焊接中产生气孔的主要原因

时间:2019-05-14 23:04:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《焊接中产生气孔的主要原因》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《焊接中产生气孔的主要原因》。

第一篇:焊接中产生气孔的主要原因

压力容器焊接中产生气孔的主要原因分析

1、产生气孔的主要原因:

1)锈、油污及焊条药皮、焊剂中的水分在高温下分解为气体,增加了高温金属中气体的含量;

2)母材钢材中含硫量过多;

3)焊接速度过快,焊接线能量过小,电弧过长,熔池冷却速度大,不利于气体逸出;

4)空气中潮气太大、有风; 5)电弧发生偏吹。

2、产生夹渣的主要原因。产生夹渣的主要原因有以下方面:

1)焊件边缘及焊层之间清理不干净,焊接电流太小。

2)熔化金属凝固速度太快,熔渣来不及浮出。

3)运条不当,熔渣与熔化金属分离不清,阻碍了熔渣上浮。

4)焊件及焊条的化学成分不当。当熔池内含氧(O2)、氮(N2)、锰(Mn)、硅(Si)等成分多时,形成夹渣的机会也多。

防止措施。防止夹渣的主要措施有以下方面:

1)注意坡口及焊层间的清理,将凸凹不平处铲平,然后施焊。

2)避免焊缝金属冷却过速,选择适当的电流施焊。

3)正确运条,弧长适当,使熔渣能上浮到熔化金属表面,防止熔渣超前于熔化金属(即熔渣到熔池前面)而引起夹渣。

4)选用由于母材化学成分不当而可加以补偿的焊条。

5)严重的夹渣应铲除补焊。

第二篇:手工电弧焊焊接产生气孔的原因

手工电弧焊焊接产生气孔跟踪分析报告

轻钢装配车间张运平反馈,员工在使用焊条电弧焊装配及修补时,经常出现气孔,现就反映的问题进行跟踪分析并提供解决措施:

一、手工电弧焊焊接产生气孔的原因:

(1)焊条未经过烘干,便进行焊接。且焊条拆开后焊条要一段时间才能用完,造成焊条潮湿。

(2)焊条及待焊处母材表面的水分、油污、氧化物, 尤其是铁锈, 焊接高温作用下分解出气体。(照片如下:)

(3)焊接速度太快。(4)电流过大,易产生气孔。

二、解决措施

(1)焊条使用前必须烘干(烘干温度:350°C、烘干时间:1.5h)。(2)焊接前清理待焊处母材表面20mm处水分、油污、氧化物,铁锈。(3)降低焊接速度,使内部气体容易逸出。(4)焊条直径为φ3.2、焊接电流为90-100A;

焊条直径为φ4.0、焊接电流为140-160A。

三、先按以上方法做,若电弧焊焊接出现气孔,再讨论是否购买保温筒。

四、经过2周的跟踪及员工反馈,产生气孔的原因主要是个人操作技能问题。目前跟踪也未发现点焊及修补打磨焊接时产生气孔。

工艺科

2012-3-2

第三篇:中频点焊机焊接表面气孔原因解析

中频点焊机焊接表面气孔原因解析

在中频点焊机焊接的过程中,有时候会出现焊接表面气孔,这是什么原因呢?快和南京豪精一起来了解下吧。

1、原因分析

(1)、焊接过程中因为防风措施不严格,熔池混入气体。

(2)、焊接材料没有经过烘焙或者是烘焙不符合要求,焊丝清理不干净,在焊接的过程中自身产生气体进入熔池。(3)、熔池温度低,凝固时间短。

(4)、焊件清理不干净,杂质在焊接高温的时候产生了气体进入了熔池。(5)、电弧过长,氩弧焊的时候保护气体流量过大或者是过小,保护效果不好。

2、预防措施

(1)、母材和焊丝要按要求清理干净(2)、焊条要按照要求来烘干

(3)、防风措施要严格执行,不能有穿堂风

(4)、选择合适的焊接线能量参数,焊接的速度不能过快,电弧不能过长,要正确的掌握起弧、运条和息弧等操作要领。

(5)、氩弧焊的时候保护气流流量要合适,氩气纯度要符合要求。

第四篇:TIG焊中产生气孔的因素及其防止措施

TIG焊中产生气孔的因素及其防止措施

摘要:详细介绍了TIG焊的原理及适用范围,针对焊接过程中极易出现的气孔缺陷,分析了气孔产生的原因并阐述了防止产生气孔的工艺措施,经实践检验是可行的获得了满意的焊缝质量,有较高的应用价值。

关键词:钨极氩弧焊;气孔缺陷;影响因素;防止措施

钨极氩弧焊(简称TIG)是钨极惰性气体保护焊的一种,TIG焊是英文字母Tungsten Inert-Gas Welding 的简称,它的中文名称应该是钨极惰性气体保护焊也称作GTAW焊。

这种焊接方法从其名称上可知:它具有两个显著的特点:

1、它的电极是用钨或钨基合金制作而成

2、采用惰性气体作为保护介质

它是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化焊件和填充焊丝的一种焊接方法。焊接时保护气体连续地从焊枪地喷嘴中喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极&熔池极临近的热影响区的有害影响,从而获得高质量的焊缝。

根据这种焊接方法的原理它有如下的一些工艺特点:惰性气体有极好的保护作用,它本身既不与金属发生任何化学反应,也不溶解于高温金属中,使得焊接过程熔池的冶金反应简单和容易控制。对于一般易氧化、氮化的活泼金属、高熔点的黑色金属都能进行焊接,应用面很广;电弧在氩气中燃烧非常稳定,在小的焊接电流情况下(<10A)仍然稳定燃烧,填充焊丝是通过电弧间接加热,因而热输入容易调节。所以适用于薄板及全位置焊接,也是实现单面焊双面成形的理想焊接方法;由于填充焊丝不通过焊接电流,不存在熔滴过渡问题,焊接过程没中有飞溅,焊缝成形美观;氩气在焊接过程中仅仅只是单纯的保护隔离作用,因此对工件表面状态要求较高。焊件在焊前要进行表面清洗,除锈、去锈、去灰尘等杂质;钨极承载电流的能力有限,过大的电流会引起钨棒的熔化和蒸发,其微粒有可能进入熔池而出现夹钨,所以TIG焊的焊接电流会受到钨棒限制,故焊接速度较小,生成效率较低;TIG焊采用的氩气纯度较高,通常要求达到99.8%以上,且氩弧焊机又较复杂,因此TIG焊的成本较高;氩弧受周围气流影响较大,不适宜在室外和有风处进行操作。TIG焊可用于几乎所有金属和合金的焊接,但由于其成本较高,通常用于铝、镁、钛、铜等有色金属以及不锈钢、耐热钢等,由以上分析可知TIG焊是一种可以获得较高力学性能且焊缝成形美观,通常来焊接一些工件厚度较小的薄壁结构零件,而材料大多是不锈钢、耐热钢、高温合金。对于锅炉及压力容器管道对接进行多层焊时,为了保证第一道焊缝根部焊透以获得高质量的焊缝,打底焊通常采用TIG焊,对于石油化工、电站锅炉、核电站以及航空航天部门所用的各类管道对接几乎全都采用全位置氩弧焊方法,当然氩弧焊也有很大的局限性,即只能在室内施工,若在室外操作一定要采用必要的防风措施。

由于钨极氩弧焊可以获得较高力学性能且焊接质量稳定焊缝成型较好,所以在许多行业都得到较广泛的应用,尤其是在锅炉压力容器行业中更是得到大力推广和应用,我公司生产的锅炉受热面管子对接焊全都采用TIG焊,并且高压锅炉对焊接接头进行100%X射线无损探伤。但是在TIG焊操作过程中由于采用焊接工艺不当,加之焊工操作水平所限导致焊缝中出现气孔缺陷的几率较大,使探伤拍片合格率明显下降,严重影响了焊缝的质量,甚至有些操作者遇到气孔进行返修时束手无策,这些直接导致了生产成本的提高和生产效率的降低,以下主要根据在实际工作中总结的经验针对气孔缺陷,分析气孔的特点及产生的原因,阐述了防止出现气孔的工艺措施,对提高TIG焊接质量具有重要和实际意义。气孔的特点及危害

1.1 气孔的特点

气孔是焊接是熔池中的气泡在凝固时未能逸出而残留在焊缝金属中所形成的空穴,是TIG焊中常见的也是主要的一种焊接缺陷。其形状有球形、椭圆形、旋风形、条虫形等。在焊缝内部的称内部气孔,露在焊缝表面的称外部气孔。气孔的大小不等有时是单个的,有时是密集在一起或是沿焊缝连续分布。

1.2 气孔的危害

气孔是体积性缺陷,对焊缝的性能影响很大其危害性主要是会降低焊缝的承载能力。这是因为气孔占据了焊缝金属一定的体积,使焊缝的有效工作截面面积减小,因而也就降低了焊缝的力学性能,使焊缝的塑性特别是弯曲和冲击强度降低得更多。如果气孔穿透焊缝表面,特别是穿透接触介质的焊缝表面,介质存在于孔穴内,当介质有腐蚀性时,将形成集中腐蚀,孔穴逐渐变深、变大,以致腐蚀穿孔而泄漏。从而破坏了焊缝的致密性,严重时会由此而引起整个金属结构的破坏。所以防止焊缝中产生气孔,保证焊缝的焊接质量,应引起高度的重视。2 气孔的形成及影响因素

2.1 气孔的形成

焊接过程中熔池的周围充满着成分复杂的各种气体,这些气体主要来自周围的空气,焊件上的杂质如铁锈、油漆、油脂受热后所产生的气体等。所有这些都不断地与金属熔池发生作用。一些气体通过化学反应或溶解等形式进入熔池,使熔池的液体金属吸收了相当多的气体。如果这些气体排出较快,即使熔池结晶较快就不会形成气孔。但是如果气体的产生在熔池的结晶过程中,而结晶过程进行较快时,气体来不及排出熔池,就会残留在焊缝中形成气孔。

2.2 形成气孔的影响因素

TIG焊缝中气孔的生成往往是几种气体共同作用的结果,而起主要作用的气体是H2和N2,以下进行详细的分析:

2.2.1 H2的影响

焊接区的H2来自于各个方面,某些组成物的结晶水和工件表面杂质等都含有氢气的成分,同时由于冶炼钢总也含有,它们在电弧高温作用下形成气泡猛烈地向外排出,在焊缝冷却过程中来不及浮出的H2便会形成气孔。

2.2.2 N2的影响

N2主要来自空气,N2在基本金属和焊丝中的质量百分数不是很大,在钢中和其他铁合金中是以氧化物固溶体及其它形式存在。N2在钢中的溶解度随温度下降而剧烈变化,析出的N2形成气泡从熔池中排出,来不及排出的气泡残留在焊缝中形成气孔。形成气孔是在没有足够充分的保护条件下使电弧和焊接熔池中的金属受到空气的作用而造成的。防止气孔产生的措施

尽管产生气孔的原因是多方面的,但选用正确的焊接工艺,提高焊工的操作技能是防止气孔产生的基本途径。

3.1 工件和焊丝的焊前处理

TIG焊对油、锈、水特别敏感,极易产生气孔,因此对母材的表面质量要求较高。焊前必须经过严格的清理,对待焊工件坡口内外10-15mm范围内进行清理打磨,去除表面的氧化膜。油脂和水分等杂质,露出金属光泽,同时对焊丝表面的油脂。铁锈也要用砂纸进行打磨直到露出金属光泽。

3.2 氩气的纯度

氩气是惰性气体具有高温下不分解和不与焊缝金属发生氧化反应的特性,氩弧焊时氩气纯度应大于99.95%,另外当氩气瓶内压力小于2.0MPa时含水量增加应停止使用"氩气的流量必须合适,可由下面的经验公式确定:Q=K·D 式中Q代表氩气流量,D为喷嘴直径,K为系数(0.8-1.2),所以氩气流量一般为6-9L/min,还要保证气路通畅,不得有堵漏现象发生。

3.3 喷嘴直径

喷嘴直径可由下面的经验公式确定:

D=(2.5-3.2)d

式中D为喷嘴直径,d为钨极直径由上面公式可得喷嘴直径一般为6-12mm为宜。

3.4 钨极伸出长度

钨极伸出长度过大增大了喷嘴与工件之间的距离保护效果变差;伸出长度过小虽然保护效果好但会阻挡焊工视线,钨极与焊丝易碰撞发生短路使焊接无法进行。

3.5 焊接速度

焊接速度是主要的焊接参数之一,速度过快会使保护气体偏离钨极和熔池是保护效果变差产生气孔,并且也影响焊缝的成形,所以施焊时必须选择合适的焊接速度。

3.6 提前送丝滞后关气

引弧前3-4S送氩气可驱赶管内空气使引弧处在气体保护中防止钨极与熔池发生氧化产生气孔,滞后关气可达到保护熔池缓冷的目的还可避免收弧处出现弧坑、裂纹、气孔等缺陷,因此必须掌握正确的息弧方法。

3.7 操作技能

操作技能的熟练程度是防止气孔的重要环节,每个焊工要有过硬的基本功。焊枪、焊丝、工件之间要保持正确的位置和相对角度动作要协调。施焊时电弧要平稳,电弧的高度要均匀一致,严禁忽高忽低,防止气体瞬间进入熔池产生气孔,同时也要注意观察熔池的变化,提高对气孔的排出能力。全位置焊管子时,焊枪、焊丝和工件相互间须保持一定的距离,方向一般为由下向上焊接,即仰--立--平的顺序,收弧时要避免出现弧坑和缩孔并保证焊缝不低于母材,可以采用焊缝增加法,即收弧时焊接速度减慢,焊炬向后倾角增大,焊丝送进量增加当熔池温度过高时,可以熄弧再引弧直至填满弧坑。

综合以上分析可得出以下结论:TIG具有优异的特性和广阔的应用前景,通过长时间生产实践证明采用上述工艺措施可有效的控制气孔的产生,大幅度的提高一次探伤合格率和焊接接头的质量。

气孔是常见的焊接缺陷之一。它能强烈地降低焊缝的致密性。对金属力学性能也有一定的影响。一般来说,气孔可使焊缝的塑性降低40%~50%,对动载下工作的结构还要严重一些。气孔对强度影响不大,但过多的气孔会因焊缝工作截面削弱太多,强度还是要下降的。

有的气孔在焊缝表面就可发现,叫穿透性气孔,因为和空气发生了接触,孔洞表面呈氧化颜色。外部气孔可以是密集的,也可以是点状分布的。有的气孔则隐藏在焊缝内部,必须用透视方法才能发现。从焊缝断面看多沿柱状晶界上分布而呈条虫状,有时在焊缝根部及中部也能看到个别的点状或椭圆形小气孔。内部气孔因未与空气接触,故气孔光亮。气孔能否形成和是否外露,取决于气泡浮出的速度与熔池结晶速度的对比关系。结晶速度快,或气泡小而浮出速度慢,则形成内气孔。应该采取措施加以避免:(1)消除各种气体的来源。去除氧化膜或铁锈,按规定烘干焊条、焊剂并合理保存,去除保护气体中的氧、氢、氮。(2)加强保护。焊条药皮不要脱落,保护气体给送不能中断,电弧不得任意拉长,装配间隙不能过大,用低氢型电焊条要用短弧、直流反接。

第五篇:CO2焊接时气孔的产生原因及分类

CO2电弧焊时,由于熔池表面没有熔渣盖覆,CO2气流又有较强的冷却作用,因而熔池金属凝固比较快,但其中气体来不及逸出时,就容易在焊缝中产生气孔。

可能产生的气孔主要有3种:一氧化碳气孔、氢气孔和氮气孔。一、一氧化碳气孔产生CO气孔的原因,主要是熔池中的FeO和C发生如下的还原反应: FeO+C==Fe+CO,该反应在熔池处于结晶温度时,进行得比较剧烈,由于这时熔池已开始凝固,CO气体不易逸出,于是在焊缝中形成CO气孔。

如果焊丝中含有足够的脱氧元素Si和Mn,以及限制焊丝中的含碳量,就可以抑制上述的还原反应,有效地防止CO气孔的产生。所以CO2电弧焊中,只要焊丝选择适当,产生CO气孔的可能性是很小的。

二、氢气孔

如果熔池在高温时溶入了大量氢气,在结晶过程中又不能充分排出,则留在焊缝金属中形成气孔。

电弧区的氢主要来自焊丝、工件表面的油污及铁锈,以及CO2气体中所含的水分。油污为碳氢化合物,铁锈中含有结晶水,它们在电弧高温下都能分解出氢气。减少熔池中氢的溶解量,不仅可防止氢气孔,而且可提高焊缝金属的塑性。所以,一方面焊前要适当清除工件和焊丝表面的油污及铁锈,另一方面应尽可能使用含水分低的CO2气体。CO2气体中的水分常常是引起氢气孔的主要原因。

另外,氢是以离子形态溶解于熔池的。直流反极性时,熔池为负极,它发射大量电子,使熔池表面的氢离子又复合为原子,因而减少了进入熔池的氢离子的数量。所以直流反极性时,焊缝中含氢量为正极性时的1/3~1/5,产生氢气孔的倾向也比正极性时小。

三、氮气孔

氮气的来源:一是空气侵入焊接区;二是CO2气体不纯。试验表明:在短路过渡时CO2气体中加入φ(N2)=3%的氮气,射流过渡时CO2气体中加入φ(N2)=4%的氮气,仍不会产生氮气孔。而正常气体中含氮气很少,φ(N2)≤1%。由上述可推断,由于CO2气体不纯引起氮气孔的可能性不大,焊缝中产生氮气孔的主要原因是保护气层遭到破坏,大量空气侵入焊接区所致。

造成保护气层失效的因素有:过小的CO2气体流量;喷嘴被飞溅物部分堵塞;喷嘴与工件的距离过大,以及焊接场地有侧向风等。

因此,适当增加CO2保护气体流量,保证气路畅通和气层的稳定、可靠,是防止焊缝中氮气孔的关键。

另外,工艺因素对气孔的产生也有影响。电弧电压越高,空气侵入的可能性越大,就越可能产生气孔。焊接速度主要影响熔池的结晶速度。焊接速度慢,熔池结晶也慢,气体容易逸出;焊接速度快,熔池结晶快,则气体不易排出,易产生气孔。

CO2气体保护焊中产生气孔的原因及对策

发布日期:2012-12-06 来源:《现代焊接》 作者:邓才智 浏览次数:2247 摘要:气孔是焊接过程中常见的缺陷,将严重影响焊缝的力学性能。本文分析了CO2气保焊气孔产生的种类、危害性及影响因素,探讨了预防气孔产生的工艺措施。实践证明,采用合理的焊接工艺将有效控制气孔缺陷,获得满意的焊缝质量。

摘要:气孔是焊接过程中常见的缺陷,将严重影响焊缝的力学性能。本文分析了CO2气保焊气孔产生的种类、危害性及影响因素,探讨了预防气孔产生的工艺措施。实践证明,采用合理的焊接工艺将有效控制气孔缺陷,获得满意的焊缝质量。关键词:CO2气体保护焊;气孔;预防 前言

CO2气体保护焊是指利用CO2作为保护气体,以焊丝和焊件之间产生的电弧来熔化被焊金属的熔化极半自动电弧焊,与手工电弧焊相比,CO2气体保护焊具有生产效率高、焊接变形小、操作简单,适用于各种位置焊接等优点,是工程机械制造车间采用的主要焊接方法,但是在实际生产过程中,如果焊接工艺选择不当,再加上焊工操作技能水平所限,导致在焊缝中容易出现气孔,影响焊缝的质量,对产品质量留下安全隐患。因此,在结构件焊接过程中,如何避免焊缝中气孔的产生,是提升焊缝质量的重点之一。1 气孔的种类及危害 1.1气孔的特点

气孔是指焊接时,熔池中的气体在凝固前未能完全逸出而残留下来形成的空穴。常见的有氢气孔、氮气孔、一氧化碳气孔等。车间结构件施焊后焊缝中出现的气孔如图1所示。

图1 焊缝中出现气孔

1.1.1氢气孔

氢可以溶解于液态金属,高温下焊接熔池中存在大量被溶解的氢,在金属结晶的过程中,氢气溶解度随温度降低而急剧减小,这些气体来不及从熔池中逸出,就会在焊缝中形成气孔。氢主要来自焊丝和工件表面的油污、铁锈以及CO2气体中所含的水分。氢气孔大多出现在焊缝表面,呈喇叭口形,如图2所示。

[1]

图2 氢气孔特征

1.1.2 氮气孔

氮气能溶于液态金属,在熔池冷却结晶过程中来不及逸出会形成氮气孔。氮气孔主要是因为CO2气体气流保护效果不好或者CO2气体纯度不高造成。氮气孔多在焊缝表面,有时成堆出现,与蜂窝相似。1.1.3一氧化碳气孔

当焊缝反应中脱氧元素(Si、Mn)不足时,导致大量的FeO不能被还原,因而进入熔池中发生反应产生CO气孔,方程式如下,CO气孔在焊缝内沿结晶方向分布,如条虫状,如图3所示。

FeO+C=Fe+CO↑

图3 氮气和一氧化碳混合气体特征

1.2气孔的危害

1.2.1削弱焊缝的有效工作截面,降低焊缝接头的抗变形、抗断裂能力;

1.2.2焊接过程中本身存在热量和成分分布的不均匀,导致焊接过程中不可避免存在内应力。在外部应力尤其是动载荷作用下,不规则分布的气孔会引发应力集中,从而降低焊缝的疲劳强度,使气孔与焊缝裂纹连通造成穿透性破坏,增加焊缝脆性断裂的几率。2 产生气孔的原因 2.1 电流和电压的影响

焊接电压主要决定于送丝速度,焊接电流的大小还与电流极性、焊丝的干伸长、焊丝直径等因素相关。电弧电压(主要取决于电弧长度)则与焊接电流,即合适的熔滴过渡型式有关。熔滴过渡的稳定性决定了焊接过程中的平稳和飞溅的大小。对于细丝CO2焊接,电弧电压和焊接电流的匹配关系如图4所示。[2]

图4 电弧电压与电流对应关系 2.2 焊接速度的影响

焊接速度过大时,会引起焊缝两边咬边,而速度过小时会导致烧穿等缺陷。在不影响焊缝成形的前提下,适当选取慢速将使焊接热输入值提高,有利于减小气孔的产生。2.3 气体流量的影响

流量过大,容易产生紊流,恶化气体保护效果;流量过小,CO2气体未能充分保护熔池,使焊缝中产生气孔的倾向加大,尤其是N2孔。一般说来,200A以下的薄板,CO2气体流量为10~15L/min;200A以上的薄板,CO2气体流量为15~25L/min。2.4 外界气流的影响

CO2气保焊时,由于气体保护层是柔性的,容易受外界气流的影响而产生气孔。因此,当焊接场地风速超过2m/s时,应设置必要的防风措施,严禁出现穿堂风。2.5 焊丝干伸长的影响

干伸长太大,电弧不稳,难以操作,同时飞溅也较大,可能破坏保护气而产生气孔。但干伸长过小时,电流增加,弧长变短,飞溅物会大量粘在喷嘴内壁,影响CO2气体的保护效果,导致气孔的产生。因此,焊丝伸出长度以10~12倍焊丝直径为宜,一般在10~20mm范围内。2.6 焊丝种类的影响

影响焊缝产生气孔的因素有两个方面,一方面是焊丝本身所含的化学成分的影响,焊丝含碳量较高,在焊接过程中会因剧烈的氧化还原作用而产生较大的飞溅,并产生气孔。因此,一般要求焊丝含碳量不超过0.11%;另一方面,焊丝成分应符合相关标准并含足够的脱氧元素Si和Mn,因Si和Mn元素与O2的结合能力比Fe大,可以有效抑制CO2对Fe的氧化作用,防止CO气孔的产生,目前国内的CO2焊丝大都采用镀铜作为保护层,并以化学镀为主,化学镀层结合强度低,镀铜层不均匀,易掉铜屑,并且镀铜容易生锈,所以,在使用前应检查焊丝的表面质量,以减少产生气孔的来源。2.7 其他影响

CO2气体纯度小于99%,飞溅物将喷嘴堵塞,母材和坡口附近打磨不干净,电弧过长或偏吹等。3预防和减少气孔产生的对策

3.1根据材料特点、板厚及坡口型式选择合适的焊接工艺参数,保持焊接过程的稳定性,减少气孔的产生。

3.2选用与母材合适的焊丝、焊剂及保护气体,焊前清理坡口及两侧20~30mm范围内的油污、铁锈及氧化物等杂物,保证气路及送丝结构畅通。

[3]3.3根据实际情况,焊前对工件进行预热,选用合适的焊接速度,在焊接终了和焊接中途停顿时,应慢慢撤离焊接熔池,使熔池缓慢冷却,从而使气体充分从熔池中逸出,减少气孔的产生。3.4尽量采用短弧焊接规范,填加焊丝要均匀,操作时应适当摆动,同时防止有害气体入侵。4结束语

综上所述,CO2气保焊中产生气孔的原因是多方面的。为了减少焊接过程中气孔的产生,除了严格遵照焊接工艺规程,提高操作技能水平等之外,在施焊现场还应该多注意观察和思考,积极分析气孔产生的原因,采取有效的工艺措施,才能获得满意的焊接接头,达到控制焊接质量的目的。

构成气孔的气体,一是来自于周围介质,二是化学冶金反应的产物。按不同的来源,气体可以分为两类:一类是高温时能大量溶于液体金属,而在凝固过程中溶解度突然下降的气体,如H2、N2;另一类是在熔池进行化学冶金反应中形成而又不溶解于液体金属中的气体,如CO、H2O。焊接低碳钢和低合金钢时,形成气孔的气体主要是H2和CO,即通常所说的氢气孔和一氧化碳气孔。氢气孔的主要来源是焊条药皮和焊剂中的有机物、结晶水或吸附水、焊丝与母材表面的油污、铁锈以及空气中的水分等,在高温下分解产生H2,氢分子进一步分解为氢原子和离子。氢在液态金属中的溶解度很高,在高温时熔池和熔滴就有可能吸收大量的氢。而当温度下降时,溶解度随之下降,即熔池开始凝固后,氢的溶解度要发生突变。随着固相增多,液相中氢的浓度必然增大,并聚集在结晶前沿的液体中,使其浓度升高处于过饱和状态,形成气泡。气泡长大到一定程度上浮,当气泡上浮速度小于结晶速度时就形成氢气孔。

CO主要是FeO、O2或其它氧化物与C作用的产物。即 [C]+[O]=CO(1)[FeO]+[C]=CO+[Fe](2)[MnO]+[C]=CO+[Mn](3)[SiO2]+2[C]=2CO+[SiO](4)碳对氧的亲和力随温度升高而增大,高温下碳比铁、锰、硅等元素对氧的亲和力都大些。因此,上述反应主要发生在熔滴区和熔池头部。CO不溶于液态铁中,在高温形成后很容易形成气泡并迅速排出,不仅不会形成气孔,而且气泡析出时使熔池沸腾,有助于其它气体和杂质排出。生成气孔的CO是在冶金反应后期形成的。熔池开始凝固后,液体金属中的C和FeO的浓度随固相增多而加大,造成二者在液体金属某一局部富集,浓度增加促使了式(2)的反应进行,而生成一定数量的CO。这时形成的CO由于温度 下降、液体金属粘度增加及冷却快等原因,难于从熔池中逸出,而被围困于树枝晶粒间。此外,式(2)的反应是吸热过程,促使冷速加大,对气体析出更有利。

4影响气孔生成的因素

在生产中一般将影响气孔形成的因素归纳为冶金与工艺两方面,而工艺因素往往是通过冶金反应来起作用,所以解决气孔的问题,冶金因素的作用更为重要。4.1 熔渣的氧化性

焊接时,熔渣的氧化性强弱对产生气孔的倾向有明显的影响。无论是酸性氧化物还是碱性氧化物,只有当氧化性(或还原性)在一定范围之内时焊缝才不会产生气孔。当氧化性过强会出现CO气孔,还原性过强则出现氢气孔。酸、碱性熔渣对气孔的敏感性不同,碱性焊条对CO气孔和氢气孔都更为敏感。4.2 焊条药皮与焊剂组成物的影响

碱性焊条药皮中加入一定的CaF2,在焊接时可与氢、水蒸气反应产生稳定的气体化合物HF,减少氢气的来源,有效防止了氢气孔;高硅高锰焊剂(HJ431)中加入一定的CaF2,焊接时CaF2与SiO2作用后,生成SiF4亦可起到脱氢作用。含有CaF2的焊条药皮或焊剂中,为稳定电弧而需加入K、Na等低电离电位物质,使对铁锈敏感性增加,导致气孔倾向加大。4.3 铁锈及水分等的作用

母材表面的氧化皮、铁锈、水分、油渍以及焊接材料中的水分也是导致气孔产生的重要原因。其中以母材表面的铁锈的影响最大。即 3Fe2O3=2Fe3O4+O(5)2Fe3O4+H2O=3Fe2O3+H2(6)Fe+H2O=FeO+H2(7)Fe3O4+Fe=4FeO(8)Fe2O3+Fe=3FeO(9)结晶水分解后产生H2、H、O及OH等.上述反应的结果,在增强了氧化作用的同时又提高了氢的分压, 因而使CO气孔与氢气孔的倾向都有可能增大.焊接材料中残存的水分和金属表面的油渍在高温时分解也要增加气孔倾向。

下载焊接中产生气孔的主要原因word格式文档
下载焊接中产生气孔的主要原因.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    焊接钢管焊缝气孔产生的原因及防治措施

    焊接钢管焊缝气孔产生的原因及防治措施 焊接钢管焊缝气孔不仅影响管道焊缝致密性,造成管道泄漏,而且会成为腐蚀的诱发点,严重降低焊缝强度和韧性。 焊缝产生气孔的因素有:焊剂......

    J507气孔产生原因

    气孔就是焊接时,溶池中的气泡在凝固时未能逸出,而留下来形成的孔穴。J507碱性焊条焊时多为氮气孔、氢气孔和CO气孔。平焊位置要较其他位置气孔多;打底层要比填充、盖面多;长弧焊......

    氩弧焊产生气孔原因

    氩弧焊产生气孔原因 1、 主要是焊缝杂货、油污末清除。另外焊接速度,气体流量也有关系, 2、 氩弧焊产生的气孔原因,主要与氩气的流速与流量是否稳定有关,直接影响焊缝的保护。 3......

    钢结构焊接施工中裂纹和气孔的形成原因及预防措施

    钢结构焊接施工中裂纹和气孔的形成原因及预防措施 作者:陈临泉 (中国水利水电第三工程局有限公司) 摘要:本文通过阐述,详细介绍了焊接施工中焊缝常见的裂纹与气孔缺陷的分类以及......

    模块五 任务 1防止焊接气孔

    莱芜技师学院2012-2013学年第二学期《金属熔焊基础》导学案编号051 主备人:李清延审核:使用时间: 模块五 焊接冶金缺陷控制 任务1 防止焊接气孔(2) 【学习目标】 1.技能目标:能够......

    CO2焊接的气孔问题及解决措施

    CO2焊接的气孔问题及解决措施 CO2焊时,熔池表面只有很少量熔渣覆盖,CO2气流又有冷却作用,因而熔池凝固较快,使焊接时产生的气体来不及上逸,故增大了产生气孔的可能性。 CO2焊焊......

    J507焊条焊接气孔形成及工艺措施2013

    申请焊接技师论文 碱性焊条焊接气孔形成及预防措施 申请职称: 技 师 专 业: 焊 接 姓 名: 石 书 祥 指导老师: 谭 建 2013年 7 月 30 日 碱性焊条焊接气孔形成及预防措施......

    CO2焊接的气孔问题及解决措施

    CO2焊接的气孔问题及解决措施.txt我的优点是:我很帅;但是我的缺点是:我帅的不明显。什么是幸福?幸福就是猫吃鱼,狗吃肉,奥特曼打小怪兽!令堂可是令尊表姐?我是胖人,不是粗人。 CO2焊......