青岛李村河污水处理厂设计与运行范文

时间:2019-05-14 21:38:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《青岛李村河污水处理厂设计与运行范文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《青岛李村河污水处理厂设计与运行范文》。

第一篇:青岛李村河污水处理厂设计与运行范文

青岛李村河污水处理厂设计与运行

青岛李村河污水处理厂二期工程采用多模式A2 /O工艺, 可实现V IP、多点进水倒臵A2 /O、A2 /O、预缺氧+ A2 /O四种工艺方式, 详细介绍了处理工艺特点、设计运行参数、自控升级改造方式、调试措施、运行特点。实际运行结果表明, 该工艺具有较强的耐冲击负荷能力, 适应不同环境条件下的运行需求, 各项出水指标均达到了设计要求。工程概况

青岛李村河污水处理厂二期工程设计规模为9104 m3 /d, 于2008年7月投入运行。二期工程采用多模式A2 /O 工艺, 设计进、出水

根据工程分期建设的特点, 二期工程的格栅间、进水泵房、沉砂池、鼓风机房、脱水机房等土建部分 采用一期原有构筑物, 仅增加了工艺设施及设备, 同时对自控系统进行升级改造, 运行至今出水水质达城镇污水处理厂污染物排放标准(GB 18918 2002)的二级标准。

2工程设计

2.1多模式A2 /O工艺

青岛李村河污水处理厂地处青岛市工业区, 周边汇水区域面积为124 km2, 进水水质具有浓度高、变化大、可生化性差的特点, 夏季回流污泥中硝态氮对除磷的干扰突出, 冬季低温条件对生物硝化的影响较大, 因此解决去除N、P的冲突, 提高工艺的耐冲击负荷能力, 是选择处理工艺的关键因素。本工程采用的多模式A2 /O 工艺, 实际运行中可以根据季节、水质、水量的变化, 按照V IP、倒臵A2 /O、A2 /O、预缺氧+ A2 /O四种工艺方式运行, 其工艺设(1)按V IP工艺运行;使用该工艺时仅由A 点进水至厌氧区, 污泥外回流按a 路径回流至缺氧区, 回流比为50% ~200%, 好氧内回流c和缺氧内回流d 同时运行, 回流比为50% ~ 150%。

(2)按A2 /O工艺运行;使用该工艺时仅由A 点进水至厌氧区, 污泥外回流按b 路径回流至厌氧区, 回流比为50% ~200%, 好氧内回流按c路径进入缺氧区, 回流比为50% ~ 150%。

(3)按分点进水倒臵A2 /O工艺运行;使用该工艺时由A、B 点分别进水, A 点进水为60%, B 点为40%, 污泥外回流按b路径回流至缺氧区, 回流比为50% ~ 100% , 好氧内回流按e路径进入缺氧区, 回流比为50% ~ 100%。分点进水倒臵A2 /O工艺是对倒臵A2 /O 工艺的改进, 减少进入缺氧区的进水量, 将大部分优质碳源分配给厌氧除磷。而好氧区产生的NO-3N 由8.9 mg /L下降到1.01mg /L, 出水NH3N 为2.34mg /L。针对这种情况, 将工艺恢复重点调整为二期生物池, 通过提高DO 浓度, 增加泥龄, 加大好氧回流、外回流比, 在2 d内将生物池的NO-3N > 25mg /L的情况仅有2 d。月-6 月进水水质超标严重, 现有脱水机不能满足污泥处理总量要求, 泥水不平衡问题突出, 污水处理厂面临着要么减量处理, 减少收入, 要么出水不达标的风险。在这种条件下, 采取将污泥上清液通过废液提升泵房排入除磷池的措施, TP为127 mg /L 的污泥上清液经过处理后, TP 仅为17mg /L, 基本未对进水TP产生影响, 消除了污泥上清液厌氧释磷对生物除磷的影响。在自动控制系统中, 上位机使用的In touch9.5可在多种操作系统上运行, 在与PLC 的通讯方面提高了稳定性, 同时通过W onderw are的W indowmaker图形编辑程序可快捷方便地生成各类实时报表、趋势图。另外, 通过DO 仪与出水NH3N总量约25%, 降低18% 的供电能耗。

第二篇:污水处理厂运行成本

对于污水厂而言,无论采用何种工艺运行方式,其主要成本为能源消耗、药剂消耗、维修费用、大修改造费用、人员费用等。如何根据具体情况建立成本的有效控制方式,使各种消耗实现最小化,并有利于企业的可持续发展,是城市污水处理这个新兴产业面临的迫切要求。

成本组成及分析(不含折旧)

城市污水厂根据地理位置、源水水质、投资规模等实际情况,采用不同的处理工艺。有传统活性污泥法、氧化沟法、A/O法、A/A/O法、SBR法等工艺。不同的处理工艺决定不同的成本,对于城市大型污水厂而言,多数采用传统活性污泥法。本文仅以工艺采用活性污泥法,出水到达二级排放标准,水、泥、气均正常运行的污水厂为例进行成本分析。

1.污水厂成本组成

①生产成本组成:能源费用:电费、水费;材料费用:煤、油、药剂;人工费用。②制造成本组成:修理费:土建、设备、自控仪表维护检修费;大修及改造费:设施、设备、仪表大修费、固定资产购置费;污泥处置费;物料消耗等其它费用。③管理费用:办公费、培训费、保险等。2.简单分析及控制重点①简单分析:生产成本中油耗、电耗、药剂消耗是生产过程中必须发生的费用,必须在有效控制的前提下,其所占比例越高,企业生产越正常,产生的效益就越大;制造成本在企业可持续发展的基础上,应尽量减少维修、大修和固定资产投入等费用,能使企业的利润最大化;煤费、水费、管理费等是企业运行成本的组成部分,应加以控制、尽量减少,增加企业的利润。

②控制重点:首先,控制重点应放在生产成本中的能源消耗、药剂消费的控制上,如何建立班组、部门有效控制方式,使其在满足工艺运行要求条件下的合理化、最小化,真正达到经济运行是企业的关键;其次,控制重点应放在制造成本中维修、固定资产的购置费用的控制上,如何建立班组、部门有效控制方式,使其必须满足污水厂自身正常运行和长期正常运行要求条件下的减量化、合理化,使污水厂可持续发展也是企业的关键;再次,应加强煤费、水费、管理费等费用支出,使其尽量减少也比较重要。班组成本控制

污水厂消耗的主要成本都集中在一线班组。污水厂班组管理水平的高低可以体现企业的管理水平,班组成本控制的好坏直接影响污水厂吨成本的高低。

1.班组运行参数控制

对于污水处理厂工艺运行参数很多,包括进水量、出泥量、BOD、COD、SS、排泥量、气水比、回流比、污泥浓度、水压、泥温、含水率、投药量、PH值、发电量等一系列指标。在工艺运行参数控制方面,班组人员应达到以下要求:

①了解全厂工艺流程及运行现状;②熟悉掌握管辖范围内的各种构筑物及设施的工艺性能、工艺流程的技术参数及指标,以及工艺的安全性能(通过技能培训);③具备调整管辖范围内的工艺参数的能力(培训);④定期巡视、检查各种构筑物、工艺设施的工艺处理效果并作好记录;⑤掌握通过现场仪表及中控室数据调整实际工艺参数的方法和技巧,并及时进行调整;⑥对于不能解决的工艺问题,应及时向上级部门汇报并作好记录;⑦班组长应定期组织人员分析班组工艺运行情况,解决经常出现的问题,提高工艺参数控制水平。

2.班组能源、药剂费用控制 ①根据污水厂下达的各项工艺参数控制指标及任务量确定本组各种设备的能耗指标、药剂指标,将指标下达到每个人、每台机组,逐渐达到单机运行成本核算;②班组长应定期组织人员分析各种设备的能耗指标及存在的问题,并商讨如何解决和改进;③班组必须建立所管范围内设备、设施详细的技术参数资料和能耗资料,并妥善保管;④班组长应根据厂里要求对职工加强成本意识教育和责任意识教育,并根据实际情况向部门汇报每人的执行情况和应采取的奖惩意见;⑤班组应积极维护、保养计量装置,对计量仪表做到定时巡视、记录,定期保养、维护,定量进行分析,并能向主管部门提出使其更加完善的建议

⑥班组应建立自身培训、交流制度,对一些经常出现的问题进行内部交流,也可请厂内技术人员进行针对性的培训,提高解决问题的能力;⑦班组人员应积极参与所管范围内节能降耗的工作,利用自身一线班组优势,探讨———摸索———实践,总结其运行过程中的低能耗控制点,并向主管部门汇报和建议。

3.班组维护、检修成本控制

①班组必须将所管范围内的设备、设施分解到人、责任到人,建立设备、设施责任制,并建立完善的基础资料管理工作;②班组必须严格执行设备、设施养护制度和养护标准,并接受班组自查和部门检查;③班组人员必须提高自身动手能力、小修、检修能力,对一些经常出现的小修问题应能正确解决,减少维修费用;④班组人员必须建立所管设备、设施的维修保养档案,对厂里安排的大、中修项目实行汇签制,分别由主管部门、班组长、具体负责人对其质量和工作量进行签字确认,分清责任,控制大、中修效果;⑤班组长应定期组织人员分析所管范围内设备、设施的运行情况,使其达到经济运行效果,提高设备设施的维护、保养及检修水平;⑥班组内部应建立自身考核机制,完善设备、设施责任制,对一些责任事故进行分析,并向主管部门提出奖惩意见;⑦班组内部应加强培训和交流,对一些经常出现而无法自行解决的问题提出解决方案,并向主管部门汇报;部门成本控制

部门是执行全厂综合管理的组成部门,也是完成各项任务的执行机构。只有加强基础性工作,完善各项企业制度,加强相互监督的促进机制,才能逐步实现全面、有效的成本核算。

1.生产成本控制

①能源消耗控制:结合污水厂工艺运行参数,计算出合理的运行参数指标;根据污水厂运行实际情况,摸索出实际参数控制指标;可采用组织技术人员研究能耗最低化课题→建立一整套完善的基础性资料→指导班组运行生产,下达生产任务指标和能耗控制指标→发现问题,循环往复,提高能耗控制水平;根据实际情况加大人员培训、指导及检查、监督力度;完善计量工作:包括煤、水、电、油各种消耗量及空气量、污水量、回流量、投泥量、沼气量等工艺参数;确定污水厂能耗大户,进行有针对性的研究,如鼓风机、压缩机、回流泵等。建立主要机组能耗控制方案,确定其运行参数和方式等;创新与科研:寻找其不同运行方式、控制方式的可行性,如有些机组能否间断运行、循环运行,设备控制方式能否通过技改技革达到节能目的等。

②药剂费用控制:污水厂药剂费主要用于污泥脱水,其它班组用量很小。完善计量工作:包括污泥浓度、溶药浓度、泥泵流量、药泵流量、投药比、水量等计量工作;在满足脱水泥饼含水率要求的前提下,尽量减少投药量。在计量准确的基础上,根据污泥浓度下投药量指标,培训、指导班组如何控制好投药的比例,采用下限投药,减少药剂费;随时减少脱水机本机的运行效果,控制好其性能参数如液压力、上下涨力等,使其达到较好的运行状态,也可减少投药量;创新与科研:试验新型药剂,在满足脱水要求下,单价低或用量小,只要总体成本能够降低即可;控制药的质量、价格。

③人员费用控制2.制造成本控制:①建立设备、设施管理工作平台:按设备、设施的类别、类型及特点,建立设备、设施台账、卡片;建立维护、修理、更新改造直至报废的全过程综合管理基础资料;建立综合设备、设施资产档案等,能使污水厂更方便地进行资产统计、价值评估、维修预测、设备设施更新改造等工作;制定设备、设施的点检、完好检查、性能检查、状态监测、维修、保养等工作的标准制定,为生产计划的制定提供依据;建立设备、设施定期检测技术参数指标库,通过对检测记录的处理分析,掌握主要设备、设施的技术参数状态,实现从故障维修向预防性维修的过渡;建立维修项目技术标准(经验)数据库,使维修任务与人员费用、材料费用任务进度;自修或委补综合平衡,实现维修费用可控的、合理的、有技术保证的、费用最低的管理;建立故障维修、定期维修、预防维修、可靠性维修、状态维修相结合的综合维修体系,使企业由被动维修向状态维修过渡;制定设备、设施维修的任务管理体制,实行维修申请单、实施后的工程量清单、维修质量验收单等制度,进行汇签并作为资料存档备案;建立全面的设备、设施管理经济技术分析体系,实现从宏观到局部的数据分析、统计,生成不同部门、不同类别的设备、设施的费用维修成本核算表,为维修成本控制提供经济管理支持。

②维修、检修、小修费用控制:建立维修申请制度:填写各种原因的维修申请工作单,包括故障维修申请单、定期计划维修申请单、技改申请单、待修申请单等;确定维修任务计划:根据运行时间、故障原因、检验检测记录、状态记录等确定是否应该进行维修、维修方式(自修或委外)、维修标准及估算维修工作量;维修实施过程:下达维修任务单,记录维修项目的材料、人力、时间、资金等消耗,并监督维修过程中的质量、进度情况;维修质量验收:根据修前状态、修后状态、维修标准等进行维修的综合评定,并实行整体验收单汇签制度;维修费用审定:根据维修过程中的材料消耗、配件消耗、人力消耗、技术含量等进行预、决算的审定,并实行工作量清单及预、决算的签定制,以利于降低维修费用;维修统计分析:对维修计划与实施的情况进行综合分析,并对维修效果与费用进行综合比较,确定以后维修工作应注意的事项,从而减少维修费用。

③大修及改造费用控制:大修及改造项目的确定:根据设备、设施基础管理工作平台确定大修及改造项目、维修级别及初步的预算等;大修及改造项目方案确定:应对大修及改造费用的可行性、技术含量的完整性、维修质量的可靠性、经济价值的可比性等方面进行综合评价,确定施工方案(性价比);施工单位的确定:根据施工单位的资质类别、信誉度、方案、质量、技术安全要求、工程造价及实际维修能力等综合确定施工单位、生产厂家、总价超过规定值时采用投标确定;施工标准及质量控制:根据实际需要确定施工(维修)质量标准;施工质量验收:在施工过程中,管理人员应对工程的分布、分项进行验收;在施工收尾阶段应对工程进行整体验收并进行试运转试验,对大修及改造工程作到综合验收;施工总造价的控制:根据施工过程中的材料消耗、配件消耗、人力消耗、技术含量等签订施工合同,进行预、决算的审定,并实行工作量清单及预、决算的签定制,以利于降低大修改造费用;施工汇总分析:在工程验收过程中,施工单位应提供与施工相关的技术燃料和改造的设计方案和竣工资料;管理人员根据这些资料作出包括大修改造效果的汇总分析,并分析出资金使用的合理性。

④油料、消耗等其它费用控制:(在成本组成中只占极小比例,略)3.管理及其它费用:(在成本组成中只占极小比例,略

第三篇:污水处理厂运行情况汇报

木木区污水处理厂运行情况报告

一、基本概况

木木水务公司成于2008年1月与木木县人民政府签订关于木木县污水处理厂《特许经营TOT协议》。木木县污水处理厂位于木木县莘庄街道办事处西南村南,占地约40亩,服务面积150平方公里,服务人口10万人,主要职能是处理木木县中心城区南部区域的生活污水和工业废水。

木木县污水处理厂是国家淮河流域水污染防治“十一五”规划重点工程之一。该项目采用A2O工艺,设计日处理污水10万立方米,由城建设计研究院设计,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A排放标准,总投资6500万元。于2008年11月投产运行。处理后污水达到《城镇污水处理厂污染物排放标准》(GB18918-2002)Ⅰ级A标准。

木木县污水处理厂的建设和运行有效改善了下游河水质,对保障国控断面水质稳定达标起到了重要作用,同时该项目的建设进一步提高了木木县南部生态环境质量,优化了企业投资环境,促进了临沂南工重地的可持续发展。

二、各项生产运行管理等工作

(一)基础管理

2008年1月,木木水务公司与木木县人民政府签订《特许经营TOT协议》,取得《市政公用事业经营许可证》。于2008

年3月正式接管该厂运营。

首创接管运营后,深化企业管理内部改革,努力推进企业规范化管理进程。在制度建设方面,规范了各项规章制度,明确了岗位职责,;在人员配置上,严进宽出、人尽其用,杜绝了部分污水处理厂人浮于事的现象;在成本控制上,通过规范的设备操作维护规程、工艺调度方案、成本控制方案、物资采购财务管理制度、月度生产计划管理、生产调度、绩效奖惩等手段,有效控制了成本。

公司定期开展6S学习和培训活动,从整理、整顿、清扫、清洁、素养、安全每一个方面逐条的进行培训、行动、自检、检查。活动以实现6S现场管理活动“巩固成果、强化考核、提高水平”为方针,加强6S现场管理,使现场管理工作持之以恒、常抓不懈,不断的得到优化和深化,从而实现企业管理过程的整体优化。

(二)水质、水量、污泥管理

2015年共实际处理污水3650万吨,日均处理量5万吨,满负荷运转率106%;

2015年消耗指标完成情况:共耗电275.69万度,处理每吨污水平均耗电0.255度;消耗PAM(聚丙烯酰胺)8.5吨;消耗PAC(聚合氯化铝)14.6吨;

2015年共产出含水率80%以下污泥10805吨,全部外运至中环新能源进行焚烧处置。脱水后的泥饼(含水率≤80%)运送到中环新能源进行污泥干化焚烧,污泥处置办法科学、合理,不会

对环境造成二次污染。

水质处理情况:进水COD平均值为373mg/L,进水氨氮平均值为17.29 mg/L,出水COD平均值为39.98mg/L,出水氨氮平均值为3.8 mg/L,消减COD 3719吨,消减氨氮144吨,出水水质达标率达到100%。

我们将以安全生产为基础,以稳定运行、达标排放为宗旨,继续实施“绩效管理年”,以“三标”管理体系为抓手,加强内控制度的完善,通过绩效管理工作的有效开展,促进公司建立健全科学合理、有效制衡的激励与约束制度,实现“政府放心、社会满意”,积极进取,扎实工作,为建设生态CHENGSHI做出应有的贡献。

第四篇:污水处理厂设计

第一章 设计资料

一、自然条件

1、气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。

2、水文:最高潮水位

6.48m(罗零高程,下同)

高潮常水位

5.28m

低潮常水位

2.72m

二、城市污水排放现状

1、污水水量

(1)生活污水按人均生活污水排放量300L/人.d;(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;(4)处理厂处理系数按近期0.80,远期0.90考虑。

2、污水水质

(1)生活污水水质指标为 CODcr

60g/人.d BOD5

30g/人.d(2)工业污染源参照沿海开发区指标,拟定为: CODcr

300mg/L;

BOD5

170mg/L(3)

氨氮根据经验确定为30md/L。

三、污水处理厂建设规模与处理目标

1、建设规模

该污水处理厂服务面积为10.09km2,近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。

2、处理目标

根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为

CODcr≤100mg/L;

BOD5≤30mg/L;

SS≤30mg/L ; NH3-N≤10mg/L

四、建设原则

污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。第二章 污水处理工艺方案选择

一、工艺方案分析

本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。

根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。

普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。

氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。

氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。

1、工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。

2、处理效果稳定,出水水质好。

3、基建投资省,运行费用低。

4、污泥量少,污泥性质稳定。

5、具有一定承受水量、水质冲击负荷的能力。

6、占地面积少。

污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。

由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。

二、工艺流程确定:(如图所示)说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。

曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。

本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。

氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制

为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。

第三章

污水处理工艺设计计算

一、水质水量的确定 1.水量的确定

近期水量:生活废水Q生活=6.0×104×300L/人•天=1.8×104m3/d

工业废水Q工业=1.5×104m3/d

公用建筑废水Q公用=1.8×104×0.15=0.27×104m3/d 所以近期产生的废水量为Q Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d近期的处理系数为0.8,故近期污水处理厂的处理量 Qp=3.57×104×0.8=2.856×104m3/d

远期水量:生活废水Q生活=10.0×104×300L/人•天=3.0×104m3/d

工业废水Q工业=2.4×104m3/d

公用建筑废水Q公用=3.0×104×0.2=0.6×104m3/d 所以远期产生的废水量为Q Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d 远期的处理系数为0.9,故远期污水处理厂的处理量

Qp=6.0×104×0.9=5.4×104m3/d 通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0×104m3/d,远期的设计处理水量Qp=6.0×104m3/d。2.水质的确定近期COD:

COD = =242mg/L近期BOD5: BOD5= =129mg/L 远期COD: COD= =240 mg/L 远期BOD5:

BOD5= =128mg/L NH3-N按规定取为30 mg/L 所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L

二、曝气沉砂池设计计算说明书

沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。

和其它形式的沉砂池相比,曝气沉砂池的特点是:

一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;

二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。

曝气沉砂池的设计参数:

(1)旋流速度应保持0.25—0.3m/s;(2)水平流速为0.08—0.12 m/s;(3)最大流量时停留时间为1—3min;

(4)有效水深为2—3m,宽深比一般采用1~1.5;

(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板;(6)1 污水的曝气量为0.2 空气;

(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;

(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板;(9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板;(10)池内应考虑设置消泡装置。

一、曝气沉砂池的设计与计算 1.最大设计流量Qmax Qmax=Kz×Qp 式中的Kz为变化系数,Kz=1.42

Qmax=1.42×0.347=0.493 m3/s

2.池子的有效容积

V=60Qmaxt 式中 V——沉砂池有效容积,m3;

Qmax——最大设计流量,m3/s;

t——最大设计流量时的流动时间,min,设计时取1~3min。所以

V=60×0.493×1.5=44.37m3 3.水流断面面积

A=

式中 A——水流断面面积,m2

Qmax——最大设计流量,m3/s;

V——水流水平流速,m/s。所以

A=4.11m2 取

A=4.2m2 4.池宽B B=

h——沉砂池的有效水深,m。取h=2m。所以B= =2.1m B/h=1.05,满足要求。5. 池长

L= = m,取L=10.5m 此时L/B=5满足要求 6.流速校核

Vmin= m/s,在0.8~1.2m/s之间,满足要求 7.曝气沉砂池所需空气量的确定

设每立方米污水所需空气量

d=0.2m3空气/m3污水

8.沉砂槽的设计

若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积

式中Qp的单位为m3/h 设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°,沉砂槽高度为

h1= 沉砂槽容积为

9.沉沙池总高

设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为

h2=0.3×0.7=0.21m 设超高 ,沉沙池水面离池底的高

m 10.曝气系统的设计

采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气

(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.0694×2=0.1388m3/s,取干管气速v=12m/s,干管截面积A= = =0.0116m2 d1= = m=120mm,因为没有120mm的管径,所以采用接近的管径100mm。

回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。

(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s,支管面积

A= m2 d2= = mm,取整管径d2=80mm 校核气速v=4.6m/s(满足3—5m/s)(3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)

一个孔的平均出气量 q= =9.81×10-5m3/s 孔数:n= 个

孔间隔

为,在10~15mm之间,符合要求。

穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。

二、细格栅的选型和计算

选用XG1000型细格栅,参数如下

设备宽B:1000mm

有效栅宽B1:850㎜

有效栅隙:5㎜

耙线速度:2 m/min

电机功率:1.1kw

安装角度:60°

渠宽B3:1050㎜

栅前水深h2:1.0m/s

流体流速:0.5~1.0m/s 栅条宽度s=0.01m 1. 栅前后的水头损失 水流断面面积 m2 栅前流速

在0.4~0.9m/s范围内,复合要求 设过栅流速为v=0.6m/s 设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:

。3. 栅槽总长度

栅前的渠道超高设为0.45m,所以渠道高度为1.45m 因为安装高度是取60°,所以格栅所占的渠道长为1.45×ctg =1.45×ctg60°=0.84m 栅后长1米。所以渠道的总长度 L=0.5+0.84+1=2.34m

三、水面标高

根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。曝气沉砂池的水面标高:2.38m 细格栅与曝气沉砂池之间的配水井的水面标高:

2.43m 细格栅栅后水面标高:

2.48m 细格栅栅前水面标高:2.48+0.29=2.77m 配水井外套桶水面标高: 2.82m 配水井内套桶水面标高: 2.88 设配水井超高为0.35m 则整个曝气沉砂池系统的最高标高为3.23m 则曝气沉砂池的超高为h1=3.23-2.38=0.85m

四、配水井的计算

设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。配水井面积为

配水井直径为

因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。

五、砂水分离器和吸砂机的选择

(1)选用直径LSSF型螺旋式砂水分离器

(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为: 潜污泵型号:AV14-4(潜水无堵塞泵)

潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw 行车速度为2-5m/min,提耙装置功率

0.55kw

驱动装置功率: 0.37×2kw

钢轨型号

15kg/mGB11264-89

轨道预埋件断面尺寸(mm)(b1-20)60 10(b1:沉砂池墙体壁厚)轨道预埋件间距

1000mm

四、氧化沟

1、设计说明

拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。

氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制

2、设计计算(1).设计参数:

qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d),设计温度15℃,最高温度25℃,进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L,NH3-N=30mg/L,远期:CODCr=240mg/L,BOD5=128mg/L,NH3-N=30mg/L,出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L(2).确定采用的有关参数:

取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,α=0.90,β=0.94,剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。(3).设计泥龄: 确定硝化速率μN

μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)

=0.22d-1 θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d 为了保证污泥稳定,应选择泥龄为30d(4).设计池体体积:

①确定出水中溶解性BOD5的量:

出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L

出水中溶解性BOD5的量=30-20=10mg/L ②好氧区容积计算:

V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3 水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h

③脱氮计算:

产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d 假设污泥中大约含12.4%的氮,这些氮用于细胞合成,用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L 故脱氮量=30-10-3.55=16.45mg/L。④碱度计算:

剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)大于100mg/L,可以满足pH>7.2 ⑤缺氧区容积计算:

qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3 水力停留时间t2=V2/qv=6295/30000=0.21d=5h ⑥总池容积计算

V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h(5).曝气量计算 ①计算需氧气量

R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px =30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h ②实际需氧量

Ro’=1.2*R=1.2*211=253.2kg/d 校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20

=477.6kg/h

(在400-500之间

符合)6.沟型尺寸设计及曝气设备选型 采用卡式氧化沟(两座并联):

取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d, 则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m, 单沟好氧区总长度=单沟长*4* V1 /V=126m 单沟厌氧区总长度=单沟长*4* V2 /V=76m 采用四沟道,两台55kW的立式表曝气机(单池)曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,7.配水井设计

污水在配水井的停留时间最少不低于3min(不计回流污泥的量),设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m(2*r*r+0.5πr2)*4=30000*3/24/60 r=2.7m 8.其它附属构筑物的设计

工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。

五、辐流式二沉池 1.设计说明 1.1二沉池的类型

二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。1.2选择辐流式(中进周出)二沉池的原因

由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。2.设计计算 2.1污泥回流比:

2.2沉淀部分水面面积:

流量:

最大流量(设计流量):

单个池子的设计流量:

污泥负荷q取1.1m3/(m2.h),池子数n为2。

沉淀部分水面面积:

2.3校核固体负荷:

因为142<150,符合要求。2.4池子直径

池子直径:

根据选型取池子直径为35.0m。2.5沉淀部分的有效水深

沉淀时间t为2.5s

有效水深:

2.6沉淀池总高

2.7校核径深比: 径深比为

符合要求。2.8进水管的设计 单体设计污水流量:

进水管设计流量:

取管径D=700mm,流速为

因为,0.697>0.6符合要求,所以进水管直径为D=700mm。2.9稳流筒

进水井的流速为0.8m/s,则过水面积为

过水面积和泥管面积的总和:

由过水面积和泥管面积的总和求出直径为

筒壁厚为250mm,取管径为900mm。

进行校核:过水面积为

流速为。

筒上有8个小孔,孔面积为S2=,所以。

二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。

取稳流筒出流速度为0.1m/s,则过水面积为

稳流筒下部与池底距离为

所以稳流筒下部与池底距离大于0.2m,即符合要求。2.10配水井

配水井设计为马蹄形,在外围加宽700mm为污泥井。

时间取3分钟

流量为

取配水井直径为D=3000mm

则配水井高度

其中,设计水深为7.0m,超高为0.6m。2.11出水部分单池设计流量:

出水溢流堰设计

(1)堰上水头 H=0.05mH2O(2)每个三角堰的流量0.783L/s(3)三角堰个数

因此取n=223(个)2.12排泥部分

回流污泥量为 剩余污泥量为

因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。取流速为0.8(m/s)

直径为

取直径为D=400mm

校核:流速为

0.6<0.75<0.9 因此符合要求。

综上,二沉池采用的是ZBX型周边传动吸泥机

池径为35000mm.

第五篇:污水处理厂设计

一.

二.施工方法

(一)施工准备、模板安装前基本工作:

(1)放线:首先引测建筑的边柱、墙轴线,并以该轴线为起点,引出各条轴线。模板放线时,根据施工图用墨线弹出模板的中心线和边线,墙模板要弹出模板的边线和外侧控制线,以便于模板安装和校正。

(2)用水准仪把建筑水平标高根据实际标高的要求,直接引测到模板安装位置。(3)模板垫底部位应预先找平,杂物清理干净,以保证模板位置正确,防止模板底部漏浆或砼成形后烂根。

(4)需用的模板及配件对其规格、数量逐项清点检查,未经修复的部件不得使用。(5)事先确定模板的组装设计方案,向施工班组进行技术、质量、安全交底。

(6)经检查合格的模板应按安装程序进行堆放或运输。堆放整齐,底部模板应垫离地面不少 10cm.(7)支承支柱的土壤地面,应事先夯实整平,加铺 50 厚垫板,并做好防水、排水设置。

(8)模板应涂刷脱模剂。结构表面需作处理的工程,严禁在模板上涂刷废机油。胶模剂要经济适用,不粘污钢筋为主。

(9)做好施工机具和辅助材料的准备工作。

(二)模板安装、技术要求:

(1)按配板设计循序拼装,以保证模板系统的整体稳定。

(2)配件必须安装牢固,支持和斜撑的支承面应平整坚实,要有足够的受压面积。(3)预埋件、预留孔洞必须位置准确,安设牢固。

(4)基础模板必须支撑牢固,防止变形,侧模斜撑的底部应加设垫木。

(5)墙、柱模板底面应找平,下端应事先做好基准靠紧垫平,模板应有可靠的支承点,其平直度应进行校正,两侧模板均应利用斜撑调整固定其垂直度。

(6)支柱所设的水平撑与剪刀撑,应按构造与整体稳定性布置。

(7)同一条拼缝上的 U 形卡,不宜向同一方向卡紧。

(8)墙模板的对拉螺栓孔应平直相对,穿插螺栓不得斜拉硬顶。严禁在钢模板上采用电、气焊灼孔。

(9)钢楞宜采用整根杆件,接头应错开设置,搭接长度不应少于 300mm.2、模板安装注意事项

(1)柱模板

保证柱模板长度符合模数,不符合模数的放到节点部位处理。柱模根部要用水泥砂浆堵严,防止跑浆,柱模的浇筑口和清扫在配模时一并考虑留出。若梁、柱模板分两次支设时,在柱子砼达到拆模强度时,最上一段柱模先保留不拆,以便于与梁模板连接。

按照现行 《 砼结构工程施工及验收规范 》(GB50204-94),浇筑砼的自由倾落高度不得超过 2 m的规定。因此在柱模超过 2m 以上时可以采取设门子板车的办法。(2)梁模板

梁口与柱头模板的连接要紧密牢固。

梁模支柱一般情况下采用双支柱时,间距以 60~100 为宜,特殊情况应设计计算。模板支柱纵横向和水平拉杆、剪刀撑等均应按设计要求布置,当设计无规定时,支柱间距一般不宜大于 1 m,纵横方向水平拉杆的上下间距不宜大于 1.5m,纵横方向的剪刀撑间距不大于 6 米,扣件钢管支架要检查扣件是否拧紧。

(3)墙模板

按位置线安装门洞口模板、预埋件或木砖。模板安装按设计要求,边就位边校正,并随即安装各种连接件,支撑件或加设临时支撑。相邻模板边肋用 U 形卡连接的间距不得大于 300 ;对拉螺栓应根据不同的对拉形式采用不同的做法。

墙高超过 2 米以上时,一般应留设门子板。设置方法同柱模板,门子板水平距一般为 2.5 米。

(4)楼板模板

采用 Φ48×3.5 钢管做立柱,从边跨一侧开始逐排安装立柱,并同时安装外楞。立柱和钢楞(大龙骨)间距,根据模板设计计算决定,一般情况下立柱与外楞间距为 600~1200 小龙骨间距 400~600 调平后即可铺设模板。在模板铺设完,标高校正后,立杆之间应加设水平拉杆,其道数要根据立杆高度决定,一般情况下离地面 200~300 处设一道,往上纵横方向每 1。2 左右设一道。

底层地面应夯实,底层和楼层立柱均应垫通长脚手板。采用多层支架时,上下层支

柱应在同一坚向中心线上。

(5)基础模板

为保证基础尺寸,防止两侧模板位移,宜在两侧模板间相隔一段距离加设临时支撑,浇筑砼时拆除。

箱基底板模板应按设计要求留置后浇带,剪力墙壁位置准确,随时找正,及时拧紧对拉螺栓。

(6)楼梯模板

施工前应根据实际层高放样,先安装休息平台梁模板,再安装楼梯模板斜楞,然后铺设梯底模,安装外侧模和步模板。

安装模板蛙要特别注意斜向支柱(斜撑)的固定。防止浇筑砼时模板移动。

后浇带内侧模板安装时,底板处采用以层钢丝网片支模,墙壁、顶板采用 3 厚木板支模。

三、保证安全生产和要求、模板上架设的电线和使用的照明灯具。应采用 36V 的低压电源或其它有效的安全措施。、作业时,各种配件应放在工具箱或工具袋中,严禁放在模板或脚手架上,不得掉落。3、要避开雷雨天施工。、装、拆模板时,必须采用稳固的登高工具,高度超过 3。5 时,必须搭设脚手架。装、拆时下面不得站人。高处作业时操作人员应挂上安全带。装、拆模板应随拆随运转,扣件和钢管严禁堆放在脚手板上和抛掷。、安装墙、柱模板

四、模板设计

本工程墙、柱模板采用组合钢模板组拼,支撑、楞采用 Φ48×3.5 钢管。、墙模板结构设计:取 6 米跨计算(其余跨度参照),扣除柱位置,净跨为 6-0.24=5.76 米。采用 Φ12 对拉螺栓(两头采用钻孔钢片),纵向间距 600mm,竖向间距 300mm。组合钢模拼装详附图所示。

钢材抗拉强度设计值: Q 235 钢为 215N/ mm 2。钢模的允许挠度:面板为 1.5mm,钢楞为 3mm。验算:钢模板、钢楞和对拉 Φ12 钢筋是否满足设计要求。

(1)、荷载设计值砼自重 rc =24KN/mm 3,强度等级 C30,坍落度 12cma、砼侧压力

砼初凝时间: t0 =200/T+15=200/20+15=5.71h

F1=0.22×rc×t0×1×1.15 ×1.81/2 =46.52KN/ 2

F2=rc×H=24×0.8=67.2KN/m 2

取两者中小值 , 即 F1=46.52KN/m 2,实际值 F=F1×1×1.15=53.5KN/m 2

b.倾倒砼时产生的水平荷截采用导管为 2KN/m 2

荷载实际值为 2×1.4×0.85=2.38KN/ m 2

荷载组合实际值 :F=53.5=2.38=55.88K / m 2

(2)、验算 a.钢模板验算采用 P3015 钢模板(δ=2.5)

I=26.97×104mm4 Wxj=5.9×103mm3

计算简图 :(略)化为线均布荷载 :

q1=F×o.33/1000=55.88×0.33/1000=18.44KN/mm

(用于计算承载力)

q2=F×0.3/1000=53.5×0.33/1000=17.66Kn/mm

(用于验算挠度)

挠度验算 : p=0.273×q P4/100E1

=0.273×17.66×6004/100×2.06×26.97×104

=1.13mm<[p]=1.5mm(可)

b.内钢楞验算根 Φ48×3.5 I=12.19×104 mm4 W=5.08×103 mm3

计算简图 :(略)线荷截

q1=F×0.75/1000=55.88×0.6/1000=33.53/mm

(用于计算承载力)

q2=F×0.75/1000=53.5×0.6/1000=32.1/mm

(用于验算挠度)

抗弯强度验算 :

330/800=0.41≈0.4近似按多跨连续梁计算

M=0.078×ql2=0.078×33.53×8002=167.38×104N.mm

抗弯承载能力 :

σ=M/W=167.38×104/5.08×103=329N/mm2

329.5N/mm2>215N/mm2(不可)

方案

一、改用两根 Φ48×3.5 作内钢楞。

则抗弯承载能力: =167.38×104/2×5.08×103=164N/mm2<215n/mm2(可)

方案

二、每根内楞间距改为 600mm.M=0.078×33.53×6002=94.15×104/mm

δ=M/w=94.15×104/5.08×103=185N/mm2<215N/mm2(可)

挠度验算:

p=0.644×ql4/100EI

=0.644×32.1×8004/100×2.06×105×2×12.9×104

=2.49mm<3mm(可)

c.对拉钢筋 Φ12 验算

结拉杆的拉力 Φ12 净面积 A=88.74 mm2

按横竖计算

N=F×0.8×0.6=55.88×0.8×0.6=26.82KN

对拉杆应力 δ= N/A=26820/88.74=302N/ mm2 >215N/ mm2(不可)

改不竖向 0.3m , 纵向 0.6m 则 N=F×0.3×0.6=10.66KN

δ=10060/88.74=113.36N/ mm2 <215N/ mm2(可)、梁模板结构设计采用 Φ48×3.5 钢管支设.取梁断面 b×h=250×400, 长 6000mm 的矩形梁.(1)、底模验算抗弯强度验算

a.荷载:砼自重 24×0.25×0.4×1.2=2.88Kn.m

钢筋荷重 1.05×0.25×0.4×1.2=0.18Kn /m

振捣砼荷重 2× 0.25× 1.2=0.6KN/m

合计 q1=3.66KN/m

折减系数 0.9, 则 q=q1 ×0.9=3.29KN/m

b.抗弯承载力验算底模楞钢间距取 0.7, 为多跨连续梁 ,近似单跨计算。

M=q1=3.29×0.7=0.202×10N.mm

=M/W0.202×10/5.08×10=39.76N/mm2<205N/mm2(可)

c.挠度验算

p=5ql4/384EI=5×3.29×700/384×2.06×105×12.9× 104

=0.39mm<[ p] =I/250=700/250=2.8mm(可)

小楞验算:

a.抗弯强度验算小楞间距 700 mm,小楞上的荷载为集中荷载。

取 p=q1=3.66KN/m

M=1/8p1(2-b/t)=1/8×3660×700×(2-300/700)=0.511×106N.mm

δ =M/W=0.511×106/5.08×103=101N/mm2<205N/mm2(可)

若取间距 900,则 δ=130N/mm2<205N/mm2(可)

b.挠度验算

P=Pl/48EI=3660×103×700/48×2.06×105×12.9×104=0.2mm<1/250=2.8mm3、大楞验算

M=1/10ql2=1/10 ×3.66 ×7002=1.8× 105N.mm(可)

ó=M/W=1.8 ×105/5.08× 103=35.46M/mm2<205N/mm2

Р=3.66×7002/150EI=1.79×106/150×2.06×105×12.9× 104

=0.45mm<1/250=2.8(可)、钢管立柱验算横杆步距 1000mm,立杆允许荷载 11.6Kn

每根立柱荷载 N=19.74/16=1.23KN

立柱稳定验算 : ψ =N/ψA ≤ f

A=489mm2

λ=1/I=130/1.58=82 查(GBJ18-87)附录三 :

轴心受压稳定系数 ψ =0.71(可)

ó=N/ψA=1230/0.7× 489=4.75N/mm2<205N/mm2(可)

若取 @1000 立杆 , 则

N=19.74/12=1.65KN

Ψ =N/ψA=1650/0.71× 489=4.75N/mm2<205N/mm2(可)

取立杆 @900

结论 : 1.剪力墙 250mm 厚时 , 选用方案二,内外纵横杆间距 600。拉杆选用 Φ12,两端与钢模板的 U 型卡卡牢。

下载青岛李村河污水处理厂设计与运行范文word格式文档
下载青岛李村河污水处理厂设计与运行范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    污水处理厂设计

    青 岛 科 技 大 学青岛市某污水处理厂工程初步设计 题 目 __________________________________指导教师______________________ 刘立东 学生姓名_____________________ 0909......

    城镇污水处理厂运行情况报告

    城镇污水处理厂运行情况报告内容 城镇污水处理厂COD减排量核算涉及的主要参数有日污水处理量,污水处理厂运行天数,进、出水COD浓度等。这些参数要通过对现场水量核查、水质核......

    污水处理厂建设及运行情况汇报

    彬县农村环保和生活污水处理厂、垃圾填埋场建设及 运行工作情况汇报 一、农村环境保护工作情况 去年以来,我县认真贯彻落实市人大常委会《关于全市农村环境保护工作情况的......

    污水处理厂运行[小编整理]

    湖北顺富污水处理厂运行建议 湖北顺富污水处理厂近期污水处理系统出现故障,导致出水不达标。根据污水处理厂近10天的运行数据,以及现场运行人员的对运行情况的介绍,现对运行方......

    城市污水处理厂设计与运行的几点经验及建议

    城市污水处理厂设计与运行的几点经验及建议 发布时间:2010-2-4 16:37:49 中国污水处理工程网 摘要:本文讨论了在城市污水处理厂提升泵房、沉砂池、二沉池和污泥消化池的设计......

    污水处理厂的运行与管理复习资料

    常见故障原因分析及对策 (1)格栅流速太高或太低这是由于进入各个渠道的流量分配不均匀引起的,流量大的渠道,对应的过栅流速必然高,反之,流量小的渠道,过栅流速则较低。应经常检查并......

    污水处理厂工艺设计

    3 污水厂设计计算书 3.1污水处理构筑物设计计算 3.1.1中格栅 3.1.1.1设计参数: 3设计流量Q=60000m/d 栅前流速v1=0.6m/s,过栅流速v2=1.0m/s 栅条宽度s=0.01m,格栅间隙e=25mm 栅......

    污水处理厂设计范例

    第一章前言 水是地球上一切生物赖以生存和发展的重要物质。当今人类社会所面临的人口、资源、环境的危机等问题,都和水资源的质量密切相关。水资源在质量在时空上的分布不均,......