托架加工工艺及夹具设计

14.CA6140型铝活塞的机械加工工艺设计及夹具设计

15.MG132320-W型采煤左牵引部机壳的加工工艺规程及数控编程 16.SSCK20A数控车床主轴和箱体加工编程 17.WHX112减速机壳加工工艺及夹具设计

18.Z90型电动阀门装置及数控加工工艺的设计 19.回转盘工艺规程设计及镗孔工序夹具设计 20.加工涡轮盘榫槽的卧式拉床夹具 21.壳体的工艺与工装的设计

22.前刹车调整臂外壳的机械加工的工艺过程及工装设计 23.填料箱盖夹具设计

24.支承套零件加工工艺编程及夹具 25.CA6140拨叉831005设计

26.CA6140车床法兰盘的加工工艺夹具

27.柴油机连杆体的机械加工工艺规程的编制 28.车床变速箱中拔叉及专用夹具设计 29.车床拨叉夹具

30.电织机导板零件数控加工工艺与工装设计 31.分度钻孔夹具设计

32.后钢板弹簧吊耳的加工工艺

33.铜质镀银活动触头侧平面铣削用夹具 34.推动架设计

35.弯管的数控加工与工艺分析

36.锡林右轴承座组件工艺及夹具设计

37.-箱体类零件工艺分析及知识库研究(减速机)

38.“CA6140法兰盘”零件的机械加工工艺规程及工艺装备 39.CA6140车床后托架的加工工艺与钻床夹具设计 40.CA6140杠杆加工工艺

41.CA6140杠杆加工工艺及夹具设计 42.X5020B立式升降台铣床拨叉壳体 43.Z3050摇臂钻床预选阀体机械加工工 44.半轴机械加工工艺及工装设计 45.拨叉零件工艺分析及加工 46.叉杆零件

47.柴油机连杆的加工工艺

48.齿轮泵前盖的数控加工和三维造型

49.齿轮架零件的机械加工工艺规程及专用夹具设计 50.传动齿轮工艺设计 51.单拐曲轴机械加工工艺

52.低速级斜齿轮零件的机械加工工艺规程 53.端面齿盘的设计与加工 54.惰轮轴工艺设计和工装设计 55.法兰零件夹具设计 56.方向机壳钻夹具设计

57.分离爪工艺规程和工艺装备设计 58.杠杆工艺和工装设计 59.杠杆设计

60.过桥齿轮轴机械加工工艺规程 61.后钢板弹簧吊耳的工艺和工装设计

62.活塞的机械加工工艺,典型夹具及其CAD设计 63.机座工艺设计与工装设计 64.减速箱体工艺设计与工装设计 65.渐开线涡轮数控工艺及加工 66.空气压缩机曲轴零件 67.连杆零件加工工艺

68.美国赛车连杆专用工装夹具设计 69.气门摇臂轴支座 70.十字接头零件分析 71.输出轴的工装工艺设计 72.输出轴工艺与工装设计 73.套筒机械加工工艺规程制订

74.推动架”零件的机械加工工艺及夹具设计 75.斜联结管数控加工和工艺

76.支架零件图设计 77.总泵缸体加工设计

78.组合件数控车工艺与编程

79.钻泵体盖6-φ2孔机床与夹具图纸 80.钻泵体盖6-φ7孔机床与夹具图纸 81.汽车变速器体的工艺及夹具设计 82.油缸套的加工工艺设计

83.YTP26气腿式凿岩机机体工艺及夹具设计 84.工艺拨叉的上数控工艺及数控编程

85.摇柄浇注模模型建模及数控加工工艺设计与仿真加工 86.鼠标模型建模及数控加工工艺设计与实际加工 87.无级变速器后壳体的数控工艺与加工 88.车床手柄座夹具设计 89.世纪星车削数控编程 90.轴类零件工艺设计

91.基于PROE的抽油机部件的三维实体仿真设计 92.壳体工艺夹具设计 93.壳体2工艺夹具设计 94.壳体3工艺夹具设计 95.法兰零件夹具设计

96.壳体零件机械加工工艺规程制订及工艺装备设计 97.输出轴工艺与工装设计

98.设计阀盖零件的机械加工工艺规程及4-Φ14H8工艺装备 99.汽车后轮轮毂的工艺工装设计

100.C620普遍车床的数控化改造(本科)102.标牌雕刻数控加工工艺设计 103.柴油机喷油泵的专用夹具设计

104.齿轮箱工艺及钻2-φ20孔、工装及专机设计U70449 105.典型零件的加工艺分析及工装夹具设计 106.杠杆及夹具体设计

107.活塞结构设计与工艺设计 108.填料箱盖夹具设计

109.组合件数控车工艺与编程

110.减速器机体工艺规程及工装夹具设计 111.齿轮轴零件的数控加工工艺与工装 112.GS06闸板配合件工艺设计与编程

(三)模具类毕业设计选题目录:

1.(560×450×279)塑料水槽及其注模具设计 2.USB接口插件弯曲模具设计 3.Φ146.6药瓶注塑模设计 4.冰箱调温按钮塑模设计 5.冲单孔垫圈模具设计

6.电机炭刷架冷冲压模具设计

7.垫片2冷冲模设计 8.级进模模具设计

9.冷冲(连接片级进模)10.旅行餐碗注塑模设计 11.手机后盖注塑模的设计 12.漱口杯注塑模设计

13.童心吸水杯杯盖注塑模设计 14.童心吸水杯注塑模设计 15.弯管接头塑料模设计 16.把手封条(模具)17.波轮注射模设计

18.电池板铝边框冲孔模的设计 19.电风扇旋扭的塑料模具设计 20.多用工作灯后盖注塑模 21.肥皂盒注塑模

22.封闭板成形模及冲压工艺设计 23.光驱外客注射模设计 24.机油盖注塑模具的设计 25.铰链落料冲孔复合模具设计 26.离合器板冲成形模具设计 27.手机充电器塑料模具 28.手机饰板冲压模具设计 29.水管三通管塑料模具 30.塑料传动支架

31.五金-笔记本电脑壳上壳冲压模设计 32.五金-冲大小垫圈复合模

33.五金-带槽三角形固定板冲圆孔、冲槽、落料连续模设计 34.五金-盖冒垫片

35.注塑-注射器盖毕业设计 36.五金-护罩壳侧壁冲孔模设计

37.五金-空气滤清器壳正反拉伸复合模设计 38.扬声器模具设计 39.注塑-PDA模具设计

40.注塑-wk外壳注塑模实体设计过程 41.注塑-底座注塑模

42.注塑-电流线圈架塑料模设计 43.注塑-对讲机外壳注射模设计 44.注塑-阀销注射模设计 45.注塑-方便饭盒上盖设计 46.注塑-肥皂盒模具设计 47.注塑-闹钟后盖毕业设计 48.注塑-瓶盖注塑模设计

49.注塑-普通开关按钮模具设计 50.注塑-软管接头模具设计

51.注塑-手机充电器的模具设计 52.注塑-鼠标上盖注射模具设计 53.注塑-塑料挂钩座注射模具设计 54.注塑-塑料架注射模具设计 55.注塑-玩具模具设计

56.注塑-香水盖子及模具设计

57.注塑-小电机外壳造型和注射模具设计 58.注塑-斜齿轮注射模

59.注塑-心型台灯塑料注塑模具毕业设计 60.注塑-旋纽模具的设计 61.注塑-牙签合盖注射模设计 62.注塑-游戏机按钮注塑模具设计

63.《仿真分析在冷冲模设计中的应用》 64.冲压-托板冲模毕业设计 65.盒形件落料拉深模设计 66.-拉深模设计

67.落料,拉深,冲孔复合模

68.五金-湖南Y12型拖拉机轮圈落料与首次 69.注塑-轴承端盖模具的加工 70.注塑-Z形件弯曲模设计 71.注塑-笔盖的模具设计 72.注塑-电源盒注射模设计 73.注塑-调节器连接件设计

74.注塑-放大镜模具的设计与制造 75.注塑-肥皂盒模具的设计 76.注塑-机油盖注塑模具设计

77.注塑-内螺纹管接头注塑模具设计 78.注塑-鼠标盖设计

79.注塑-塑料电话接线盒注射模设计 80.注塑-塑料模具设计 81.注塑-椭圆盖注射模设计

82.注塑-五寸软盘盖注射模具设计 83.注塑-仪器连接板注塑模设计

84.传动盖冲压工艺制定及冲孔模具设计 85.放音机机壳注射模设计 86.夹子冲压件设计

87.酒瓶内盖塑料模具设计 88.滤油器支架模具设计 89.汽车盖板冲裁模设计 90.三通管的塑料模设计 91.四垫圈复合模

92.型星齿轮的注塑模设计 93.压铸作业设计

94.自行车脚蹬内板多工位级进模设计

95.旋臂盖塑料模具设计 96.CD盒注射模毕业设计 97.接线座塑料模具设计 98.电风扇叶片的塑料模设计 99.套座注射模

100.弯管接头的塑料模设计 101.渔具旋臂的塑料模设计

102.大功率三极管管脚级进模设计

103.EPSON打印机打印传送带架注射模具设计 104.冲孔-落料倒装复合冲裁模具设计 105.电子送料器卡片冲压模具设计 106.和面机面板冲裁模具设计 107.汽车附件调角器上的连动板Ⅱ 108.成型板件冲模设计 109.勾板的级进模设计

110.ILB3型水田耕整机箱盖座板落料冲方孔复合模 111.高档不锈钢保温杯过滤盘落料拉深模具设计 112.卡盖注射成型模具的设计 113.台式电脑立式机箱前面 114.方便米饭盒盖注塑模具板 115.新型端盖无毛刺冲孔模具 116.q型绝缘螺钉设计与制造 117.电池槽盖的塑料模设计

118.电话机听筒外壳注射模具设计 119.多格盒注塑模设计

120.风道壳体工艺分析及注射模具设计 121.盖子塑料模具设计 122.空心球柄塑料模设计

123.手机卡压盖冲压模具的设计及凸模的加工仿真 124.无绳电话手机上壳注射模设计 125.线圈骨架注塑模具的设计 126.线圈骨架注塑模具的设计 127.管座及其加工模具的设计 128.拨叉复合冲裁模的设计与制造 129.冰箱调温按钮塑模设计 130.传动座架冷冲压模具设计 131.MP3外壳注塑模具设计 132.旋纽模具的设计 133.手机塑料外壳注塑模 134.手机后壳CADCAM设计

135.汽车玻璃升降器外壳冷冲压工艺与模具设计 136.电话机底座注射模设计

137.[A3-019]注塑模-圆珠笔笔盖的模具设计 138.-电机炭刷架冷冲压模具设计

139.带心行图案的把手水杯设计--杯子模具 140.冲压汽车灯罩模具设计 141.电子钟后盖注射模具设计 142.盖子零件注射模设计 143.經典細水口模具圖 144.冷冲模设计

145.清新剂盒盖注射模设计 146.洗衣机机盖的注塑模具设计 147.钥匙模具设计

148.MP3的前后盖的模具设计(只论文)149.刹车片冲压模具设计(只论文)

150.雨刷机加强板修边冲孔模三维设计(只论文)151.片状弹簧冲压级进模毕业设计

152.彩色迷你塑料盆景花盆注塑模具设计 153.越野车车门外板的激光焊接夹具设计 154.自行车脚蹬内板冲孔翻边落料模的设计 155.垫片冷冲压工艺及模具设计

(四)机床设计类选题目录:

1.92Q型气缸盖双端面铣削组合铣床总体设计 2.102机体齿飞面孔双卧多轴组合机床及CAD设计 3.BL系列台车设计(床脚、防护罩)4.BL系列台车设计(进给箱部分)5.BL系列台车中的床身与尾架的设计 6.C618数控车床的主传动系统设计 7.C6163车床中心架设计 8.CA6140车床主轴箱的设计

9.CA6140普通车床的数控技术改造 10.CA6140型车床的经济型数控改造 11.CJK6132数控车床及其控制系统设计

12.G41J6型阀体双面钻24孔专机上的专用夹具设计

13.S195柴油机机体三面精镗组合机床总体设计及夹具设计 14.S195柴油机体三面精镗组合机床总体设计及后主轴箱设计 15.TH5940型数控加工中心进给系统设计

16.ZH1105柴油机气缸体三面攻螺纹组合机床(左主轴箱)设计 17.半精镗及精镗气缸盖导管孔组合机床设计(夹具设计)18.半精镗及精镗气缸盖导管孔组合机床设计(镗削头设计)19.柴油机齿轮室盖钻镗专机总体及夹具设计 20.柴油机齿轮室盖钻镗专机总体及主轴箱设计

21.柴油机气缸体顶底面粗铣组合机床总体及夹具设计 22.车床数控改造

23.车床主轴箱箱体右侧10M8螺纹底孔组合钻床设计 24.车床主轴箱箱体左侧8M8螺纹攻丝机设计 25.粗镗活塞销孔专用机床及夹具设计 26.电机驱动端盖多孔钻专用机床的设计

27.基于普通机床的后托架及夹具的设计开发

28.减速器箱体钻口面孔组合机床总体设计及主轴箱设计 29.经济型中挡精度数控机床横向进给设计 30.立式单面8轴数控组合钻床主轴箱设计 31.两轴实验型数控系统设计 32.普通机床改造成键槽铣床 33.普通钻床改造为多轴钻床 34.气缸盖螺钉孔加工专机 35.三坐标数控磨床设计 36.三坐标数控铣床设计

37.砂轮磨损的智能监测的研究 38.数控车床横向进给机构设计 39.数控车床横向进给机构设计2 40.数控车床主传动机构设计

41.数控车床纵向进给及导轨润滑机构设计 42.数控机床主传动系统设计

43.丝杠车床改光杠键槽铣专机进给系统设计 44.台式车床车头箱孔系加工分配箱机构设计 45.台式车床车头箱孔系加工镗模设计 46.拖拉机拨叉铣专机

47.组合机床主轴箱及夹具设计 48.钻孔组合机床设计

49.T611镗床主轴箱传动设计及尾柱设计

50.XA5032普通立式升降台铣床经济型的数控改造 51.大模数蜗杆铣刀专用机床设计 52.大型轴齿轮专用机床设计 53.普通钻床改造为多轴钻床

54.拖拉机变速箱体上四个定位平面专用夹具及组合机床设计 55.机床C616型普通车床改造为经济型数控车床 56.机床XK5040数控立式铣床及控制系统设计

57.机床XKA5032A数控立式升降台铣床自动换刀装置的设计 58.机床数控车削中心主轴箱及自驱动刀架的设计 59.机床组合铣床的总体设计和主轴箱设计 60.C6150普通车床的数控技术改造 61.C6163普通车床的数控技术改造 62.深孔钻镗床设计输出

63.数控车床CK6140主传动系统设计

64.4100QB柴油机箱体钻孔三面立卧式组合机床后多轴箱设计(立式)65.车床改进毕业设计

66.攻丝组合机床设计设计图 67.靠模攻丝组合机床

68.FX2N在立式车床控制系统中的应用(只论文)69.CA6140机床的数控改造设计 70.C620机床进给系统的数控改造

71.C620设计

72.数控车床的进给系统及刀架的设计

(五)其他机械类设计:

1.制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具 2.气门摇杆轴支座零件的机械加工工艺规程及专用夹具 3.后钢板弹簧吊耳的加工工艺及夹具设计

4.制定拨叉零件的加工工艺,设计铣尺寸18H11槽的铣床夹具

5.制定CA6140车床拨叉的加工工艺,设计钻φ5锥孔及2-M8孔的钻床夹具 6.制定后钢板弹簧吊耳的加工工艺,设计铣4mm工艺槽的铣床夹具

7.制定CA6140车床拨叉的加工工艺,设计车 55圆弧的车床和钻 25孔的钻床夹具

8.设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备

9.制定CA6140C车床拨叉的加工工艺,设计铣8mm槽的铣床夹具 10.制定电机壳的加工工艺,设计钻Φ8.5mm孔的钻床夹具

11.制定机械密封装备传动套的加工工艺,设计铣8mm凸台的铣床夹具 12.CA6140车床后托架加工工艺及夹具设计 13.汽车连杆夹具

14.尾座体加工工艺及夹具设计 15.加工支承套零件的夹具设计

16.WHX112减速机壳加工工艺及夹具设计 17.CA6140车床对开螺母加工工艺

第四篇:机械专业论文中英文摘要

摘 要

本文主要论述了基于PLC的钢管打捆机控制系统的设计思路和设计过程。主要包括钢管打捆机的汽缸动作的顺序控制和打捆钢带的定长剪切伺服控制以及人机交互界面设计。论文介绍了钢管打捆机的国内外研究情况,说明了研制具有我国自主知识产权的钢管打捆机的必要性,讲述了国家对钢管包装的要求和对钢管打捆机的性能要求;分析了给定结构的钢管打捆机的工作流程和控制要求;设计和选用了钢管打捆机的气动系统和相应的控制系统的硬件;建立了打捆钢带定长剪切伺服控制的数学模型;选用触摸屏进行了人机交互界面的设计;对PLC控制系统的重点和难点程序进行了详细叙述。

本文所设计的钢管打捆机控制系统具有根据设定参数自动对钢管计数、自动剪切打捆钢带、自动完成钢管打捆的动作控制等功能,同时通过触摸屏实现参数的输入和实时显示。

关键词:自动钢管打捆机;定长剪切;变频调速;人机界面

This article mainly discusses the design idea and the design process of the PLC based strapping machine controlling system.It includes the sequence control of the cylinder moves of the strapping machine, the fixed-length shear servo control of the steel packing, and the designs of the Man-machine interface.The thesis introduces the strapping machine’s studying condition both at home and abroad, illustrating the necessity of owning the strapping machine of the Independent intellectual property rights;analyzing the workflow and the control requirements of the given structure strapping machine;designing and choosing the hardware of the strapping machine’s pneumatic system and the corresponded controlling system;establishing the mathematical model of the fixed-length shear servo control;choosing the touch screen to do designs of the Man-machine interface;doing detailed descriptions to the important and difficult process of the PLC controlling system.The strapping machine’s controlling system designed by this thesis owns the functions of counting steels automatically according to the setting

parameters, shearing the packed steels automatically, and fulfilling the motion control of packing steels automatically, and at the same time, realizing the parameters input and the real-time display by the touch screen.Key words: automatic strapping machine;fixed-length shear;frequency control;man-machine interface

第五篇:论文致谢词

历时将近两个月的时间终于将这篇论文写完,在论文的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了。尤其要强烈感谢我的论文指导老师—XX老师,她对我进行了无私的指导和帮助,不厌其烦的帮助进行论文的修改和改进。另外,在校图书馆查找资料的时候,图书馆的老师也给我提供了很多方面的支持与帮助。在此向帮助和指导过我的各位老师表示最中心的感谢!

感谢这篇论文所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。

感谢我的同学和朋友,在我写论文的过程中给予我了很多你问素材,还在论文的撰写和排版灯过程中提供热情的帮助。

由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友批评和指正!

本论文是在xx大学xx学院xx系xx老师的悉心指导下完成的。xx老师作为一名优秀的、经验丰富的教师,具有丰富的xx知识和xx经验,在整个论文实验和论文写作过程中,对我进行了耐心的指导和帮助,提出严格要求,引导我不断开阔思路,为我答疑解惑,鼓励我大胆创新,使我在这一段宝贵的时光中,既增长了知识、开阔了视野、锻炼了心态,又培养了良好的实验习惯和科研精神。在此,我向我的指导老师表示最诚挚的谢意!

在论文即将完成之际,我的心情久久无法平静,从开始选题到顺利论文完成,有不知多少多少可敬的师长、同学、朋友给了我无数的帮助。感谢xx大学xx学院xx系提供的实验器材和实验药品,感谢xx系全体老师给予我丰富的专业知识和各个方面的关心和帮助,感谢小组长的认真负责,感谢合作组员的热心协助。同时也要感谢xx系xx级xx班全体同学,正是由于你们的帮助和支持,我才能一个一个克服困难、解明疑惑,直至本文顺利完成,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!

行文至此,我的这篇论文已接近尾声;岁月如梭,我四年的大学时光也即将敲响结束的钟声。离别在即,站在人生的又一个转折点上,心中难免思绪万千,一种感恩之情油然而生。生我者父母。感谢生我养我,含辛茹苦的父母。是你们,为我的学习创造了条件;是你们,一如既往的站在我的身后默默的支持着我。没有你们就不会有我的今天。谢谢你们,我的父亲母亲!

在这四年中,老师的谆谆教导、同学的互帮互助使我在专业技术和为人处事方面都得到了很大的提高。感谢湖南商学院在我四年的大学生活当中对我的教育与培养,感谢湖南商学院信息学院的所有专业老师,没有你们的辛勤劳动,就没有我们今日的满载而归,感谢大学四年曾经帮助过我的所有同学。在制作毕业设计过程中我曾经向老师们和同学们请教过不少的问题,老师们的热情解答和同学们的热心帮助才使我的毕业设计能较为顺利的完成。在此我向你们表示最衷心的感谢。

在论文完成之际,我首先向关心帮助和指导我的指导老师***表示衷心的感谢并致以崇高的敬意!

在学校的学习生活即将结束,回顾四年来的学习经历,面对现在的收获,我感到无限欣慰。为此,我向热心帮助过我的所有老师和同学表示由衷的感谢!在论文工作中,遇到了许许多多这样那样的问题,有的是专业上的问题,有的是论文格式上的问题,一直得到 ***老师的亲切关怀和悉心指导,使我的论文可以又快又好的完成,***老师以其渊博的学识、严谨的治学态度、求实的工作作风和他敏捷的思维给我留下了深刻的印象,我将终生难忘我的***老师对我的亲切关怀和悉心指导,再一次向他表示衷心的感谢,感谢他为学生营造的浓郁学术氛围,以及学习、生活上的无私帮助!值此论文完成之际,谨向***老师致以最崇高的谢意!最后,衷心地感谢在百忙之中评阅论文和参加答辩的各位专家、教授!本论文是在导师***教授和***研究院的细细指导下完成的。导师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远。不禁使我树立了远大的学术目标、掌握了基本的研究方法,还使我明白了许多待人接物与为人处事的道理。本论文从选题到完成,每一步都是在导师的指导新完成的,倾注了导师大量的心血。在此谨向导师表示崇高的敬意和中国新的感谢!本轮为的顺利完成,离不开各位老师、同学和朋友的关心和帮助。在此感谢***、***、***老师的指导和帮助;感谢重点实验室的....邓老师的指导和帮助;感谢**大学的***教授、***教授、***的关心、支持和帮助,在此表示深深的感谢,没有他们的帮助和支持是没有办法完成我的博士学位论文的,同窗之间的友谊永远长存。

下载机械专业论文谢词word格式文档
下载机械专业论文谢词.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    论文致谢词

    致谢词范文: (一) 本论文在xxx导师的悉心指导下完成的。导师渊博的专业知识、严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严于律己、宽以待人的崇高风范,朴实无法、......

    论文致谢词

    写论文很难,格式字体字数都有要求,老师还要帮我们审核,写不好的地方教我们修改,老师很辛苦的,所以我们要感谢他们,感谢他们帮助我们完成论文。 凌晨四点,北京的初夏,天还没有要亮......

    论文致谢词

    致谢 在我的论文完成之际,回首学习期间的点点滴滴,有太多的感慨、充实和快乐。至此,对我的老师和所有帮助过我的人致以真挚的谢意。首先,衷心地感谢我的指导老师某某老师,感谢他......

    论文致谢词

    论文完成,三年的研究生生活即将结束,感慨万千! 首先,感谢我的导师张力教授。三年来,我时刻体会着张教授严肃的科学态度,严谨的治学精神,精益求精的工作作风,我想这是够我一生受用的......

    论文致谢词

    当论文的写作接近尾声时,连日阴霾的长沙总算迎来了姗姗来迟的暖春。看窗外,阳光大片铺撒,观云池波光粼粼,香樟树郁郁葱葱,山脚下的校园氤氲在迷蒙的光泽中。知识的殿堂里,一切都显......

    论文致谢词

    论文致谢词是在论文通过后对指导老师的感谢,论文从初稿到定稿都需要指导老师的指导。老师也很辛苦,我们应该好好谢谢他们。 感谢我的导师XXX 教授,他们严谨细致、一丝不苟的......

    论文致谢词

    致谢 炎炎夏日如期而至,在这个火一般热情的季节里,三年的研究生学习也将画上一个句号,或许也意味着我学生生涯的结束。战国末期著名思想家荀子曾说过:“学无止境。”短短的四个......

    论文致谢词

    首先我要感谢我的两位导师周晶教授和慕洪生副总工程师。周老师严谨的治学态度、渊博的理论知识、深厚的学术造诣以及平易近人的作风让我心怀感恩,是我工作和学习的榜样!同时......