箱梁预应力张拉混凝土结构裂缝修补方案

时间:2019-05-15 00:37:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《箱梁预应力张拉混凝土结构裂缝修补方案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《箱梁预应力张拉混凝土结构裂缝修补方案》。

第一篇:箱梁预应力张拉混凝土结构裂缝修补方案

松花江公路大桥扩建工程南岸引桥工程

底板预应力张拉裂缝修补方案

哈尔滨市第二市政工程公司

2011年8月20日

一、简介

松花江公路大桥南岸引桥工程东引桥底板预应力张拉,在DY0-DY4底板出现张拉应力产生的混凝土裂缝,针对混凝土裂缝我公司制定了相应的处理措施。

二、施工工艺: 1.施工工艺流程:

裂缝处理→埋设灌浆嘴→封闭→密封检查→配制浆液→ 灌浆→封口结束→检查 2.裂缝处理:

用钢丝等工具清除裂缝表面的灰尘、白灰、浮渣及松散层等污物,再用毛刷蘸甲苯、酒精或丙酮等有机溶液,把沿裂缝两侧20-30mm处擦洗干净并保持干燥。3.埋设灌浆嘴:

(1)沿着裂缝的开裂方向每隔150-200mm埋设灌浆嘴。

(2)埋设时,先在灌浆嘴的底盘上抹一层厚约1mm的环氧胶泥,将灌浆嘴的进浆孔骑缝粘贴在预定的位置上。

4.封闭:

先在裂缝两侧(宽20-30mm)涂一层环氧树脂基液,后抹一层厚1mm左右、宽20-30mm的环氧树脂胶泥。抹胶泥时应防止产生小孔和气泡,要刮平整,保证封闭可靠。

5.密封检查:

裂缝封闭后应进行压气试漏,检查密闭效果。试漏应待封缝胶泥有一定强度时进行。6.配制浆液:

浆液配制应按照不同浆材的配方及配制方法进行。浆液一次配备数量,需以浆液的凝固时间及进浆速度来确定。7.灌浆:

(1)灌浆机具和器具在灌浆前应进行检查,运行正常时方可使用。

(2)根据裂缝区域大小,可采用单孔灌浆或分区群孔灌浆。在一条裂缝上灌浆可由一端至另一端。(3)灌浆时应待下一个排气嘴出浆时立即停止,如此顺序进行。化学灌浆的灌浆压力常用0.2Mpa,压力逐渐升高,防止骤然加压。达到规定压力后应保持压力稳定,以满足灌浆要求。

(4)灌浆停止的标志为吸浆率小于0.1L/min,再可压注几分钟即可停止灌浆。灌浆结束后,应用丙酮冲洗管道和设备。

8.封口结束:

待缝内浆液达到初凝而不外流时,可拆下灌浆嘴,再用环氧树脂胶泥或滲入水泥的灌浆液把灌浆嘴处抹平封口。9.检查:

灌浆结束后,应检查补强效果和质量,发现缺陷应及时补救,确保工程质量。

三、检验及验收:

1.施工前应按本附录设计规定检查施工准备是否符合要求。

2.灌浆及粘结材料的质量均应符合本规范有关标准的要求。

3.用压缩空气或压力水检查灌浆是否密实。

四、安全消防保障措施:

1.进入施工现场,必须带好安全帽; 2.高空作业系好安全带,穿防滑鞋; 3.施工用电,必须由专人安装;

4.严格按本工程操作规范施工,严禁违章施工; 5.现场设专职消防人员确保安全; 6.现场严禁吸烟、喝酒、打闹。

五、工程质量保证措施:

1.建立必要的质量管理制度,在每一道工序实施前,项目部组织技术交底,组织施工方案讨论。

2.每道工序施工前,由施工员按设计图纸、《规范》、《碳纤维加固补强施工步骤》要求对施工班组进行交底,在操作过程进行检查,发现问题及时解决,在每道工序完成后,进行工序检查、验收。

3.控制过程:图纸会审→施工组织设计→开工准备→技术交底→测量定位→操作工艺→工序控制→质量评定→施工小结。

4.全面履行工程合同,严格控制施工质量,热情接受建设单位意见。

5.施工过程中及时对各重要工序进行监督,及时分析研究,及时确定,使施工的各个环节处于有效控制,确保质量和安全,使工程质量达到优良。

黑龙江施耐达建筑技术有限公司

2011年10月15日

第二篇:箱梁张拉方案

预制箱梁预应力施工方案

1、施工准备

1.1、预应力张拉材料的质量控制

严把材料质量关,产品要有出厂合格证,对到场材料进行检验,其强度、刚度、严密性及螺旋压接缝咬合牢度等各项指标均达到质量标准方可使用。

对进到现场的材料妥善保管,并采取防雨、防潮措施,按施工进度计划进料,或在施工现场随用随加工制作。有严重锈蚀的不得使用,作报废处理。

波纹管在运、安放过程中,减少或防止外力作用.防止波纹管变形,发现变截面的波纹管及时更换。加强对波纹管的保护减少对其损伤。减少电焊作业。在普通钢筋骨架成型后再铺设波纹管,用振捣棒振捣混凝土时,要避开波纹管接头。用大规格的波纹管作套管,套管长20~30cm.管道接头在套管内要对口、居中.两端的环向缝隙用胶带封闭严密。

1.2、预应力张拉设备的选择

施加预应力前应对张拉设备进行核查。施加预应力所用的机具设备以及仪表应由专人使用和管理,并应定期维护和校验。千斤顶及其配套的油汞、油压表一起进行校验。校验仪器可采用压力试验机、标准测力计或传感器等。与每台油泵配套的压力表备有两块,在操作时,一块作为备用。张拉力与压力表之间的关系曲线通过校验得出。张拉机具设备与锚具配套使用,并在进场时进行检查和校验。使用期间的校验期限应视机具设备的情况确定,当千斤顶使用超过6个月或200次或在使用过程中出现不正常现象或检修以后应重新校验。弹簧测力计的校验期限不宜超过2个月。1.3、预应力筋的加工与安放质量控制

(1)预应力筋下料时钢筋、钢绞线的切断,采用切断机或砂轮锯,不得采用电弧切割。下料根据施工部位的先后顺序进行。所下料要及时编号,编号用胶带贴于材料两端,当每束下料满足数量时,用细铁丝分段绑扎,以备吊装。当钢绞线下料过长时,为起吊方便,把下完的按1m直径盘起,盘起的钢绞线应盖好,以免腐蚀。

(2)预应力筋要有出厂质量标准书,按规范要求认真进行检验与试验,抗拉强度、伸长率和松驰度均应满足规范要求。

(3)预应力筋治锈防锈,对于轻微浮锈,除锈后可直接使用;对于轻度锈蚀者,应作检验,合格者除锈后使用。钢绞线被固结在孔道内,不能自由窜动。

(4)预应力筋穿束后,应认真检查波纹管有无破损处,若发现应即使处理,更换。在浇注混凝土时,设专人随时穿动钢束,避免漏浆固结。

(5)对于钢丝束、钢绞线相互扭结或各丝、各股预应力筋受力不均匀,摩阻力值增大,易发生段丝、滑丝。编束时,严格按工艺规程要求进行分丝、梳丝、理顺排列顺序,并分段绑扎牢固。(6)按规范要求对夹片、锚具进行硬度检查,合格品才能使用。安装夹片时,夹片外露要整齐、缝隙均匀。张拉前要认真检查一次,各道工序均应符合要求。

2、预应力筋张拉施工

腹板钢束均采用两端张拉,张拉顺序为N1、N3、N2、N4号钢束,张拉时,先调整到初应力,再正式张拉和测量预应力钢材的伸长值,钢材张拉采用应力、应变双控制,以应力为主,用测伸长量进行校核。伸长量计算见后附表。在张拉过程中,实际所量测的伸长值未包括张拉到初应力的伸长值,因此,实际伸长值还应计入初应力的伸长值,以使其与理论伸长值相对应。张拉前先对孔道冲洗,将孔壁内的杂物冲洗掉,并检查有无串孔现象,然后再用吹风机吹干孔道内水分,并用检孔器检查孔道是否通畅后再进行张拉。

装配式预应力箱梁分两次施加预应力,负弯矩预应力在箱梁吊装就位,现浇连续接头混凝土后在桥面上施加,预制时仅对正弯矩预应力进行张拉。当箱梁混凝土达到规定强度后(达到预制箱梁50#混凝土90%)进行张拉,张拉要求在两端同时进行,且应在横桥向对称均匀张拉,张拉时注意两端操作要一致,并且注意对钢绞线的双控。(伸长量与施加应力值按照《公路桥涵施工技术规范》(JTJ041-2000)中公式▲L=PP*X/AP/EP以及PP=P*(1-e(-(KX+Uθ)))/(kx+uθ);其中U=0.20,K=0.0025,钢筋回缩锚具变形取6mm;θ为设计角度,AP=140mm,EP=1.95*105Mpa,钢绞线张拉锚下控制应力为σk=0.75Rby=0.75*1860≥1395Mpa。①、张拉前的准备工作

(1)、箱梁验收,混凝土强度达到90%后张拉。穿束张拉前,对构件的质量,几何尺寸等进行检查,预留孔道应用通孔器或压气、压水等方法进行检查。构件端部预埋铁板与锚具和垫板接触处的焊渣,毛刺、混凝土残渣等要清理干净。

(2)、标定千斤顶油表读数,施工过程中定期检校,依据标定的曲线计算各张拉力对应的油表读数。

(3)、穿入钢绞线:对加工好的钢绞线进行编号,钢绞线穿束时,将一端打齐套上穿束器,将穿束器的引线穿过孔道,然后向前拉动,直至两端均露出65cm的工作长度,穿束后检查两端编号,防止钢绞线在孔道内交叉扭结。

②、预应力的张拉程序

预应力钢绞线张拉顺序严格按照图纸要求进行张拉,千斤顶张拉作用线与预应力钢绞线的轴线重合一致。

钢绞线的张拉程序如下:0→10%σk(初张拉)→ 20%σk→100 σk(持荷2分钟)→锚固。钢绞线的实际伸长量与理论伸长值的差值应控制在±6%以内,否则应暂停张拉,分析原因提出解决方案,待监理工程师审批后方可继续张拉。

③、张拉的操作步骤

四人配备一套张拉顶,一人负责油泵,两人负责千斤顶,一人观测并记录读数,张拉按设计要求的顺序进行,并保证对称张拉。

A、安装锚具,将锚具套在钢丝束上,使分布均匀。

B、将清洗过的夹片,按顺序依次嵌入锚孔钢丝周围,夹片嵌入后,人工用手锤轻轻敲击,使其夹紧预应力钢丝,夹片外露长度要整齐一致。

C、安装千斤顶,将千斤顶套入钢丝束,进行初张拉,开动高压油泵,使千斤顶大缸进油,初张拉后调整干斤顶位置,使其对准孔道轴线,并记下千斤顶伸长读数。

D、初始张拉,继续张拉,到达20%初应力时,记下千斤顶伸长读数,两者读数差即为钢绞线初张拉时的理论伸长量。

E、继续张拉到钢丝束的控制应力时,持荷2min然后记下此时千斤顶读数。计算出钢丝束的实测伸长量并与理论值比较,如果超过士6%应停止张拉分析原因。

F、使张拉油缸缓慢回油,夹片将自动锚固钢铰线,如果发生断丝滑丝,则应割断整束钢丝线,穿束重拉。

G、张拉油缸慢慢回油,关闭油泵,拆除千斤顶。④、张拉时的注意事项

A、严格按照操作程序进行张拉,严禁违章操作。B、张拉时千斤顶前后应严禁站人,防止发生安全事故。C、千斤顶后方安放张拉防护墙,防止钢铰线及夹片飞出伤人。D、千斤顶安装完毕,安全员检查合格后方可张拉。⑤、箱梁预拱度的观测

张拉完成后,在梁的顶面中心线距梁端0.5m处设两点,以两点平均值用水准仪观测跨中1d、3d、7d、14d、30d、60d的上拱值,并做好记录,给出其变化曲线并注意与理论值相比较,若正负差异超过20%则应暂停施工。待查明原因,采取措施并征得监理工程师同意后方可继续施工。

3、压浆及封锚 预应力张拉完毕后应及时将孔道中冲洗干净,吹除积水,尽早压浆。压浆使用压浆泵从梁的最底点开始,在梁端压浆孔各压一次,直到规定稠度的水泥浆充满整个孔道为止;孔道压浆建议采用真空吸浆法施工。水泥浆水灰比控制在0.4-0.45之间。膨胀剂的用量根据试验试配而定,水泥浆稠度控制在14-18S之间,在现场备有1725ml漏斗随时作漏斗试验,一般每4袋水泥(50kg/袋)做一次。水泥浆在使用过程中应频繁搅动,宜在30-40min内用完。具体步骤如下:

①、压浆采用活塞式灰浆泵压浆,压浆前先将压浆泵试开一次,运转正常并能达到所需压力时,才能正式压浆,压浆时灰浆泵泵压保持在0.5-0.7MPa。压浆前用压力水冲洗湿润孔道,并用空压机吹除孔内积水。从下至上进行压浆(比较集中和邻近的孔道,先连续压浆完成,以免串到邻近孔后水泥浆凝固,堵塞孔道)。

②、当梁另一端排出空气-水-稀浆至浓浆时用木塞塞住流浆,并提升压力至0.7MPa,持压2分钟,从压浆孔拔出喷嘴,并立即用木塞塞住。压浆中途发生故障,不能连续一次压满时,要立即用高压水冲洗干净,故障处理完成后再压浆。

③、构件中的锚具对其应进行封锚;在压浆后应先将其周围冲洗干净、凿毛,然后设置钢筋网并浇筑封锚混凝土。

3、预应力张拉施工质量控制

3.1、第一,绑扎钢筋时应将预应力孔道固定牢固,孔道符合设计要求。第二,锚具位置安装严格按设计要求,位置要精确。第三,浇筑锚垫板后细石混凝土时应振捣充分,保证粗细骨料均匀。避免张拉时将混凝土拉裂。第四,张拉时要严格按照张拉程序进行,严格控制张拉伸长量。第五、孔道灌浆应密实、饱满。

锚具是结构或构件的重要组成部分。它是保证预应力值和结构安全的关键。因此应尺寸准确,有足够的强度和刚度,受力后变形小,锚固可靠滑移不超过规定值,并能保证灌浆畅通。锚具的固定位置应准确,如果偏差太大张拉时容易将混凝土拉裂,混凝土浇筑时尤其要注意锚具后骨料的均匀性。3.2、预留孔道应注意的问题 ①、预留孔道的位置

钢筋绑扎及模板支立应符合设计要求,在施工时尤其要注意预应力钢筋预留孔道的位置必须符合设计要求。

②、施工时预留孔道的位置一般放置橡胶管,浇筑后再抽掉,抽管时间应根据水泥品种、水灰比、气温和养护方法等条件通过试验确定,一般抽管是以能顺利抽出和孔道不坍塌为宜,故抽管时间在混凝土初凝之后终凝之前进行。抽管顺序为先上后下,先曲后直。使用胶管预留孔道时应注意:1)胶管必须具有良好的密封装置,不允许在混凝土硬化过程中漏气或漏水,否则将影响成孔质量,因此在施工前对所用胶管必须作压力试验,检查有否漏气或漏水现象,密封装置是否完好。2)胶管的接头处理:用胶管预留孔道,长度较长,当需要接长胶管时,接头处必须密封。以防在振捣混凝土时胶管受振位移。3.3、后张法张拉工艺控制要点(1)预应力后张法前的准备工作:对预应力筋施加预应力之前,应对构件进行检验,外观尺寸应符合质量标准要求。张拉时,构件混凝土强度应符合设计要求;设计无要求时,不应低于设计强度等级值的75%。对预留孔道应用通孔器或压气、压水等方法进行检查。端部预埋铁板与锚具和垫板接触的焊渣、毛刺、混凝土残渣等应清除干净。钢筋穿束前,螺丝端杆的丝扣部分应用水泥袋纸等包缠2-3层,并用细铁丝扎牢;钢丝束、钢绞线束、钢筋束等穿束前,将一端找齐平,顺序编号。对于较长束,应套上穿束器,由引线及牵引设备从另一端拉出。对于夹片式锚具,上好的夹片应齐平,在张拉前并用钢管捣实。预应力筋的张拉顺序应符合设计要求,当设计末规定时,可采取分批、分段对称张拉。

(2)当预应力筋施加应力完成,卸载千斤顶后,应注意一下问题:

①、检查有无滑丝,若有滑丝,其数量不应超过总数量的1%,否则应对其进行更换后,重新张拉。

②、检查有无断丝,若有断丝,其数量不应超过总数量的1%,否则应其进行更换后,重新张拉。3.4、管道压浆及封锚质量控制

孔道灌浆是后张法预应力工艺的重要环节,灌浆用水泥标号应符合设计和规范要求。灌浆前用压力水冲洗孔道,压力宜控制在0.3~0.5mpa。灌浆顺序应先下后上,直线孔道灌浆从构件一端到另一端,曲线孔道应从最低点开始向两端进行,在最高点设排气管。孔道末端设置排气孔,灌浆时待排气孔处浓浆后,才能将排气孔堵注继续加压到0.5~0.6mpa,并稳定两分钟,关闭控制阀,保持孔道内压力。每条孔道应一次灌成,中途不应停顿,否则将已压的水泥浆冲洗干净,从头开始灌浆。锚固区发生裂纹紧急处理锚固区发生局部裂纹后必须停止一切张拉和混凝土作业,查明原因并提出处理措施并征得监理工程师同意后方可复工。

第三篇:预应力混凝土桥箱梁底面横向裂缝分析

预应力混凝土桥箱梁底面横向裂缝分析

预应力混凝土桥箱梁底面横向裂缝分析 伍 静,蒙 波(北京市建设工程质量第三检测所有限责任公司,北京100037)摘 要:预应力混凝土箱梁由于在受力性能方面良好,在高速桥梁互通工程中得到了良好的应用,但是由于结构受力和施工工艺的复杂性,该类型桥梁在设计和施工都存在质量较难控制等原因,造成部分桥梁在投入使用过程中箱梁底面就出现较多的横向裂缝,裂缝的大量出现严重影响了桥梁的正常使用,对结构的承载能力存在一定的影响。以一座预应力混凝土箱梁桥为例,通过对材料强度、铺装层层厚度、预应力损失、承载力评定等方面对该桥箱梁底面横向裂缝进行了分析,并对防止此类裂缝提出了改进措施,可供类似工程借鉴。关键词:公路工程;预应力混凝土;箱梁;横向裂缝;承载能力工程背景 某互通桥梁位于某高速公路,由主线桥和A、B、B1、B2、C五个匝道组成(见图1)。其中主线桥采用分离式设计,桥梁全长左幅345.0 m、右幅321.0 m,单幅桥宽12.25 m。桥面横向布置为:0.5 m(防撞护栏)+10.75 m(行车道)+0.5 m(防撞护栏)。桥梁上部结构均为预应力混凝土连续箱梁,截面为单箱单室。桥梁具体信息见表1。下部结构除B1匝道墩柱为钢筋混凝土单柱墩外,其它桥梁均采用钢筋混凝土双柱式桥墩,扩大基础。桥台均为重力式U型桥台,支座采用板式橡胶支座。图1 桥梁平面示意图 表1 桥梁跨径组合信息桥名 结构形式 跨径组合/m 4×25+4×25+(3×25+30+25)(左幅)3×25+4×25+(3×25+30+25)(右幅)A匝道 预应力混凝土连续箱梁 5×25+5×25+6×25 B匝道 预应力混凝土连续箱梁 5×25+6×25 B1匝道 预应力混凝土连续箱梁 4×25+4×25 B2匝道 预应力混凝土连续箱梁 3×25 C匝道 预应力混凝土连续箱梁主线桥 预应力混凝土连续箱梁4×23 桥面铺装采用4 cm抗滑表层+6 cm中粒式沥青混凝土+防水层+5 cm水泥混凝土铺装层,并在5 cm水泥混凝土中布设钢筋网。伸缩缝均采用EM-80浅埋式伸缩缝。桥梁设计荷载为 “汽车-超20、挂车 -120”。在桥梁营运过程中,历次检测发现该桥主要存在病害及处治方法如下:(1)第一次定期检查发现该桥预应力混凝土箱梁存在较多的横桥向裂缝,主要包括底板横向裂缝,部分裂缝延伸至腹板呈“L”形或“U”型,裂缝多位于跨中区域或附近、最宽 0.24 mm(见图

2、图 3)。部分裂缝初步判定为弯曲受力裂缝,对桥梁承载能力造成不利影响。根据《公路桥涵养护技术规范》[1](JTG H11—2004),桥梁的总体技术状况等级为“三类”,处于较差状态。图2 左幅第12跨箱梁底面纵向裂缝 图3 B2匝道第2跨箱梁底面纵向裂缝 根据第一次检查结果对该桥病害进行了处治,对裂缝宽度<0.15 mm时采用表面封闭法修补,涂刷专用环氧树脂胶进行封闭;裂缝宽度≥0.15 mm时,采用压力注浆法修补。并对部分桥跨裂缝较多的进行了粘贴碳纤维布(见图

4、图 5)[2]。图4 箱梁底面碳纤维加固 图5 箱梁腹板碳纤维加固(2)维修处治后,为进一步了解该桥裂缝修补后的发育情况,抽选了主线桥左幅第9~13跨、右幅第8、9、11跨和B2匝道桥第2、3跨进行箱梁裂缝专项检查。发现在桥梁跨中区域仍存在较多新开裂的横向裂缝,部分裂缝延伸至腹板形成“L”型,裂缝宽度多在0.10 mm~0.16 mm之间,部分跨梁底碳纤维布处理后,仍在碳纤维布条间发现横向裂缝(见图6)[1]。2 现场检测结果 为进一步分析该桥裂缝产生的原因,对该桥进行了如下专项检测: 2.1 混凝土抗压强度检测 混凝土强度不足是引起结构开裂的原因之一。为准确获得结构混凝土强度,采用钻芯法对主梁混凝土强度进行检测(见图7)。根据桥梁病害情况及受力特点,本次选取主线左幅13跨右侧腹板进行钻芯取样[3]。根据钻芯法检测混凝土强度技术规程的相关要求,对所取芯样进行抗压强度检测[3],结果见表2。图6 主线桥左幅第12跨箱梁底面裂缝分布图 图7 钻芯取样测区位置 表2 右腹板钻芯取样混凝土强度试验结果表测点 外观 破坏荷载/kN抗压强度/MPa换算值 方块值1 密实 320.5 40.8 33.7 38.7 2 密实 454.0 57.8 0.87 0.95 47.8 52.8 3 密实样芯抗压强度/MPa尺寸修正系数尺寸换算系数573.8 73.1 60.4 65.4 从试验结果来看,3个试件的推算强度值分别是 38.7 MPa、52.8 MPa和 65.4 MPa,依据《钻心法检测混凝土强度技术规程》[3](CECS03:2007)中第3.2.5的相关规定,单个构件的混凝土最终推算强度为 38.7 MPa,小于设计强度 40.0 MPa。2.2 桥面铺装层厚度检测 桥面铺装的结构和厚度的实际状况可能与原设计存在较大的差异。为了了解各桥铺装层的实际施工厚度,为桥梁加固设计和承载能力计算提供数据支撑。对桥面铺装结构厚度采用钻芯取样的方法进行检测(见图8)。桥面铺装层钻孔位置的选取,原则上每座桥梁顺桥向选取5个断面,每个断面横桥向布置3个测点,桥梁长度较短的可适当减少,但不应少于3个断面,共计81个测点。图8 桥面厚度总偏差分布图 通过对桥面沥青铺装层厚度检测数据进行分析,本次桥面铺装层厚度81个测点中总偏差介于0 cm~3 cm居多,共计78处,占总测点的96.3%。进一步计算分析,桥面铺装实测厚度较原设计值厚约1.7 cm,从而造成箱梁跨中下缘增加0.008 MPa的拉应力。2.3 预应力损失测算 为进一步了解该预应力混凝土连续箱梁目前的应力分布状况,推断该部位受力状态,采用应力释放的方法对该桥进行恒载作用状态下的应力量测。钢筋应力释放法是指在桥梁在自重、预应力等持久荷载作用下,结构及其中的普通钢筋存在较大的应力,通过切割普通钢筋进行应力释放,则释放出的应力值就等于结构现存的应力值,由此分析结构的实际有效预应力或结构的预应力度,从而对整个结构进行评价[4]。(1)测点布置。选取主线桥左幅第13跨正弯矩控制截面进行应力测量,截面的位置示意图如图9所示。应力测点选取箱梁底板底面上层顺桥向钢筋进行试验,应力测试方向与桥梁纵轴线平行,用以测试纵向弯曲应力。图9 应力释放位置示意图(2)测试结果。采用桥梁专用有限元计算分析软件 MIDAS/Civil 2012 对结构进行建模计算[5],通过对模型施加自重、二期恒载、预应力及收缩徐变荷载,求得结构在恒载作用下[6]的结构应力图如图10所示。图10 恒载作用下应力图 通过计算可得,箱梁底板应力释放位置恒载作用下的最大压应力值为 4.53 MPa[6],即最大压应变ε=139.4με。现场实测钢筋应变εg=122με,因此主线桥有效预应力度约为88%。通过应力释放试验,此推定预应力钢束损失约为12%。考虑到该方法目前无相关规程可依,因此该测试结果仅供参考。2.4 承载能力试验 结合本桥受力特点和现场病害情况,选取左幅第3联(跨径组合为3×25 m+30 m+25 m)进行荷载试验,利用桥梁专用有限元计算分析软件MIDAS/Civil计算在设计荷载(汽车-超20、挂车-120)作用下的最大内力值[7-8],并根据测试截面(见图11)影响线进行等效加载[4-7]。图11 荷载试验测试截面位置(单位:cm)根据计算结果结合现场实际情况,试验测试工况为:工况1(第13跨最大正弯矩工况),工况1(12#墩顶截面最大负弯矩工况),工况3(第12跨最大正弯矩工况)。试验时应变测点布置在箱梁底板及腹板,具体位置见图12,挠度测点布设在各跨跨中、墩顶及四分点位置。图12 应变测点布置示意图(单位:cm)表3 静载试验测试结果试验工况 设计内力值/(kN·m)应变 /με 挠度试验内力值/(kN·m)加载效率/mm计算值 实测值工况1 5947 5625 0.98 69 85 -7.53 -8.77工况2 -3854 -3930 1.02 -44 -59 — —工况计算值 实测值3 5808 5755 0.99 73 87 -4.34 -6.68 通过对每个试验工况作用下的数据分析计算,桥梁试验跨主要控制测点结构校验系数均小于1,主要测点相对残余变位或相对残余应变均小于20%;但试验过程中通过对第12跨跨中截面选取的10条横向裂缝宽度的监测发现,裂缝宽度随荷载等级的增加呈现增大趋势,属于结构裂缝,对结构承载力有一定影响。3 原因分析 3.1 桥梁设计原因 根据设计图纸,以主线桥第3联为例进行计算,该联为3×25 m+30 m+25 m预应力混凝土连续箱梁,计算结果显示,在正常使用极限状态下,该桥30 m跨跨中下缘拉应力达3.06 MPa,已不满足部分预应力A类混凝土构件要求。即在理论计算上存在开裂的可能。现场检查中也发现,该跨跨中附近存在大量横向、L型、U型裂缝,裂缝形态与弯曲受力裂缝一致。具体可见图 13[8-15]。根据桥梁设计单位提供的计算书,30 m跨径跨中位置正常使用极限状态组合2(移动荷载作用下(汽车-超20)+永久荷载(结构自重、预应力、混凝土收缩及徐变影响力)+温度荷载),法向拉应力为3.39 MPa,正常使用极限状态组合3作用下(移动荷载(挂—120)+永久荷载(结构自重、预应力)),法向拉应力为4.41 MPa,均超过了规范对A类构件的容许应力 2.34 MPa。图13 主线桥左幅第3联正常使用极限状态截面下缘正应力包络图 综上可得,桥梁在原设计状态下应力较大,存在开裂可能。同时,设计时所依据的《公路钢筋混凝土及预应力混凝土桥涵设计规范》[5](JTJ 023—1985)中规定对缺少实测资料时,对温度梯度仅考虑桥面板升温5℃,与现行规范有明显差距,也是应力储备考虑不足的原因之一。3.2 桥梁施工原因(1)混凝土强度偏低:钻芯取样法的测试混凝土强度最低仅为 38.7 MPa,小于设计强度 40.0 MPa,混凝土强度偏低在一定程度上增加了开裂风险。(2)桥面铺装层偏厚:实测桥面铺装厚度明显大于设计值,从而造成箱梁跨中下缘增加了0.008 MPa左右的拉应力。(3)其它可能的原因:施工时的预应力张拉不足或存在损失(应力释放结果表明预应力钢束损失约为12%)、混凝土浇注质量差(梁体外观存在大量的蜂窝、露筋、混凝土不平整)。4 结 论(1)在设计阶段需采用不同的方法计算,在结构设计计算时采用平面分析,而在施工阶段需采用空间分析验算的结论。必要时采用实体模型对箱梁的底板下缘纵向正应力、顶板下缘横向正应力进行验算[9]。(2)施工阶段应加强对预应力损失的控制和检测,选择合理的张拉器具、规范张拉工序,做到预应力张拉值和均匀度满足规范要求。(3)当预应力混凝土箱梁底板较多横向受力裂缝时,说明该桥承载能力下降,应立即采取相应方法对结构进行补强(如粘贴钢板等方法),进一步提高结构承载能力。(4)施工阶段要严格按照规范进行施工作业,施工质量的低下是造成该桥裂缝产生的主要原因之一。参考文献: [1] 公路桥涵养护规范:JTG H11—2004[S].北京:人民交通出版社,2004. [2] 公路桥梁加固设计规范:JGJ/T J22—2008[S].北京:人民交通出版社,2008. [3] 钻芯法检测混凝土强度技术规程:CECSO3:2007[S].北京:人民交通出版社,2008. [4] 北京迈达斯技术有限公司.midas Civil2010分析设计原理手册[M].北京:北京迈达斯技术有限公司. [5] 公路钢筋混凝土及预应力混凝土桥涵设计规范:JTJ 023—85[S].北京:人民交通出版社,1985. [6] 公路桥涵设计通用规范:JTJ 021—89[S].北京:人民交通出版社,1989. [7] 公路桥梁承载能力检测评定规程:JTG/T J21—2011[S].北京:人民交通出版社,2010. [8] 朱汗华,陈孟冲,袁赢杰.预应力混凝土连续箱梁桥裂缝分析与防治[M].北京:人民交通出版社,2006. [9] 李增锋,庄一舟,程俊峰,等.横向预应力对装配整体式空心板桥纵向抗裂性能的影响[J].水利与建筑工程学报,2017,15(3):127-133. [10] 单积明,蔡 飒,伍 静.山区高速公路单向纵坡箱梁桥梁体纵向滑移分析[J].水利与建筑工程学报,2017,15(2):176-182. [11] 史慧彬.砼桥梁有效预应力检测方法试验研究[D].西安:长安大学,2007. [12] 朱利明,刘 华.三腹板预应力混凝土连续箱梁底板纵向裂缝病害原因分析及对策[J].桥梁建设,2005(S1):114-116. [13] 叶 俊,吴小军.预应力混凝土连续箱梁跨中横向裂缝原因分析[J].公路交通科技(应用技术版),2012(12):243-244. [14] 张兆宁,贺拴海,赵 煜.底板横向裂缝对箱梁强度及刚度影响模拟分析[J].郑州大学学报(工学版),2011,32(6):18-21. [15] 谭 竣.预应力混凝土连续箱梁桥的顶板力学性能研究[J].中外公路,2009,29(5):131-134.

Analysis of Lateral Cracks on the Bottom of Prestressed Concrete Bridge Box Girder WU Jing,MENG Bo(Beijing Construction Engineering Quality Third Test Institute Co.,Ltd.,Beijing 100037,China)Abstract:Due to good mechanical behavior,the prestressed concrete box girder has been applied rapidly in the highspeed bridge interchange project,however because of the complexity of the structure stress and the construction technology,difficult in quality control and other reasons exist in the design and construction,there are a large number of surface cracks in part of the bridge in use,which seriously affect the normal use of the bridge,there is impacts on the bearing capacity of the structure for sure.In this paper a prestressed concrete box girder bridge is taken as an example,based on the strength of materials,pavement layers thickness,prestress loss,bearing capacity evaluation and other aspects of the box girder bottom surface transverse cracks are analyzed to prevent such cracks,improving measures are also proposed which can provide reference for similar engineering. Keywords:highway engineering;prestressed concrete;box girder;transverse crack;load-bearing capacity 中图分类号:U448.21+3 文献标识码:A 文章编号:1672—1144(2018)01—0091—06 DOI:10.3969 /j.issn.1672 - 1144.2018.01.016 收稿日期:2017-08-20 修稿日期:2017-09-27 作者简介:伍 静(1990—),女,四川雅安人,助理工程师,主要从事桥梁建设及加固设计。E-mail:coolsxim@yeah.net

第四篇:探析预应力混凝土箱梁裂缝成因

探析预应力混凝土箱梁裂缝成因

更新时间 2010-2-7 10:45:32 打印此文 点击数

摘要:随着混凝土箱梁结构在桥梁设计中的不断推广和应用,该桥型在施工和使用过程中已出现了许多裂缝,本文通过阅读大量的文献和资料,总结了混凝土箱梁裂缝产生的原因。

关键词:预应力;混凝土箱梁;裂缝

1使用混凝土箱梁的优点

在已建成的大跨度预应力混凝土梁桥中,当跨度超过40m后,横截面大多采用箱形截面。其主要优点是:

①箱形截面是一种闭口薄壁截面,其抗扭刚度大,截面效率指标较T形截面高,结构在施工和使用过程中都具有良好的稳定性。②顶板和底板面积较大,能有效地承担正负弯矩,并能满足配筋的需要,适应具有正负弯矩的结构,也更适应于主要承受负弯矩的悬臂梁、T形刚构等桥型。③适应现代化施工方法的要求。④承重结构和传力结构相结合,使各部件共同受力,截面效率高并适合预应力混凝土结构的空间布束,因此具有较好的经济性。⑤对于宽桥,由于抗扭刚度大,内力分布比较均匀,跨中无需设置横隔板就能获得满意的荷载横向分布。⑥适合于修建曲线桥,并具有较大的适应性。⑦能很好适应布置管线等设施。在设计上,箱形截面可极大地发挥预应力地效用。可提供很大地混凝土面积用于预应力束地通过,更关键地是可提供较大地截面高度,使预应力束有较大的力臂。因此,桥梁设计师可发挥箱梁和预应力地特点,顶底板纵向钢束采用平弯和竖弯相结合的空间曲线,集中锚固在腹板顶部的承托中(或锚固在腹板中),底板钢束尽可能靠近腹板加厚板(齿板)并在其上锚固。2预应力连续箱梁裂缝的产因

预应力连续箱梁的裂缝类型主要有:边跨斜裂缝,边跨水平裂缝,中跨斜裂缝,中跨水平裂缝,边跨的水平裂缝、斜裂缝同时发生,中跨的水平裂缝、斜裂缝同时发生,底板、顶板纵向裂缝,底板、顶板横向裂缝、箱梁横隔板的放射性裂缝,预应力锚固部位齿板附近裂缝。

预应力混凝土连续箱梁裂缝从成因角度可分为:由荷载效应(如弯矩、剪力、扭矩及拉力等)引起的裂缝、由外加变形或约束引起的裂缝,主要包括“基岩效应”、地基不均匀沉降、混凝土收缩、外界温度的变化等、钢筋锈蚀裂缝、预加力次效应引起的裂缝、建材原因引起的裂缝。

根据裂缝产生部位的不同我们可将其分为:翼缘板横向裂缝和腹板斜裂缝两种。①翼缘板横向裂缝一般发生在箱梁受纵向弯矩较大处的受拉翼缘板处,横向裂缝一般均发生在跨中底板翼缘。对于连续箱梁,横向裂缝还发生在支座负弯矩处的顶板翼缘,并且大部分出现在距支点1/3跨径范围以内,越靠近支点裂缝越严重,对于该类型裂缝,主要有以下原因引起,首先,设计时翼缘板有效分布宽度考虑不足,薄壁箱梁翼缘板有效分布宽度问题实际上就是剪力滞问题,由于理论计算剪力滞效应较为繁琐,不适于工程应用,各国普遍采用有效分布宽度的概念。由于剪力滞效应的考虑不足或计算值安全储备较低,在一些特殊荷载工况下容易发生应力过度集中,腹板处翼缘应力波峰超过允许值,因而首先在该处发生横向裂缝。在多年反复荷载的作用下,裂缝横向发展,向翼缘板中部扩展,以至于形成横向通缝。对于薄壁箱梁桥的翼缘板横向裂缝,病害原因多归于此。其次,混凝土徐变引起横向裂缝,在长期荷载作用下,受混凝土徐变影响,箱梁在运营6年~7年后跨中均有不同程度的下挠现象。较大的形变引起箱梁应力重分布,给结构带来附加被动应力。由于结构所受到的外荷载不变,各截面应力增加是由附加弯矩不断变化引起的,附加弯矩随时间不断增加,直到混凝土徐变停滞为止。同时,预应力松弛也会引起横向裂缝,对于预应力混凝土结构,箱梁内部预应力对结构应力状态有较大的影响,随着桥梁运营时间的增长,预应力钢束发生松弛效应,并且越来越明显。在现代施工中一般采用低松弛钢绞线材料,并且规范张拉工艺,但在具体操作中难免会出现与规范不相吻合的情况,力筋长期持荷加之混凝土收缩徐变影响,预应力损失也是相当严重的。同时,选用钢筋不合理也会引起横向裂缝,对于普通钢筋混凝土箱梁,钢筋与混凝土的粘结力对结构的整体刚度和裂缝的扩展有较大的影响。我们应该选用表面不光滑、化学吸附作用和握裹力都较强的预应力钢筋。

②腹板斜裂缝一般发生在支点至1/4跨之间。对于预应力和非预应力箱梁,在施工阶段以及在运营阶段,腹板经常出现斜裂缝,斜裂缝同样有多种因素引起,有设计计算、设计构造配筋、施工工艺、气候条件、日常维护、荷载工况等。部分因素在导致翼缘板出现横向裂缝的同时也是腹板斜裂缝的主要原因,首先,预应力损失过大导致腹板主拉应力过大,由于纵向预应力损失的存在,部分预应力损失超过设计计算值导致截面抗弯承载力严重下降,从而产生翼缘板横向裂缝。对于预应力混凝土薄壁箱梁结构,预应力损失也是腹板斜裂缝的主要病害原因,预应力损失量估计不足或者在实际张拉过程中操作不当引起应力损失量加大等情况经常发生,导致力筋的有效预应力达不到设计要求,从而腹板因主拉应力超过容许值而发生开裂。竖向预应力钢筋较短,张拉后少量的回缩即可产生较大的预应力损失,分批张拉产生的弹性压缩可以使预应力损失达11%,如果有超张拉情况,其损失率更大。悬臂对称施工时,挂篮一般后锚于竖向预应力螺纹钢上,在施工荷载的作用下,预应力损失也比较大。其次,温度梯度过大会导致腹板剪切应力过大,从而产生腹板斜裂缝。在阳光充足的地区,太阳直射桥面,因而桥面板温度急剧升高,靠近水面的底板温度较低,两者形成温度梯度。对于目前普遍采用的大跨度、变截面箱梁,随着截面高度变化幅度的增加及箱梁长度和支撑约束的增加,温度梯度应力沿梁长方向变化较快,对于气温变化较为强烈的地区,由于顶板翼缘受外界温度影响较大,随外界气温变化波动较为明显,导致腹板拉压应力交替频繁,在应力幅度变化较大的区域也容易出现斜裂缝。同时,腹板抗剪强度设计值不足也会造成腹板斜裂缝的出现。设计薄壁箱梁的首要目的是减轻结构自重,降低材料使用量,所以其腹板与翼缘板设计厚度较薄。箱梁腹板面积与抗剪承载力有密切的关系,而薄壁箱梁腹板面积与普通箱梁相比是小得多得,在无预应力作用情况下,腹板依靠提高腹板的箍筋配筋率和弯起钢筋得数量来提高其抗剪能力。但是在腹板厚度有限的条件下,其提高值亦是有限的。所以,薄壁箱梁腹板抗剪能力相对于普通混凝土箱梁较小,斜裂缝容易发生。3结语

预应力箱梁在正常使用极限状态下不应该出现梁体裂缝,但是已建预应力混凝土箱梁桥上的开裂情况却非常普遍,因此我对预应力混凝土箱梁桥典型裂缝成因进行了系统总结,望能为混凝土箱梁的设计和施工起到一定的参考价值。

参考文献:

[1]范立础,顾邦安.桥梁工程(上册)[M].北京:人民交通出版社,2004.[2]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.[3]杨文化.预应力混凝土连续箱梁桥腹板抗裂性研究[D].长沙:湖南大学,1999.[4]陈性凯.广州华南大桥箱梁裂缝的初步分析[J].中国市政工程,1997,(3):27-29.[5]李少波.混凝土桥梁上部结构裂缝综述[J].铁道勘测与设计,1998,(1):6-10.[6]蔡斌.连

第五篇:预应力混凝土箱梁裂缝成因分析及处治

预应力混凝土箱梁裂缝成因分析及处治

作者:郑世金 廖建军

时间:2009-4-15 11:24:05 来源:城市建设2月的20期

摘 要 : 对20m预应力混凝土箱梁出现裂缝的原因分析,提出控制、处理裂缝的经验。

关键词 : 箱梁 裂缝 分析 处治

以甬台温高速公路桥梁中的20m预应力混凝土箱梁为例,分析裂缝发生的原因提出控制、处治混凝土箱梁的裂缝的经验。

1裂缝情况及分析

裂缝是混凝土结构普遍会遇到的现象,出现裂缝的原因主要有:一类是由外荷载引起的裂缝,也称结构性裂缝或受力裂缝,表示结构承载力可能不足或存在严重问题,须在结构设计时对设计荷载进行全面考虑;另一类裂缝是由变形引起的,也称非结构性裂缝,指变形得不到满足,在构件内部产生自应力,当该自应力超过混凝土允许应力时,引起混凝土开裂。根据调查发现,在施工过程中出现的裂缝基本上为变形裂缝,引起该类裂缝的原因主要有:(1)混凝土浇注后处于塑性阶段,由于混凝土骨料沉落及混凝土表面水分蒸发而产生裂缝。(2)混凝土凝固过程中因收缩而产生裂缝。(3)由于温度变化产生的裂缝,结构随着温度变化时受到约束,在混凝土内部产生应力,当此应力超过混凝土抗裂强度,混凝土便开裂,即产生温度裂缝。(4)施工不当产生裂缝。

从现场裂缝情况看,裂缝分布部位,裂缝方向、出现时间具有一定的规律性。裂缝都分布在跨中中横处的腹板位置,且两面对称,时间一般为拆模后两天左右。防止裂缝产生及外治措施:

2.1 由混凝土质量引起的非结构裂缝,可以采取以下防止措施:控制及改善水灰比,减少砂率,增加骨料用量,严格控制坍落度,混凝土凝固时间不宜过短,下料不宜过快,高温季节注意采取缓凝措施,避免水分急剧蒸发,混凝土振捣密实,改善现场混凝土的施工工艺,同时注意混凝土的施工防雨、养护及保温工作;结构内部布置防裂钢筋,以提高混凝土的抗裂性能;一旦裂缝出现,可以用环氧树脂、固化剂、丙酮按1:05:0.25的比例配合进行修补,将裂缝周围5厘米内的混凝土用钢刷刷毛吹净,用酒精清洗后,再用丙酮擦洗一次,在涂环氧树脂,1 贴玻璃布,以后再涂一层环氧树脂。玻璃布要求经5%浓度的纯硷水煮沸脱脂,用清水冲洗干净并烘干。这种封闭处理,能保证日后运营过程中梁体内钢筋不受大气腐蚀,提高结构的使用寿命。

2.2由于温度应力引起的非结构裂缝,鉴于先行《公路钢筋混凝土及预应力混凝土桥涵设计规范》对温度荷载引起的横向温度应力考虑偏小,设计时应予以重视,可以通过配置足够的温度应力钢筋、增加结构的安全储备等措施来防止裂缝的产生(施工过程中作者变更了设计,在腹板加了一倍的纵向钢筋);同时在施工时,应尽量选择温度低的时间浇注后半天(利用早、晚进行施工)。热天浇注混凝土时,应降低水温拌制,选用水化热小和收缩小的水泥,合理使用减水剂,加强振捣以减少水化热,提高混凝土的密实性和抗拉强度,并注意混凝土表面湿润,同时在腹板留通气孔,达到张拉强度及时张拉压浆。

2.3 作者在施工中对20米预应力混凝土箱梁裂缝的控制方案和已出现裂缝的处理办法是:(1)裂缝的控制方案:A、在腹板处两面对称增加通长纵向钢筋,根数为原设计的一倍。B、控制好混凝土的浇注时间和浇注时的温度,安排在早、晚或温度低的时候进行混凝土浇注。C、及时养护,并用塑料布进行覆盖,保持混凝土表面湿润。D、在腹板处每隔5米留一个通气孔,保证混凝土箱梁在拆模后通风散热,保持梁体内外温度基本一致。E、及时拆模、及时张拉,当混凝土达到拆模强度时就及时拆模,当混凝土强度达到设计张拉强度时就及时张拉压浆。(2)裂缝的处置措施:用环氧树脂、固化剂、丙酮按1:0.5:0.25的配合比进行修补。将裂缝周围5厘米内的混凝土用钢刷刷干净,用酒精清洗后,再用丙酮擦洗一次,再涂环氧树脂,贴玻璃布,之后再涂一层环氧树脂。玻璃布要求经5%浓度的纯硷水煮沸脱脂,能保证日后运营过程中梁体内的钢筋不受大气腐蚀,提高结构的使用寿命。通过以上的控制方案和防处治措施,在以后的箱梁预制过程中再没有出现裂缝,并通过对裂缝的处治也不影响梁体的正常使用。结论:

预应力混凝土箱形结构产生裂缝很常见,但可避免或减少,关键是在设计时,认真验算,合理布置构造钢筋或预应力筋,对易出现裂缝的部位,通过施工过程的严格控制,尽可能地避免开裂或减少裂缝的数量,减少裂缝的长度和宽度,通过对裂缝的妥善处理,控制裂缝的发展,使裂缝不至于对结构产生危害,保证结构的正常使用。因此,对于裂缝的问题,设计者和施工人员都应予以重视。

下载箱梁预应力张拉混凝土结构裂缝修补方案word格式文档
下载箱梁预应力张拉混凝土结构裂缝修补方案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    现浇箱梁预应力及张拉施工工艺

    现浇箱梁预应力及张拉施工工艺 1、波纹管铺设 1.1、采用金属波纹管。波纹管在安装前,应逐根进行外观检查,确保波纹管质量。 1.2、波纹管的铺设要严格按设计给定孔道坐标位置控......

    20m预应力混凝土箱梁裂缝成因分析及处治

    20m预应力混凝土箱梁裂缝成因分析及处治 [ 提要 ] 本文根据在预制20米预应力混凝土箱梁过程中发现的问题,从混凝土物理、化学及力学等角度分析,并通过施工工艺的严格控制,总结......

    预制箱梁张拉方案.

    预制小箱梁张拉压浆专项方案 一、工程概况 本项目是国道 104穿越济南市区的一部分, 同时也是济南市的二 环东路,是规划的双快路的一部分,上部为城市快速路,下部地面道 路为......

    预应力混凝土箱梁裂缝成因及对策研究(大全五篇)

    预应力混凝土箱梁裂缝成因及对策研究 刘燕明 中铁十七局集团第三工程有限公司,河北 石家庄 050227 摘 要:预应力混凝土箱梁有害裂缝的存在,会威胁到结构安全,降低结构的使用寿命......

    预应力混凝土箱梁施工管理论文

    摘要:文章主要以山西省太佳高速公路(吕梁段)第八合同段预制梁场施工为素材,从技术管理的角度对高速公路施工预制梁场在混凝土梁(板)预制过程中的技术管理作了论述,对预应力混凝......

    预应力混凝土现浇连续箱梁支架拆除方案

    厦门市××大道××××××××桥 预应力混凝土现浇连续箱梁 支架拆除方案 厦门×××××项目部 二○一三年十月十五日 一、工程概况: B匝道桥共设置4联,采用[(3×30)+(30+45......

    现浇预应力混凝土连续箱梁的施工

    最新【精品】范文 参考文献专业论文 现浇预应力混凝土连续箱梁的施工 现浇预应力混凝土连续箱梁的施工 [摘要];道路施工中桥梁上部采用箱形截面,下部采用独柱墩,具有桥梁外形......

    现浇预应力混凝土连续箱梁施工方案(五篇材料)

    现浇预应力混凝土连续箱梁施工方案 k44+555丁桥分离立交的13#-16#墩的上部结构采用现浇预应力混凝土连续箱梁,跨径布置为22+26+22m,箱梁高度1.3m。采用满堂式钢管门型架,支架放......