第一篇:地基处理——粉体搅拌法
地基处理——粉体搅拌法.txt20如果你努力去发现美好,美好会发现你;如果你努力去尊重他人,你也会获得别人尊重;如果你努力去帮助他人,你也会得到他人的帮助。生命就像一种回音,你送出什么它就送回什么,你播种什么就收获什么,你给予什么就得到什么。地基处理——粉体搅拌法 2008-7-28 9:45:00 来源: 添加人: [我来说两句] [字号:大 中 小]核心提示:地基处理--粉体搅拌法
(一)施工准备
1.材料
(1)粉体搅拌法目前主要使用的固化剂为石灰粉、水泥以及石膏及矿渣等,也可使用粉煤灰作掺和料。
(2)粉体生石灰桩技术要求
1)石灰应该是细磨的,在搅拌过程中,为防止桩体中石灰聚集,石灰最大粒径应小于2mm。
2)石灰应尽量选取纯净无杂质的,石灰中氧化钙和氧化镁含量至少应为8.5%,其中氧化钙含量最好不低于80%。
3)石灰的储存期,不宜超过三个月。
4)石灰的液性指数不低于70%。
(3)石灰桩法(包括块灰灌入法、粉灰搅拌法)常用掺合料是粉煤灰,也可掺入火山灰、钢渣或黏土、采用掺合料后可防止石灰桩软心。
(4)石灰加掺合料比例通常为15%-30%,加大掺合料比例,使桩身强度提高较大,粉体材料为生石灰粉掺入3%,半水石膏适用于地基酸性反应。
(5)掺粉煤灰必然引起减少桩身吸水效果,对不追求石灰吸水胀发作用可增大粉煤灰掺量,最高掺量达80%-90%。
(6)掺入30%细磨石灰粉,提高流塑状轻亚黏土地基的加固效果。
2.作业条件
(1)工作场地表层硬壳很薄时,需先铺填砂、砾石垫层,以便机械在场内顺利移动和施钻,如场内桩位有障碍物,例如木桩、石块等应排除。
(2)机械设备配置:钻机、粉体发送器、空气压缩机、搅拌钻头等。
(3)根据地质资料,通过原位测试及室内试验取得地基土、灰土物理力学及化学指标,选取最佳含灰量,作为设计掺灰量,决定设置搅拌范围,选择桩长、截面及根数。
(二)操作工艺
1.粉体喷射搅拌法是在软土地基中输入粉柱体加固材料,通过和原位地基土强制搅拌混合,使地基土和加固材料发生化学反应,在稳定地基土的同时,提高强度的方法。
(1)施工原理:由压缩空气输送的加固材料通过搅拌叶片旋转产生的空隙部位喷出,并随着搅拌叶片的旋转和原位地基土搅拌均匀混合一起,和加固材料分离后的空气,就沿着搅拌轴,由轴与土的缝隙处排出地面。
(2)固结原理:粉体喷射搅拌法使用的固化剂,主要有石灰、水泥,还有石膏及矿渣,可使用粉煤灰作为掺合料。
通过固结反应而形成稳定的石灰粉体,在软土中加入生石灰,生石灰和土中的水分发生化学反应成熟石灰,水分被吸收,起到了胶结作用,并产生热量,柱体消化而产生体积膨胀1-2倍,促进周围土体的固结。
拌入石灰后软土物理性能起了变化,加灰后软土液性指数随含水量增加呈线性递减,含水量小于50%的土加灰后,液性指数从原来流态进入半固态或固态,在稳定压力下压缩量随石灰粉含量增加而递减,压缩量减小达1/3,提高石灰柱体的强度。拌入石灰后增加软黏土的渗透性,石灰柱在不同类型软土中起到排水作用。
2.粉体搅拌法工艺要求
(1)略
(2)略
(3)室内试验:在现场取回土样与加固料均匀搅拌后制备灰土试件,具体按下面原则选择:
1)当含水量为天然地基土含水量,养护龄期为7天,28天和90天。
2)当含水量高于天然地基土含水量,含灰量可取10-15%。
3)当含水量低于天然地基土含水量,含灰量可取6-10%。
3.粉体喷射搅拌法施工工艺
粉体喷射搅拌法是以机械强制搅拌土粉混合体,使灰土混合形成加固柱体。
4.粉体搅拌加固形成(1)制成独立柱状
(2)连续搭接布置成壁状
(3)连续纵、横网向搭接成块状。
5.分体搅拌桩的排列和间距
(1)根据结构要求的承载力,初步选定间距,从而定出加固范围内搅拌桩的数量以及每平方米内搅拌桩所占的面积。
(2)搅拌桩的排列一般呈等边三角形,也可四方形布置,桩径为0.5-1.5m,桩距约1m。
6.粉体搅拌法施工顺序
(1)桩体对位
(2)下钻
(3)钻进
(4)提升
(5)提升结束
(三)质量标准
1.保证项目
使用材料的各种指标,包括含灰量、灰液性指数和外加剂品种掺量,必须符合设计要求。
检验方法:材料出厂证明、合格证、试验报告及施工日志。
2.基本项目
(1)桩径、深度及灰土质量,必须符合设计要求。
检验方法:一般成桩后开挖桩体,测量桩身直径、桩体连续均匀程度,要求黏结牢固,无孔洞、不松散、无裂隙、桩质坚硬、灰体强度高。在开挖出来的桩体中切取100×100×100MM立方体,在正常养护下进行强度、压缩试验。
(2)经养护后进行载荷试验,试验桩体强度,要符合设计要求。
检验方法:采用十字型钢排架、钢筋砼地锚,用千斤顶加载或用重物加载法。
3.允许偏差
检查数量:桩数5%
项目允许偏差(mm)检验方法
桩位中心位置10拉线及尺量检查
凿出浮浆后桩顶标高
桩(墙)体垂直度1H/100吊线检查
(四)施工注意事项
(1)空压机的压力不需要很高,风量不宜过大。
(2)钻机及桅秆安装在载体上,在地面上进行操作,要满足耐压力要求。
(3)石灰(生)使用前一般用水熟化,是碳化作用产生放惹反应,可用下式表示:
CaO+H2O→Ca(OH)2+65.31K/mol
生石灰加水后放出热量形成蒸汽,同时体积膨胀增大,体积增大是由于比重减少(生比重3:1,熟比重2:1)和质地变为疏松的粉末状所致。
石灰有次特性,在施工现场要设置石灰池,石灰粉要遮盖,一防止飞粉污染,二防止遇雨水产生化学反应,溅伤皮肤及眼睛,施工人员要配戴防护眼镜。
(4)钻头提升距地面30-50CM应停止喷粉,以防溢出地面。
第二篇:浅谈地基施工中如何应用粉体搅拌法
浅谈地基施工中如何应用粉体搅拌法.txt生活,是用来经营的,而不是用来计较的。感情,是用来维系的,而不是用来考验的。爱人,是用来疼爱的,而不是用来伤害的。金钱,是用来享受的,而不是用来衡量的。谎言,是用来击破的,而不是用来装饰的。信任,是用来沉淀的,而不是用来挑战的。浅谈地基施工中如何应用粉体搅拌法
来源:中国论文下载中心 [ 09-07-21 11:34:00 ] 作者:朱大福 编辑:studa20-
摘 要:在软弱土地基上的建筑物往往会出现地基强度和变形不能满足设计要求的问题,因而常常需要采取措施,进行地基处理。作为处理软土地基手段之一的深层粉体搅拌桩,在我国土建工程中,已得到广泛使用。
关键词:粉体搅拌法;地基;施工 粉体搅拌法的特点
1.1 可根据不同加固土的性质和需要达到的桩体要求,选用不同种类不同掺量的固化材料,目前常用的有水泥和石灰等。
1.2 利用固化材料可提高加固土的早期强度,大大缩短工期,由于固结屈服应力很大,故上部承重时,不会产生固结沉降。
1.3 施工机具简单,设备小型便于操作。无振动和噪音对周围土体无挤压作用,可在建筑物、人口密集区邻近施工。
1.4 加工费用低廉,技术效果明显,可用于大范围软基处理。原理
粉体搅拌是以石灰、水泥等粉体固化材料,通过专用的粉体搅拌机械用压缩空气将粉体送到软弱地层中。凭借钻头叶片,在原位进行强制搅拌,形成土和掺和料的混和物。使其产生一系列的物理——化学反映,从而形成柱状加固体,提高土的稳定性能和力学性能一般在掺入15%水泥的情况下,90天龄期的无侧限抗压强度可达20MPa。施工工艺
3.1 施工准备
3.1.1材料
(1)粉体搅拌法目前主要使用的固化剂为石灰粉、水泥以及石膏及矿渣等,也可使用粉煤灰作掺和料。
(2)粉体生石灰桩技术要求。①石灰应该是细磨的,在搅拌过程中,为防止桩体中石灰聚集,石灰最大粒径应小于2mm。②石灰应尽量选取纯净无杂质的,石灰中氧化钙和氧化镁含量至少应为8.5%,其中氧化钙含量最好不低于80%。③石灰的储存期,不宜超过三个月。④石灰的液性指数不低于70%。
(3)石灰桩法(包括块灰灌入法、粉灰搅拌法)常用掺合料是粉煤灰,也可掺入火山灰、钢渣或黏土、采用掺合料后可防止石灰桩软心。
(4)石灰加掺合料比例通常为15%-30%,加大掺合料比例,使桩身强度提高较大,粉体材料为生石灰粉掺入3%,半水石膏适用于地基酸性反应。
(5)掺粉煤灰必然引起减少桩身吸水效果,对不追求石灰吸水胀发作用可增大粉煤灰掺量,最高掺量达80%-90%。
(6)掺入30%细磨石灰粉,提高流塑状轻亚黏土地基的加固效果。
3.1.2作业条件
(1)工作场地表层硬壳很薄时,需先铺填砂、砾石垫层,以便机械在场内顺利移动和施钻,如场内桩位有障碍物,例如木桩、石块等应排除。
(2)机械设备配置:钻机、粉体发送器、空气压缩机、搅拌钻头等。
(3)根据地质资料,通过原位测试及室内试验取得地基土、灰土物理力学及化学指标,选取最佳含灰量,作为设计掺灰量,决定设置搅拌范围,选择桩长、截面及根数。
3.2 操作工艺
3.2.1 粉体喷射搅拌法是在软土地基中输入粉柱体加固材料,通过和原位地基土强制搅拌混合,使地基土和加固材料发生化学反应,在稳定地基土的同时,提高强度的方法。
(1)施工原理:由压缩空气输送的加固材料通过搅拌叶片旋转产生的空隙部位喷出,并随着搅拌叶片的旋转和原位地基土搅拌均匀混合一起,和加固材料分离后的空气,就沿着搅拌轴,由轴与土的缝隙处排出地面。
(2)固结原理:粉体喷射搅拌法使用的固化剂,主要有石灰、水泥,还有石膏及矿渣,可使用粉煤灰作为掺合料。
通过固结反应而形成稳定的石灰粉体,在软土中加入生石灰,生石灰和土中的水分发生化学反应成熟石灰,水分被吸收,起到了胶结作用,并产生热量,柱体消化而产生体积膨胀1-2倍,促进周围土体的固结。
拌入石灰后软土物理性能起了变化,加灰后软土液性指数随含水量增加呈线性递减,含水量小于50%的土加灰后,液性指数从原来流态进入半固态或固态,在稳定压力下压缩量随石灰粉含量增加而递减,压缩量减小达1/3,提高石灰柱体的强度。拌入石灰后增加软黏土的渗透性,石灰柱在不同类型软土中起到排水作用。
3.2.2 粉体搅拌法工艺要求
室内试验:在现场取回土样与加固料均匀搅拌后制备灰土试件,具体按下面原则选择:
①当含水量为天然地基土含水量,养护龄期为7天,28天和90天。②当含水量高于天然地基土含水量,含灰量可取10-15%。③当含水量低于天然地基土含水量,含灰量可取6-10%。
3.2.3 粉体喷射搅拌法施工工艺
粉体喷射搅拌法是以机械强制搅拌土粉混合体,使灰土混合形成加固柱体。
3.2.4 粉体搅拌加固形成(1)制成独立柱状。
(2)连续搭接布置成壁状。
(3)连续纵、横网向搭接成块状。
3.2.5 分体搅拌桩的排列和间距
①根据结构要求的承载力,初步选定间距,从而定出加固范围内搅拌桩的数量以及每平方米内搅拌桩所占的面积。②搅拌桩的排列一般呈等边三角形,也可四方形布置,桩径为0.5-1.5m,桩距约1m。
3.2.6 粉体搅拌法施工顺序
桩体对位——下钻——钻进——提升——提升结束。
3.3 质量标准
3.3.1 保证项目
使用材料的各种指标,包括含灰量、灰液性指数和外加剂品种掺量,必须符合设计要求。
检验方法:材料出厂证明、合格证、试验报告及施工日志。
3.3.2 基本项目
(1)桩径、深度及灰土质量,必须符合设计要求。
检验方法:一般成桩后开挖桩体,测量桩身直径、桩体连续均匀程度,要求黏结牢固,无孔洞、不松散、无裂隙、桩质坚硬、灰体强度高。在开挖出来的桩体中切取100×100×100MM立方体,在正常养护下进行强度、压缩试验。
(2)经养护后进行载荷试验,试验桩体强度,要符合设计要求。
检验方法:采用十字型钢排架、钢筋砼地锚,用千斤顶加载或用重物加载法。
3.4 施工注意事项
(1)空压机的压力不需要很高,风量不宜过大。
(2)钻机及桅秆安装在载体上,在地面上进行操作,要满足耐压力要求。
(3)石灰(生)使用前一般用水熟化,是碳化作用产生放惹反应,可用下式表示:CaO+H2O→Ca(OH)2+65.31K/mol。生石灰加水后放出热量形成蒸汽,同时体积膨胀增大,体积增大是由于比重减少(生比重3:1,熟比重2:1)和质地变为疏松的粉末状所致。
石灰有次特性,在施工现场要设置石灰池,石灰粉要遮盖,一防止飞粉污染,二防止遇雨水产生化学反应,溅伤皮肤及眼睛,施工人员要配戴防护眼镜。
(4)钻头提升距地面30-50CM应停止喷粉,以防溢出地面。
参考文献 [1
]
Nagaraj
T.S
Analgsis
of compressibility.ProASCE.J.GED.1990,116(GT1):105~112.[2]徐永福.粉体搅拌桩下沉原因分析及其对策[J].建筑技术.2000.3 P.171-172.[3]JTJ017-96.公路软土地基 路基设计与施工技术规范[M].北京:人民交通出版社,1997.
第三篇:公路软弱地基深层搅拌处理技术
公路软弱地基深层搅拌处理技术
摘要:深层搅拌法是利用水泥作为固化剂的主挤,通过特制的深层搅拌机械子地基深部就地将软土和固化剂强制拌和,使软土硬结而提高地基强度,在公路软弱地基处理中得到广泛应用。本文主要介绍了深层搅拌法在公路软弱地基处理中的具体施工技术。
关键词:深层搅拌法 公路工程 地基 处理技术
深层搅拌法是利用水泥系作为固化剂通过特殊的深层搅拌机在地基深处就地将软黏土与水泥浆强制拌和后,首先发生水泥分解,水花反应生成水化物,然后水化物胶结与颗粒发生粒子交换,因粒化作用,以及硬凝反应,形成具有一定强度和稳定性水泥加固土,从而提高地基承载力及改变地基土物理力学性能,达到加固软土地基效果。因而深层搅拌法适用于饱和软黏土、淤泥质亚黏土、新吹填土、沼泽地带炭土、沉积粉土等土层的基础加固。由于这种方法特别适用于理软土,处理效果显著,处理后可很快投入使用,因此在公路软弱低级处、处理在中得到广泛应用。本文主要介绍了深层搅拌桩在公路工程软弱地基处理中的具体施工技术。
1处理作业准备条件 1.1材料准备
(1)深层搅拌法加固软黏土,宜选用425﹟以上普()水泥作为固化剂,水泥掺量据加固强度,一般为加固土重的7%~15%,每一立方米掺加水泥量约为110~160kg用公示表示为:掺入比(%)=水泥重/被加固的软土重X100%。
(2)改善水泥土性质和桩(墙)体强度,可选用木质素磺酸钙、石膏、氯化钠、氯化钙、硫酸钠等外加剂,还可掺入不同比例的粉煤灰。
(3)深层搅拌以水泥最为固化剂,其配合比为水泥:砂=1:1~1:2,为增加水泥砂浆和易性能,利于泵送,宜加入减水剂(本质素磺酸钙),掺入量为水泥用量的0.2%~0.25%,并加入硫酸钠,产水量为水泥用量的1%,以及加入石膏,掺入量为水泥用量的2%,水灰比为0.41~0.50,水泥浆稠度为1~14cm,能起到速凝早强作用。1.2 处理作业条件
(1)依据地质勘察资料进行室内配合比实验,结合设计要求,选择最佳水泥加固掺入比,确定搅拌工艺。
(2)依据设计图纸,编制施工方案,做好现场平面布置,安排施工进度,布置水泥浆制备的灰浆池,有条件时将制备系统安装在流动挂车上,便于流动供应,采用泵送浇筑时,泵送距离小于50m为宜。
(3)清理现场地下、地面及空中障碍物,以利施工安全。(4)测量放线,定出每一个桩为。
(5)机械设备配置:深层搅拌机、起重机及导向、量测、固化剂制备等系统。(6)劳动组织:每台深层搅拌机械组由8~12人组成。
(7)如施工现场表土坚硬,需要注水搅拌时,现场四周设排水沟及集水井。2 加固处理工艺流程 2.1 工艺特点
根据上部结构的要求,可布置成柱状、壁状和块状三种加固形式。柱(桩)状加固形式:每间隔一定的距离打设一根搅拌桩。壁状加固形式:将相邻搅拌桩部分重叠搭接而成。块状加固形式:纵横两个方向的相邻桩搭接而成。2.2 工艺流程
深层搅拌法的施工工艺流程为:定位对中→预搅下沉→制备固话挤浆液→喷浆搅拌提升→重复搅拌→移位。对于壁状加固施工工艺的流程:按柱状加固工艺,将相邻两桩纵向相垂搭接成行施工,相邻两桩搭距按设计需要确认。形状如“8”字型;块状加固施工工艺流程:按深层搅拌施工工艺将相邻的桩纵横搭接施工,即组成块状加固体,两行桩之间搭接距可按设计需要确定。施工安全质量主要技术 3.1 施工质量技术要求
(1)深层搅拌桩使用的水泥品种、标号、水泥浆的水灰比,水泥加固土的掺入比和外加剂的品种掺量,必须符合设计要求。深层搅拌桩的深度、断面尺寸、搭接情况整体稳定和墙体、桩身强度必须符合设计要求。
(2)现场载荷试验:用此法进行工程加固效果检验,因为搅拌桩的质量与成桩工艺、施工技术密切相关,用现场载荷试验所得到的承载力完全符合实际情况。
(3)定期进行沉降观测,对正式采用深层搅拌加固地基工程,定期进行沉降观测、侧向为移观测,是直观检查加固效果的理想方法。
(4)深层就搅拌桩的质量允许偏差和检验方法应符合规范的要求。检查数量,按墙(柱)体数量抽查5%。3.2 施工质量注意事项
(1)深层搅拌机应基本保持垂直,要注意平整度和导向架垂直度。(2)深层搅拌叶下沉到一定深度后,即开始按设计配合比拌制水泥浆。水泥浆不能离析,水泥浆要严格按照设计的配合比配置,谁你要过筛,为防止水泥浆离析,可在灰浆机中不断搅动,待压浆前才浆水泥浆倒入料斗中。
(3)要根据加固强度和均匀性搅拌,软土应完全预搅切碎,以利于水泥浆均匀搅拌:压浆阶段不允许发生断浆现象,输浆管不能发生堵塞;严格按设计确定数据,控制喷浆、搅拌和提升速度;控制重复搅拌时的下沉和提升速度,以保证加固范围每一深度内,得到允许搅拌。
(4)在成桩过程中,凡是由于电压过低或其他原因造成停机,使成桩工艺中断的,为防止断桩,在搅拌机重新启动后,将深层搅拌叶下沉半米后再继续成桩。相邻两桩施工间隔时间不得超过24小时(壁状)。
(5)考虑到拌桩与上部结构的基础或承台接触部分受力较大,因此通常还可以对桩顶板-1.5m范围内再增加一次输浆,以提高其强度。
(6)在搅拌桩施工中,根据摩擦型搅拌受力特点,可采用变掺量的施工工艺,即用不同的提升速度和注浆速度来满足水泥浆的掺入比要求。在定量泵条件下,在软土中掺入不同水泥浆量,只有改变提升速度,通过提升速度检测仪检测。3.3 施工安全技术要求
(1)深层搅拌机冷却循环水在整个施工过程中不能中断,应经常检查进水和回水温度,回水温度不应过高。
(2)深层搅拌机的入土切削和提升搅拌,负载荷太大及电机工作电流超过额定值时,应减慢提升速度或补给清水,一旦发生卡钻或停钻现象,应切断电源,将搅拌机强制提起之后,才能重启动电机。深层搅拌机电网电压低于380V应暂停施工,以保护电机。
(3)灰浆泵及输浆管路:泵送水泥浆前管路应保持湿润,以利输浆;水泥浆内不得有硬结块,以免吸入泵内损坏缸体,每日完工后,需彻底清洗一次,喷浆搅拌施工过程中,如果发生故障停机超过半小时宜见拆卸管路,排除灰浆,妥为清洗;灰浆泵应定期拆开清洗,注意保持齿轮减速器内润滑油清洁。
(4)深层搅拌机械及重启设备,再地面土质松软环境下施工时,场地要铺填石块、碎石,平整压实,根据土层情况,铺垫枕木、钢板或特制路轨箱。4 结语
总之,深层搅拌法用于加固处理软弱公路路基具有施工方便,成本低,是一种较好的地基处理方法,具有广阔的发展前景。只要我们严格按照其施工工艺流程,紧抓施工环节,严格控制施工安全质量技术要求,精心组织施工,定能确保工程质量,并取得较好的社会经济效益。
第四篇:浅谈用深层搅拌法对房屋地基沉降的处理论文[最终版]
论文关键词:地基沉降;深层搅拌法
论文摘要:深层搅拌法具有造价低、施工简单和效益好的优点,在条件适宜时应优先采用。本文介绍了深层搅拌法加固地基的原理,并结合实际工程介绍了该方法的施工工艺和加固效果。
深层搅拌法是加固饱和软粘土地基的一种方法,它是利用水泥、石灰等材料作为固化剂的主剂,通过特制的深层搅拌机械,在地基深处就地将软土和固化剂强制搅拌,利用固化剂和软土之间所产生的一系列物理化学反应使软土硬结成具有整体性、水稳性和一定强度的优质地基。深层搅拌法处理地基可增加地基承载力、减小沉降差、提高边坡稳定性及挡水等。
深层搅拌法处理后的地基承载力提高1~1.5倍。深层搅拌法是相对于浅层搅拌而言,浅层搅拌法主要用于路基,冻涨土和边坡稳定的处理。深层搅拌分水泥系深层搅拌和石灰系深层搅拌。下面介绍的是水泥系深层搅拌法及其工程应用实例。
国外自二次大战以来开始研制用于深层搅拌桩的深层搅拌机械,到70年代,已广泛应用深层搅拌法处理地基,我国从70年代末开始进行深层搅拌的室内试验和搅拌机械的研制工作,1979年在塘沽新港进行机械考核和搅拌工艺试验,并获得成功。80年代初推广使用深层搅拌法,至今在上海、南京、连云港、唐山、昆明及内陆部分地区得到了广泛应用。我们在嘉兴某写字楼(筏基)工程的地基处理中采用了深层搅拌法,取得了良好的技术经济效果。
一、水泥加固土的原理
软土与水泥采用机械搅拌加固的原理是基于水泥土的物理化学反应过程,它与混凝土的硬化机理有所不同。在水泥加固土中,由于水泥的掺量很小(占被加固土重的7%—15%),水泥的水解和水化反应完全是在具有一定活性介质——土的围绕下进行,硬化速度缓慢且作用较复杂,所以水泥加固土的强度增长过程也比较缓慢。
(一)水泥的水解和水化作用
硅酸盐水泥的主要成分是由氧化钙、二氧化硅、三氧化二铝、三氧化二铁及三氧化硫组成,而这些氧化物又分别组成了不同的水泥矿物:硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硫酸钙等。用水泥加固软土时,水泥颗粒表面的矿物很快与软土中的水发生水解和水化反应,生成氢氧化钙、含水硫酸钙、含水铝酸钙和含水铁酸钙等化合物。其中,硅酸三钙在水泥中含量最高(50%左右),是决定强度的主要因素;硅酸二钙含量较高(25%),主要产生后期强度;铝酸三钙占水泥重量10%,水化速度快,能促进早凝;铁铝酸四钙占水泥重量10%,能提高早期强度;硫酸钙占水泥重量3%,能和铝酸三钙一起与水发生反应,生成一种水泥样菌,对高含水量的软土强度增加有特殊意义。
(二)粘土颗粒与水泥水物的作用
1、离子交换和团化作用。通过离子交换,较小的土颗粒结合可形成较大的土团粒;土团粒的进一步结合形成水泥土的团粒结构,并封闭各土团之间的空隙,形成坚固的联结,也就使水泥土的强度得到大大提高。
2、凝硬反应。随着水泥水化反应的深入,逐渐生成不溶于水的稳定的结晶化合物。这些化合物在水中、空气中逐渐硬化,增加了水泥土的强度,而且其结构也比较密实,水分不容易侵入,从而使水泥土具有足够的水稳性。
(三)碳酸化作用
水泥水化物中的氢氧化钙,吸收水中和空气中的二氧化碳发生碳酸化反应生成不溶于水的碳酸钙。这种反应能提高水泥土的强度,但速度较慢,幅度较小。
二、工程实例
(一)工程概况
嘉兴市某写字楼建筑面积近一万平方米,层数九层,结构型式为框架结构,柱网尺寸为6.3m×7.2m(纵向)、6.3m×3.6m(纵向)、2.4m×7.2m(纵向)、2.4m×3.6m(纵向),所处场地为浏阳河冲积平原、地表土层为1.9m~2.0m厚的人工填土,以下为第四纪沉积层,地层从上到下分别为:第①层粉土,湿至很湿,疏松到稍密,承载力标准值fk=115KPa,压缩模量平均值Es=11(MPa)、层厚3.9~4.0m;第②层粘土夹粉土,饱和,软塑至可塑状,承载力标准值fk=110KPa,压缩模量平均值Es=7.0(MPa)、层厚2.3~3.7m;第③层粉土,很湿,中密,承载力标准值fk=120(MPa),压缩模量平均值Es=15.42(MPa),层厚1.0~1.3m;第④层粘土饱和,可塑至硬塑状,承载力标准值fk=120KPa,压缩模量平均值Es=6.5(MPa),层厚3.5~3.8m;第5层粘土,饱和,硬塑状,承载力标准值fk=140KPa,平均压缩模量Es=7.5(MPa),本层揭示最大厚度4.2m。场地地下水属孔隙潜水类型,地下隐定水位14.5m,但由于粘性土的隔水作用。上部土体已达饱和状态。经检测,地下水无侵蚀性。
(二)加固方案的比较
1、灌注桩。因场地土呈软塑流塑状态,成孔很困难,需要有较高施工技术水平来保证施工质量,且造价高、工期长。
2、碎石桩。工期短,施工简单,造价低;因受场地条件的限制而不能采用。
3、预制桩。能较好地满足所需要的承载力,但工期长,施工噪音大影响周围居民的正常生活;其造价经测算约54万元。
4、深层搅拌桩。施工速度快,工期短,施工方便,能较好地保证施工质量,造价约23万元,仅是预制桩的42.6%。
经方案比较,决定选用深层搅拌桩处理地基。地基处理后的承载力标准值F=250KP。
(三)深层搅拌桩的施工
1、室内试验
软土地基深层搅拌加固法是基于水泥对软土的加固作用,而目前这项技术无论设计计算方法,还是施工工艺都不太成熟,因此,应特别重视水泥土的室内外试验。试验步骤:1)为保证试验准确性,将现场挖掘的天然软土立即封装在双层厚塑料袋内,基本保持天然含水量;2)根据施工要求的试验程序、配方,分别称量土、水泥、外掺剂和水,放在容器内搅拌均匀,按要求进行振动,制成试块后,盖上塑料布,防止水份蒸发过快,并按要求进行养护。本工程经过室内试验得出如下结论,水泥土的容重比原状土仅增加2.7%,因此,其加固部分对于下部未加固部分不会产生过大的附加荷重,水泥土的无侧限抗压强度为2.12MP,大于设计要求的F=2.0MP的要求,满足设计要求。
2、施工要求
目前,对深层搅拌法加固质量的检验缺少简便可靠的办法,因此,我们要求施工单位严格按照建筑地基处理技术规范《JG79—91》有关要求进行施工,并提出以下要求:(1)每根桩均应确保均匀和足额的喷灰量,送灰时要密切注意电子称计量变化,如发现喷灰量不足,应及时采取复喷或补喷等措施,每根桩应保证送灰连续、均匀、不得间断;(2)考虑到与基础接触部分的搅拌桩顶部受力较大,因此,要求对桩顶1.5m范围内复搅、复喷。因设计时考虑桩端承载力,因此,应确保桩端质量,除应复搅、复喷外,钻头至桩底时,应原位旋转1~2分钟,以便叶片对土的压实及水泥的充分拌和,并以慢档提升0.5~1.0m。
三、结语
写字楼投入使用一年多,经观测基础沉降基本稳定,总沉降量为5.9cm,完全满足使用要求,从施工情况看,在含水量较高的软土地区,深层搅拌法处理地基比较适合,且施工简单,经济合理,效益好。
参考文献
[1]陆培毅土力学北京:中国建材出版社2000
[2]何金辉张立新陈孝培软土地基测试指标的实际应用北京:地质出版社1997
第五篇:地基处理
1、试验检测在软土地基处理效果评定中的基本原则及常用方法
基本原则:
对地基处理效果的检验,应在地基处理施工结束后,经过一定时间休止恢复再进行。
为了检测地基处理的效果,通常在同一地点分别在处理前后进行测试,以进行比较,要注意:
(1)前后两次测试应尽量使用同一台仪器,统一标准进行。
(2)由于各种测试方法都有一定的适用范围,因此必须根据测试目的和现场条件选择最有效的方法。
(3)无论何种方法,都有一定的局限性,故尽可能多采用多种方法进行综合评价。(4)测试位置应尽量选择有代表性的部位,测试数量按有关规定的要求进行。
方法:
地基与桩体强度:包括单桩和复合桩地基静荷试验、标准贯入试验、静力触探与动力触探试验、桩身高应变检测、钻芯法等。地基变形:包括地基沉降与水平位移测试。应力监测:包括土压力和孔隙水压力测试。
桩身完整性:采用桩身低应变检测和声波透射法测试。动力特性;采用波速测试、地基刚度测试。
2、软土地基的主要特性
软土地基是指压缩层主要由淤泥、淤泥质土或其他高压缩性土构成的地基。其承载能力很低,一般不超过50KN/m2。在软土地基修筑堤防工程,必须解决好四个方面的问题:①地基的强度和稳定性问题。②地基的变形问题。③地基的渗漏和溶蚀问题。④地基的振动液化与振沉问题。因此,研究堤防工程软土地基的特征,提出相应的处理措施就十分重要了。
软弱土包括淤泥、淤泥质土、杂填土及饱和松散粉细砂与粉土。堤防工程中主要是指天然孔隙比大于或等于1。5的亚粘土、粘土组成的淤泥和天然孔隙比大于1。0小于1。5的粘土组成的淤泥质粘土。其主要特征如下:
1、孔隙比和天然含水量大我国软土的天然孔隙比e一般在1~2之间,淤泥和淤泥质土的天然含水量W=50~70%,高的可达200%,普遍大于液限。
2、压缩性高我国淤泥和淤泥质土的压缩系数一般a1~2都大于0。5MPa-1,建造在这种软土上的建筑物将发生较大的沉降,尤其是沉降的不均匀性,会造成建筑物的开裂和损坏。
3、透水性弱软弱土尽管其含水量大,透水性却很小,渗透系数K≤1(mm/d)。因此,土体受到荷载作用后,呈现很高的孔隙水压,影响地基的压密固结。
4、抗剪强度低 软土通常呈软塑~流塑状态,在外部荷载作用下,抗剪性能极差,我国软土无侧限抗剪强度一般小于30KN/m2(相当于0。3KN/m2)。不排水剪时,其内摩擦角几乎为零,抗剪强度仅取决于凝聚力C,一般C<30KN/m2;固结快剪时,内摩擦角=5°~15°。
5、灵敏度高 软粘土上尤其是海相沉积的软粘土,在结构未被破坏时具有一定的抗剪强度,但一经扰动,抗剪强度将显著降低。其灵敏度(含水量不变时原状土与重塑土无侧限抗压强度之比)一般在3~4之间,有的甚至更高。
3、强夯法的原理及适用性
强夯法加固地基的机理,虽然国内外学者从不同的角度进行了大量的研究,但至今尚未形成成熟和完善的理论。对强夯法加固地基的机理认识,首先应分宏观机理和微观机理。宏观机理从加固区土所受冲击力、应力波的传播、土的强度对土加密的影响做出解释。微观机理则对冲击力作用下,土微观结构的变化,如土颗粒的重新排列、连接做出解释。宏观机理是外部表现,微观机理是内部依据。其次应对饱和土和非饱和土加以区别,饱和土存在孔隙水排出土才能压实固结这一问题。还应区分粘性土和无粘性土,它们的渗透性不同,粘性土存在固化内聚力,砂土则不然。另外对一些特殊土,如湿陷性黄土、填土、淤泥等,由于它们具有各自的特殊性能,其加固机理也存在特殊性。强夯机理研究中还有一个必须研究的内容就是夯击能量的传递,即确定夯击能量中真正用于加固地基的那部分能量和该部分能量加固地基的原理。
Leon认为,强夯加固作用应与土层在被处理过程中的三种不同机理有关。其一是加密作用,以空气和气体的排出为特征;其二是固结作用,以孔隙水的排出为特征;其三是预加变形作用,以各种颗粒成分在结构上的重新排列以及颗粒结构和形态的改变为特征。由于加固地基土的复杂性,他认为不可能建立对各类地基具有普遍意义的理论。
目前普遍一致的看法认为,经强夯后,土强度提高过程可分为四个阶段:①夯击能量转化,同时伴随强制压缩或振密(包括气体的排出、孔隙水压力上升);②土体液化或土体结构破坏(表现为土体强度降低或抗剪强度丧失);③排水固结压密(表现为渗透性能改变、土体裂隙发展、土体强度提高);④触变恢复并伴随固结压密(包括部分自由水又变成薄膜水,土的强度继续提高)。其中第①阶段是瞬时发生的,第④阶段是强夯终止后很长时间才能达到的(可长达几个月以上),中间两个阶段则介于上述两者之间。
强夯法适用性:
实践证明,强夯法适用于处理碎石土、砂土、低饱和度的粉土与粘性土、湿陷性黄土、杂填土和素填土等地基。对高饱和度的粉土与粘性土等地基,当采用在夯坑内回填块石、碎石或其他粗颗粒材料进行强夯置换时,应通过现场试验确定其适用性。
4、固结度的计算方法及在软基加固施工中的作用
固结度计算
在进行地基的固结度计算时,将砂石桩的排水近似看成砂井
地基的排水来进行计算,它建立在三维比奥渗透固结理论的基础上。砂井地基既有竖向排水固结,又有径向排水固结,如图1 所示,整个渗流是一个轴对称的三维渗流。
首先介绍瞬时加荷条件下的固结度理论。
竖向排水固结度
式中: Uv ———竖向排水平均固结度,m ———正奇数
Tv ———竖向固结时间因数(无因次)
cv ———竖向固结系数,t ———固结时间,s;
H ———土层的竖向排水距离,cm ,双面排水时H 为土层厚
度的一半,单面排水时H 为土层厚度。
径向排水固结度
总平均固结度
以上是瞬时加荷条件下的固结度理论,在实际工程中,荷载总是分级逐渐施加的,因此,由上述理论方法求得的固结时间关系必须加以修正,修正的方法有改进的高木俊介法和改进的太沙 基法。
改进的高木俊介法
该法是根据巴伦理论,考虑变速加荷使砂井地基在辐射向和垂直向排水条件下推导出砂井地基的总平均固结度,其特点是不需要求得瞬时加荷条件下的地基固结度,而是可以直接求得修正后的平均固结度,其固结度的计算式为:
改进的太沙基法
该法得到的固结度仅是对本级荷载而言的,总固结度等于各级荷载增量作用下固结度的叠加,对总荷载还要按荷载的比例进行修正。修正后的太沙基法总平均固结度为:
其中,竖向和径向固结系数的选取很关键。不同的土层因为土的物理力学参数不同,因此竖向和径向固结系数也有差异,计算的固结度也将不同
分别计算各个土层的固结系数并求出固结度,进行对比分析,可以看出不同土层的固结情况。而且,在堆载作用下各个土层的抗剪强度增长量和沉降量也会不同,在由上述方法计算的固结度基础上可以求得各个土层的抗剪强度增长量和沉降量。另外,在不同的堆载等级作用下,软土地基的受力状态必将发生改变,进而影响土的物理力学参数,因此,在不同等级的堆载作用下,土的固结系数是不同的。在每级加荷结束后,都要重新测量土工参数,以求得固结系数,再计算在该级堆载作用下的固结度或固结度增量。根据改进的高木俊介法和太沙基法计算的地基固结度可以看出: 1)高木俊介法计算的结果稍微偏大,但随着堆载等级的增加,两种方法的计算结果渐趋一致。其原因主要是太沙基法是假定每一级荷载增量Pi 所引起的固结过程是单独进行的,与上一级荷载增量所引起的固结度无关,总固结度是在各级荷载增量作用下固结度的叠加,而高木俊介法不需要求得瞬时加荷条件下的地基固结度,这些假设条件和计算方法的不同导致两种计算结果的差异。
2)地基土在第一级堆载下的排水固结效果最显著,土的平均固结度均大于60 % ,在达到最大的堆载等级时,两种方法计算的固结度都接近了100 % ,表明堆载预压排水固结法能够较好地消散孔隙水压力,加速地基土的固结,从而使土的有效应力增大,使土体强度得到逐步增长。用砂石桩结合堆载预压法处理软土地基达到了预期的效果。
作用:
1、计算平均附加应力,计算残余变形
2、计算达到允许残余变形所需要的时间
3、估算强度增长
4、减少排水距离
5、分析比较复合地基、柔性桩、散体桩、刚性桩的变形特征
复合地基一般按强度可分为散体材料桩复合地基、柔性桩复合地基(半刚性桩复合地基)、及刚性桩复合地基。散体材料桩复合地基和柔性桩复合地基容易区别,因为前者需要土的围裹才能称得上“桩”,后者则可以独立成型。柔性桩复合地基和刚性桩复合地基也应该是强度上的区别,但又为量化的区分点,因强度和诸多因素有关,也不可能有,只是一般把CFG桩复合地基,低强度混凝土桩复合地基等视为刚性桩复合地基,其它一般可视为柔性桩复合地基。
柔性桩是指无须桩周土的围箍即能自立,桩身刚度和强度较小、压缩量较大,单桩沉降以桩身压缩为主、受桩端持力层性状影响不大的复合地基竖向增强体。一般常把水泥搅拌桩、旋喷桩等一类低强度成形桩称为柔性桩。
如果按桩身抗压强度来进行划分,一般强度低于2MPa的称为柔性桩。因为柔性桩桩身强度很低,在荷载作用下,很容易产生侧向变形,且土所能提供的约束作用较小,这也是柔性桩复合地基变形和沉降的主要原因。
与散体材料桩依靠桩周土提供的被动土压力维持桩体平衡、承受上部荷载的作用不同,柔性桩同刚性桩一样是依靠桩周摩阻力和桩端端阻力把作用在桩体上的荷载传递给地基土的,因而柔性桩复合地基中土的垂直应力的扩散范围较散体材料桩复合地基大、深度深,加固效果也明显。
碎石桩是地基处理中应用最广泛的桩型之一,碎石桩是以碎石为主要材料制成的复合地基加固桩。碎石桩和砂桩等在国外统称为散体桩或租颗粒土桩。所谓散体桩是指无粘结强度的桩,由碎石柱或砂桩等散体桩和桩间土组成的复合地基亦可称为散体桩复合地基。目前在国内外广泛应用的碎石桩、砂桩、渣土桩等复合地基都是散体桩复合地基。
6、分析比较复合地基的承载力传力区别
由于桩体刚度大小的差异,柔性桩与刚性桩在荷载传递的规律上也不尽相同。在均质地基中,柔性桩在荷载作用下,桩体的压缩应变由上而下逐渐减小,桩与四周土体之间的相对位移也由上而下逐渐减小,桩侧摩阻力也是自上而下逐渐减小,桩侧摩阻力的发挥远早于桩端端阻力的发挥。柔性桩桩身变形和桩侧摩阻力均主要发生在临界桩长范围内。而在均质土中的理想刚性桩,在荷载作用下桩周各处摩阻力和桩端端阻力的发挥是同步的;桩侧摩阻力桩体深度方向的分布也是均匀的,并且随着作用荷载的增加同时达到极限摩阻力。然而,由于理想的刚性桩实际上并不存在,在荷载作用下的桩体,总会产生一定的压缩变形,桩侧摩阻力总是先于桩端端阻力,即使是对于模量很大的钢筋混凝土桩,在长细比足够大的情况下,同样可能呈现出柔性桩的性状。因此,柔性桩是相对于刚性桩而言的。
刚性桩强度与刚度都很高,在置换率与柔性桩同样的情况下,桩承担大部分基础荷载,土所分担的荷载很小。刚性桩顶的轴向荷载大,在桩径与长度与柔性桩相同时,传至底部的轴向力方面刚性桩就比柔性桩大
由于柔性桩复合地基中桩间土分担的荷载份额较多,桩土应力比小,地基中的主要受力区与天然地基相似,位于基础底面处的沿线处,且超出基础宽度较多。刚性桩则相反,因主要荷载由桩承担,沿桩身下传,桩间土所受的应力是越往下越大,到了桩底时最大。桩底以下的土是主要的受力区,因为桩底轴力也全部传到土上,桩底以下的土中应力分布状态与天然地基相近,但深度却在桩长以下,刚性桩将土的主要受力区推到桩长以下去了。
半刚性桩介于柔性桩与刚性桩之间,土的主要受力区可能在加固深度的中间,或者接近于基底或者近桩底,视桩长与土应力比的不同而变化。
7、分析比较格栅、土钉、锚索、锚杆的加固机理
锚杆:将拉力传至稳定岩土层的构件。当采用钢绞线或高强钢丝束作杆体材料时,也可称为锚索。
土钉:是一种基于新奥隧道法原理,在天然边坡或开挖形成的边坡、基坑原位岩土体中近于水平设置加筋杆件并沿坡面设置混凝土面层,使整体土工系统的力学性能得以改善从而提高边坡、基坑稳定性的原位加筋技术。土工格栅加固土工的机理
土工格栅对土的加固机理存在于格栅与土的相互作用中,一般认为,这种相互作用可归纳为以下三种情况: 1)格栅表面与土的摩擦作用; 2)格栅孔眼对土的“锁定”作用; 3)土对格栅肋条的被动阻抗作用。
上述三种作用均能充分约束土颗粒的侧向位移,从而,大大地增加了土体的自立稳定性,至于这三种作用在土体中各自发挥的程度将随格栅种类,开孔大小,土颗粒级配等因素而定。
土钉墙加固与传统的护坡和挡土墙支撑机理不一样,土钉墙在边坡的一定范围内形成了一个加固区,由于很密的土钉锚杆的作用,滑移面不可能出现在加固区,只能产生于非加固区,从而使滑移面远离边坡,达到稳定边坡的目的,加固区的整体稳定,包括加固区抗倾覆与抗滑移问题,用增加加固区的宽度和底排土锚杆打成向下倾斜穿过滑移面等措施来解决,土钉墙通过下述几个方面的综合作用使边坡周边土体形成加固区。
1.锚固作用
密布的锚杆与砂浆柱体相结合对周围土体产生有效的锚固作用,限制了砂浆柱体周围的土体变形。①土钉不需要施加预应力,而是在土体发生变形后使其承受拉力工作;②土钉支护在边坡中比较密集,起到了加筋的作用,提高了土的强度,为被动受力机制。由于土钉在全长范围内与土体接触,其荷载传递沿整个土体进行。
2.土钉浆孔对土体的挤密作用
由于土钉锚杆的密度比较大,挤密作用的影响也较大,使加固区的土体比非加固区土体密度大。密集的土钉与土钉之间土形成复合土体,其结构类似重力式挡土墙,个别土钉的破坏不会使整个结构的功能完全丧失。
3.护坡作用
土钉墙的面层不是主要受力结构,其主要作用在于保持土体的局部稳定性。在公路边坡治理中,土钉墙的面层还起到防止冲刷、防止雨水渗入坡体影响边坡稳定性的重要作用。
4.土钉受力及规模
一般锚杆长度在15~45m之间,直径较大,锚杆所承受的荷载可达400kN以上,某些预应力锚索设计荷载更可达3000kN。其端部的构造较土钉复杂,以防止面层冲切破坏;而土钉长度一般为3~10m,浆体直径100mm左右,一般不提供很大的承载力。单根土钉受荷一般在100kN以下,面层结构较简单,利用小尺寸垫板及挂网喷射混凝土即可满足要求。
在国内,一般情况下,锚索是需要施加预应力的,因此它是主动受力,多应用于已出现变形或对变形要求严格的工程部位;锚杆则一般不施加预应力(有时也会施加很小的预应力),因此它是被动受力,只有当被锚固岩土体发生一定变形时它才发挥锚固力。此外,锚索长度一般在20-50米,锚杆则不到20米。在国际上,锚索只是锚杆的一种类型。
预应力锚索框架梁支护结构采用对预应力锚索施加的预应力将滑动岩土体与稳定岩体紧密连结为一体,增加岩土体各层面的抗滑力,同时又通过坡面上框架梁将各个锚索有效地连成一个整体,形成一个由表及里的加固体系,进而达到防止整体边坡失稳的目的,是一种新型的抗滑结构。
喷锚支护体系是由密集的锚杆群、被加固的原位岩土体、喷射混凝土面层和必要的防水系统组成的。锚杆依靠于土体之间的界面粘结力或摩擦力,使锚杆沿全长与周围土体紧密连接成为一个整体,形成一个类似于重力式挡土墙的结构,抵抗墙后传来的土压力和其他载荷,达到加固边坡的目的 1.喷锚支护体系作用机理
喷锚支护体系是靠锚杆、土体、钢筋网和混凝土面层共同工作来提高边坡岩土的结构强度和抗变形刚度,减少岩土体侧向变形,增强边坡的整体稳定性的一种支护体系。
锚杆的主要作用是约束和加固土体,它不仅能够弥补土体抗拉、抗剪的不足,而且锚杆在注浆施工过程中,水泥浆能够渗入到岩土体内部的裂隙中,通过水泥浆对岩土体的补强作用,提高岩土体自身的结构强度。
挂钢筋网喷射混凝土面层能够将单个锚杆连接成一体,形成锚杆群,使锚杆与土体紧密的连接成为一个整体。同时,喷射混凝土能封闭坡面,避免坡面受到水流的冲刷。
喷锚支护能改善岩土体的性质,加强岩土体的内在强度和整体性,提高其自身的自承自稳能力,充分发挥岩土体的潜能。
锚索穿过滑动面 靠稳定岩体来提供的拉力来加固非稳定岩体
土钉更多的是起到土钉挡土墙的作用 锚杆的作用介于两者之间
8、如何理解岩土工程中变形控制是一门艺术
在岩土工程中,很重要的是控制变形,控制变形的目的是为了保证建筑结构的安全,满足人们生产生活的正常需求。岩土工程作为上部结构的基础,不能产生超过设计许可变形。变形控制的精髓是让变形在可控的的范围内较大程度发挥岩土体自身的强度,在满足安全性的情况下,节约成本,节约资源。
变形控制要建立在符合相应的工程特点上的,变形控制要因地制宜,具体情况具体分析。例如复合地基要使桩体上有一定厚度的垫层,发挥上部地基的承载力。新奥法施工也是边检测边施工,发挥围岩自身的承载潜力。另外还应注意的是,在现行的地基设计中,地基与上部结构设计是分开的,但是应在地基设计时考虑上部结构形式,选用合适的地基,如果上部结构为超静定,则下部基础不应产生较大形变,以免上部结构产生大的应力。
9、浅谈含水量对地基力学特性的影响