第一篇:基于线损分析的电能计量装置误差(精)
基于线损分析的电能计量装置误差
线损分析,是电力企业为降低供电过程中电能所采取的各种组织措施和技术措施的总称。当前,在能源短缺的情况下,努力降低线损,提高能源利用效率,以向用户提供更多的电力,对促进工农业生产,节约动力资源,降低供电成本,具有不可低估的经济价值和现实意义。线损主要包括可变损耗、固定损耗和其他损耗。目前很多专家学者对可变损耗和固定损耗的研究比较多,本课题主要研究属于其他损耗的电能计量装置误差对线损的影响。本文采用理论联系实际的方式,从线损率概念入手,介绍线损分析的原理方法以及相关的线损专业知识,通过查找设备技术参数计算理论线损,利用电量报表计算统计线损,然后将两者进行比较,找出线损异常的线路,对电能计量回路的二次负载、二次压降、电压切换装置、互感器容量及准确度、电缆长度及截面积、电能表的准确度分别进行了细致地分析研究。利用测试电能表误差、电压互感器二次压降、互感器二次负载等一系列先进技术,研究发现二次压降和二次负载是影响电能计量装置误差的最主要原因。研究发现隔离刀闸辅助接点、端子柜内二次空气开关均存在不同程度的二次压降,这在日常工作中极易被忽视。结合油田热电厂110kV系统升级改造对影响线损的因素提出了有针对性的改进措施,采用计量专用的电压互感器绕组和电流互感器绕组,使用高精度电子表替代高能耗感应表,有效地降低了二次压降和二次负载,从而减少了电能损耗,有效地降低了线损,最终让企业达到节能增效的目的。最后,通过张铁匠变电所和油田热电厂两个实例,利用理论线损计算和电量平衡等方法,结合先进测试技术,在实际研究中归纳总结出影响电能计量装置误差的诸多原因,并对其采取了相应措施,取得了良好的节能效果。同主题文章 [1].丁鸿志.农村0.4kV分户电能计量装置的管理' [J].农村电工.2005.(03)
[2].强建华,李政育.35KV电能计量装置的改造' [J].河南科技.1999.(09)
[3].陈伟红.电能计量装置误差范围的选择与调整' [J].能源工程.1999.(01)
[4].尚育红.加强农村电网低压电能计量装置的管理' [J].大众用电.2006.(01)
[5].张广科.电能计量装置智能定位转换系统简介' [J].供用电.2001.(06)
[6].天津电能计量管理系统通过验收' [J].电力设备.2005.(09)
[7].胡万明.如何加强电能计量装置的巡视检查' [J].农村电工.2006.(06)
[8].丁辉.电能计量装置的误接线分析' [J].水电站机电技术.2001.(04)
[9].舒华.如何正确选择电能计量装置及安装检查' [J].中国计量.2007.(07)
[10].苏崇文,江迪.运行中电能计量装置的质量监测' [J].大众用电.2001.(03)
【关键词相关文档搜索】: 电气工程;线损;电能计量;电能表;电压互感器;电流互感器
【作者相关信息搜索】: 天津大学;电气工程;王守相;王秀琦;
第二篇:10kV电能计量装置影响线损的分析
10kV电能计量装置影响线损的分析
摘 要:通过营业普查,对
县10kV线路线损较高的原因进行分析,发现三相三线式电能计量装置本身存在着一定的弊端,影响了计量装置准确度,并制定了防范措施,为准确计算线损提供有效依据。关键词:计量装置;准确度;分析
引言:
我公司所辖的10kV线路,线损一直偏高。本文对电能计量装置综合误差组成部分:电能表本身误差,电压、电流互感器的合成误差和二次回路连接导线压降误差,逐一进行了分析,并制定了相应整改措施。
0 问题的提出
在营业普查时,曾发现某高压计量用户处于停产状态,负载电流基本为零,而有功电能表倒转,现场拉开配变低压侧负荷开关,电能表仍然倒转且转速不变,为此对负荷侧设备进行检查,发现该用户配变低压侧安装电容补偿装置,其中一组接线端子有油泥污垢,造成C相接地,致使电能表倒转。将该组电容器退出运行后,电能表恢复正常。同样在用户检修时也曾发现,由于用户使用单相电焊机造成有功电能表倒转。以上两种情况都不同程度造成少计电量,直接影响了计量的准确度。
计量方式存在缺陷
公司所属变电站10kV出口及高压用户计量方式多为三相三线计量方式,在三相三线电路中,使用两元件电能表计量三相三线负荷电量,只需两块电流互感器(TA)即可实现三相电能计量,因此三相两元件电能计量方式具有接线简单,成本低的特点,多数户外高压计量箱采用该计量方式,但该计量方式也存在缺陷。三线两元件电能表与电压、电流互感器联合接线原理图如图—1。
PJ电源侧TV1TV2TA1TA2负载侧图-1 三相两元件有功电能表与电压、电流互感器联合接线原理图ÜuvÜuφu30oİuÜwv30oİwÜwφwÜv图-2 三相两元件有功电能表向量图
1.1,电能表方面分析:在三相两元件电能表中,U相元件的测量功率为:PU= UUVIU cos(30°+φ),其原理向量如图—2。若在U相与地之间接入电感性负载,如电焊机之类,此时当三相负载电流较小时,负载电流IfU与电感电流IL叠加后使总电流IU与UUV的夹角差小于90°,电能表转速变慢;而当总电流IU与UUV的夹角相位差大于90°,cos(30°+φ)﹤0,即PU= UUV IU cos(30°+φ)﹤0,则电能表反转。见图-3
ÜuvÜuΦu>90°İuİfu30oÜwvİLÜwÜv图-3 三相两元件有功电能表只有U相感性负载向量图
在三相两元件电能表中,W相元件的测量功率为:PW = UWV IW cos(30°-φ)。若在W相与地之间接入电容,则电流IW超前电压UWV。与U相接入电感负载的原理类似,电能表有可能出现转速变慢、停转、甚至反转。
因三相两元件电能表只有U、W相元件,V相负载电流没有经过电能表的测量元件,若在V相与地之间接入单相负载,此时没有电流流过电能表的电流线圈,电能表对该单相负载就会漏计电量。
1.2 改进措施:
针对上述情况,对采用三相三线两元件电能表的计量方式的用户,在配变低压侧安装了三只TA配三只感应式无止逆单相电能表或者配三相四线电能表的计量装置,并将其写入《鄄城县供电公司用电管理办法》,高压计量用户未安装低压计量装置不予送电,不仅可以避免因电容器损坏以及使用电焊机造成电量少计,而且可以有效地防止窃电现象的发生。
三相两元件有功电能表,设计制造基本原理是在三相电源、负载对称的基础上进行的,所以要尽可能做到三相负载的对称,使iU+iV+iW=0,三相所带负荷性质均衡。电压、电流二次回路方面:
2.1变电站10kV出口计量回路改造
随着我公司负荷急剧增加,近年来相继建设并投运35kV变电站,电源分布更趋合理,输电线路状况也明显改善,但10kV线损仍然居高不下。以35kV冀庄变电站10kV线路为例,10kV线损每月完成均在5%以上。08年,对35kV冀庄变电站10kV线路进行更换导线改造,线路损耗明显下降;但是线损仍然偏高,经过多方面分析,问题出现在变电站计量装置方面。冀庄站建站比较早(03年进行了自动化改造),但是10kV电压互感器(TV)仍是旧设备(型号为:JSJW-10,出厂日期为:1986.11)。其二次电压回路,经过了10kVTV隔离刀闸的辅助接点,并且安装了熔断器,又分支到本站系统各个保护测控单元,现场通过对二次电压回路进行测量发现,电压互感器二次电流达到1.3A,即电压互感器负荷达到130VA,而电压互感器额定输出功率为120VA,长期超负荷运行,进行二次压降测试,合成误差达到1.2%(仅二次回路中熔断器产生压降为0.1%),远远高于规程规定0.2%的标准。而电流互感器二次回路中间环节也较多,在变电站自动化改造时又串入了部分测量保护设备,由于早期电流互感器容量比较小,多为5VA,使电流互感器二次长期超负荷运行,势必使电流互感器的比差增大。
为解决电压回路问题,将电压互感器进行检测,其检测结果误差符合规程要求,说明问题不在互感器本身,主要在二次回路上,该站电压互感器安装在10kV高压室内,距离计量
2柜较远,电缆敷设迂回幅度大,长度达30米,线径为4*1.5 单芯铜线,将原来电2缆更换为6*4 单芯铜线,依据《电能计量装置技术管理规程》和该站设备运行情况,mmmm取消了10kVTV隔离刀闸的辅助接点这一中间环节,为彻底解决电压互感器二次超负荷问题,将原来机械表全部更换为多功能电子式电能表,将未运行的电能表全部拆除。由于多功能电子式电能表功耗远小于机械式电能表,二次负载减少50%以上,同时将原来集中安装在主控室计量柜改为出线开关柜内,大大缩短了电能表与互感器之间的距离,加大了导线线径,拆除电流二次回路所有与计量无关的设备,减少了中间环节,大大减小互感器二次负荷。
为了减少误差,电流互感器与电能表之间连线方式严格执行新规程,若采用2只电流互感器则二次绕组与电能表之间用四线连接,若采用3只电流互感器则二次绕组与电能表之间用六线连接,不再采用简化的三相或四线接线方式。上述改造全部完成后,在一定程度上提高了计量装置的准确度,对该站10kV线损进行考核,改造后基本稳定在3.7%左右。
2.2,用户高压计量改造方案
用户高压计量装置,多采用户外安装方式,与变电站出口相比,二次电压、电流回路距离比较短,TA、TV所带负载较少,压降基本符合规程要求,但是部分计量箱运行时间较长,电表箱内的接线端子锈蚀严重,且采用压片式连接,接触电阻增大造成计量不准,为此更换
2了老化的接线端子排,减少了接触电阻,二次回路导线一律采用4单芯铜导线,大
mm大减少了电压二次回路压降及TA二次负载,从而提高了计量准确度。
3,合理选用电能计量装置
3.1,推广使用多功能电子表
多功能电子表由测量单元和数据处理单元等组成,除了具有计量有功、无功电能外,还具有分时计量、失压、失流、最大需量、负荷监控、故障报警、数据储存及RS485 /RS232数据接口等功能,多功能电子表还具有表损低(有功损耗不大于2W)、误差性能好,且比较稳定,因此推广使用多功能电子表。我公司所有35kV变电站出口表计已全部更换为多功能电子表,变电站已实现远程实时抄表,对线损进行实时监控,随着用户多功能电子表的推广普及,逐步实现10kV用户表计的远程集抄、远程费控。通过RS485/RS232接口,或GPS通讯接口,安装用电系统终端,对用户用电负荷情况进行实时监测,给客户经济运行提供了资料,同时有效地遏制窃电行为的发生。
3.2,电压、电流互感器的合理选用
公司所属10kV高压用户多属第III、IV类电能计量装置,按照新的DL/T448-2000《电能计量装置技术管理规程》要求,应配置准确度为0.5S级,二次负荷容量较大的电流互感器,并且电流互感器的额定一次电流,应保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%。当电流互感器变比选大时,实际负荷电流将低于电流互感器的一次额定电流的30%,特别当负载电流将低到标定电流的10%及以下,电流互感器的比差值增加,并且是负误差;当变比选小时,电流互感器长时间过负荷运行也会增大误差,并且铁芯和二次线圈会过热使绝缘老化。如有一台315kVA变压器,负荷率为70%左右,高压侧计量应选用变比100/5A电流互感器。所以要根据实际负荷,及时调整电流互感器的变比。
电流互感器和电压互感器合理组合使用:将互感器的比差绝对值相当而符号相反,角差绝对值相等而符号相同的电压和电流互感器组成一组配套使用。这样,可使电压互感器和电流互感器的误差互相补偿,以减小电能计量装置的综合误差。
4,结束语
通过上述对运行的电能计量装置改造,使运行中的电能计量装置的综合误差降低到最低限度,为进一步科学管理线损提供依据。对新安装电能计量设备,电能表、电力互感器选型合理,安装规范,确保安全、可靠、准确计量。截止到2010年2月份我公司10kV线损率完成5.32 %,同比下降 0.11 百分点,节电 6000kkWh。电能计量状况明显改善,降损效果显著,该方法值得在同行中推广应用与借鉴。
参考文献:
【1】中国电力出版社 《电能计量》王月志 主编
【2】中国计量出版社 JJG307-2006 《机电式交流电能表》蓝永林 主编
【3】国家质量监督检验检疫总局 JJG1021-2007《电力互感器鉴定规程》王乐仁 主编
手稿日期:2010-10-7
第三篇:感应式电能表电能计量误差的分析
感应式电能表电能计量误差的分析
摘要:电能计量直接关系到电力系统各项经济技术指标的实现,然而随着电网用电波动的加剧,峰谷差愈来愈大,计量系统在大幅度的工况变化中工作,使其计量误差增大,己成为电能计量不可忽视的问题。本文对感应式电能表的计量误差进行了简要分析。
关键词:感应式电能误差电能计量表的工作原理
电能计量通常包括单相电路、三相三线电路和三相四线电路有功无功的计量。计量装置主要部件是电能表,为了扩大量程需要,计量装置需加配部件,通常由计量用电流互感器和电压互感器以及连接互感器及电能表之间的二次回路构成。如果对象是低压小电流的电能计量则可通过一只电能表及电压电流回路构成计量装置来实现计量,而对于计量对象为高压大电流时则可采用电压、电流互感器及二次回路构成计量装置来实现。
众所周知,电能是功率对时间的积分,公式为:,其中,电能和功率的意义是不同的,但其数学表达式仅仅表现在时间参数上,电力领域研究电能计量时主要是以电功率的测量为主,通过电表来完成电功率与电能之间的数量转换,在表达电能时可以以电功率来表示。两部制电价在我国广为推行,主要以有功电量作为电费的收缴依据,无功电能的计量主要作用在于对用户功率因数的考核上,一般电能计量分析均以有功计量为主。
电能计量装置通常包括五部分:PT、CT、二次回路、电能表以及电能计量柜,电能计量的准确与否,与前四个部分的关系最为密切。实践表明,只有电能计量装置综合误差是衡量电能计量装置准确与否的唯一指标,而对于任何一个部分的误差,如电能表的误差,都不能代表整套计量装置的计量误差。从理论上讲,电能计量装置的综合误差 由三个部分组成,即
电能表的相对误差、互感器的合成误差,PT二次压降引起的误差,它们之间有这样的表达式: = + +。感应式电能表的误差分析
2.1 基本误差
电能表的基本误差会随着负载电流和负载功率因数变化而产生变化,它们之间存在着一个关系曲线,这个曲线即误差的特性曲线。对于任何一个合格的电能表而言,它的基本误差经出厂检验或检定机构调校后均会满足规程规定的要求,从而保证电能表误差特性的合理与稳定。
假定在任何负载条件下,转盘只受到与负载功率成正比的驱动力矩和制动力矩作用,可以得出转盘读数和负载电能成正比,这是电能表的工作原理,但是,现实情况却复杂的多,除了这两个主要力矩外,还有抑制力矩、寄生力矩、摩擦力矩、电流铁芯磁化曲线的非线性及补偿力矩、另外还有转盘位移的影响,都会使电能表即使在电压、频率和温度等因素都达到规定值的情况下,转盘转速也不会和负载功率始终保持成线性的正比变化的关系,这种情况直接影响到了电能表的基本误差。
通常为了保证感应式电能表的基本误差达到要求,误差调整装置会被安装在感应式电能表内部,通过对这些装置的调整,电能表的基本误差可基本控制在规定的正常范围内。这些装置:其一为满载调整装置,改变制动力矩的方式是通过调整制动磁铁,使得电能表的负载特性曲线上下平移。其二为相角调整装置,通过调节电流工作磁通与电压工作磁通间相位角的方式,使得相位角满足相位变化关系式,从而使电能表转速与功率成正比。其三为轻载调整装置,它是为了改善轻负载范围的负载特性曲线而设置的调整装置。其四为平衡调整装置,它可使三线电能表中各计量单元误差特性曲线基本一致,可改善电能表在不对称负载时的误差特性。
2.2 附加误差
确定电能表基本误差时,改变的往往只是负荷电流和功率因数,而其他条件只允许在一个很小的范围内变化,并且这个范围在电能表技术条件中明确规定,即确定电能表基本误差的外部条件。事实上,电能表在实际使用中所处的外部条件通常会与技术条件规定不同。譬如,市电交流电频率经常会偏离额定频率,电能表安装场所的环境温度和电网电压都可能会发生变化,且变化的幅度和范围会非常大,这些外部条件的改变会产生电能表的误差改变,那么这个改变的量就叫做电能表的附加误差。
1、电压、频率、温度变化对基本误差的影响。
若电能表电压线圈所加载的电压与额定电压不同,那么电压工作磁通和有关力矩随电压变化的比例也会不同,会使电能的读数出现电压的附加误差。若市电交流电的频率与额定频率之间有偏差,各磁通及其相位角都会产生变化,使电能表示数显示与cos 有关的频率附加误差。若环境温度产生变化后,制动磁通和电流、电压工作磁通及其损耗角都要改变,引起与cos 有关的温度附加误差。
2、波形畸变对基本误差的影响。
当前,非线性负载广泛存在于电网中,当某电网中有非线性负载时,畸变现象就会出现在负载电流的波形中。非正弦的负载电流会在输配电线路上引起非正弦的阻抗压降,那么即使电源电压为正弦波,负载端的电压也会是非正弦的。如此,加在电能表上的电压和电流都是畸变的波形。另外,在调试和检定电能表的时候,调试装置输出的电压、电流波形为理想的正弦波的情形往往也是很难保证的。
3、三相电压不对称对基本误差的影响
三相电压的不对称也是三相电能表误差产生的主要原因之一。首先,由于各驱动元件不平衡,即在相同的电压、相同电流和功率的情况下,各元件产生的驱动力矩和电流、电压抑制力矩
不相等,当一相电压升高而另一相电压同样降低时,作用在转动元件上的总力矩发生了变化。其次,即使各驱动元件平衡,但由于磁通FU与电压U并非线性关系,处在电压升高和降低的元件,其驱动力矩变化的绝对值也各不相同。另外,当三相电压不对称时,补偿力矩和电压抑制力矩随电压的平方成正比变化的关系也会引起附加误差。
4、负载不平衡和负载波动对基本误差的影响
三相负载不平衡会引起三相电能表误差变化。这种变化的主要原因包括各元件驱动力矩的不平衡,补偿力矩的影响,电流和抑制力矩的影响以及各驱动元件的相互影响等。对剧烈和频繁波动的负载,诸如电气机车、轧钢机械和电焊机等的负载计量,若负载增加时,电能表加速,制动力矩和电流、电压抑制力矩阻碍转盘加速,电能表少记电能;负载降低时,电能表减速,制动力矩和电流、电压抑制力矩阻碍转盘减速,电能表多记电能。由于转速下降所需的时间较长,电能表在负载降低时多记的电能会比电能表在负载增加时少记的电能要多一些,引起了正的附加误差。由此可知,转动元件的惯性矩、稳定转速和电流抑制力矩越小,波动负载引起的附加误差就越小;负载波动周期越短或负载电流越小,那么这个附加误差就越大。
5、电表位置倾斜对基本误差的影响。
在正常运行条件下,电能表也可能偏离垂直位置,从而产生倾斜误差,其根本原因是由于转动元件和上、下轴承的联接不精密,特别是下轴承的联接够精密,使得转动元件在轴承中发生了位移,驱动力矩和制动力矩以及转速都随之发生了改变。另外,电能表标准规定的容许倾斜误差只是属于负载电流大于50%标定电流的情况,这时驱动力矩较大,倾斜引起摩擦力矩的变化可以忽略。倾斜误差在本质上和转盘位移引起的误差很相似,倾斜角越大,侧压力和倾斜误差就越大。因此,合理地选择驱动元件和制动磁铁对转盘中心的相对位置,减小转动元件在轴承中产生的位移,是可以减小倾斜误差的。
第四篇:电能计量装置配置原则
电能计量装置配置原则
1.配置原则
(1)贸易结算用的电能计量装置原则上应配置在供受电设施的产权分界处:发电企业上网线路、电网经营企业间的联络线路两侧都应配置电能计量装置。
(2)I、II、III类贸易结算用电能计量装置应按计量点配置计量专用电压、电流互感器或者专用二次绕组。电能计量专用电压、电流互感器或专用二次绕组及其二次回路不得接入与电能计量无关的设备。
(3)单机容量100MW及以上的发电机组上网结算电量,以及电网经营企业之间购销电量的计量点,宜配置准确度等级相同的主、副两套电能表。即在同一回路的同一计量点安装一主一副两套电能表,同时运行、同时记录,实时比对和监测,以保证电能计量装置的准确、可靠,避免较大的电量差错。
(4)35KV以上贸易结算用电能计量装置中的电压互感器二次回路,应不装设隔离开关辅助触点,但可装设熔断器;35kV及以下贸易结算用电能计量装置的电压互感器二次回路,应不装设隔离开关辅助触点和熔断器。
(5)安装在用电客户处的贸易结算用电能计量装置,1OKV及以下电压供电的,应配置符合GB/T16934规定的电能计量柜或计量;35kV电压供电的,宜配置GB/T16934规定的电能计量柜或电能计量箱。
(6)贸易结算用的高压电能计量装置应装设电压失压计时器。未配置计量柜(箱)的电能计量装置,其互感器二次回路的所有接线端子、试验端子应能实施铅封。
(7)互感器的实际二次负荷应在25%~100%额定二次负荷范围内;电流互感器额定二次负荷的功率因数应为0.8-1.0;电压互感器额定二次功率因数应与实际二次负荷的功率因数接近。
(8)电流互感器在正常运行中的实际负荷电流应为额定一次电流值的60%左右,至少应不小于30%。否则,应选用具有高动热稳定性能的电流互感器,以减小变比。
(9)选配过载4倍及以上的宽负载电能表,以提高低负荷计量的准确性。
(10)经电流互感器接人的电能表,其标定电流宜不超过TA额定二次电流的30%,其额定最大电流应为TA额定二次电流的120%左右。直接接入式电能表的标定电流应按正常运行负荷电流的30%左右进行选择。
(11)对执行功率因数调整电费的客户,应配置可计量有功电量、感性和容性无功电量的电能表;按最大需量计收基本电费的客户,应配置具有最大需量计量功能的电能表;实行分时电价的客户,应配置复费率电能表或多功能电能表。
(12)配有数据通信接口的电能表,其通信规约应符合DL/T645的要求。
(13)具有正、反向送受电的计量点,应配置计量正向和反向有功电量以及四象限无功电量的电能表。一般可配置1只具有计量正、反向有功电量和四象限无功电量的多功能电能表。
(14)中性点绝缘系统(如经消弧线圈接地)的电能计量点,应配置经互感器接人的三相三线(3×100V)有功、无功电能表;但个别经过验证、接地电流较大的,则应安装经互感器接人的三相四线(3×57.7V)有功、无功电能表。
(15)中性点非绝缘系统(即中性点直接接地)的电能计量点,应配置经互感器接人的三相四线(3×57.7V)有功、,无功电能表。
(16)三相三线低压线路的电能计量点,配置低压三相三线(3×380V)有功、无功电能表;当照明负荷占总负荷的15%及以上时,为减小线路附加误差,应配置低压三相四线(3×380V/220V)有功、无功电能表,或3只感应式无止逆单相电能表。
三相四线制低压线路的电能计量点,应配置低压三相四线有功、无功电能表。
2.准确度要求
电能计量装置的类别不同,对电能表、互感器的准确度等级要求就不相同。
(1)不同类别的电能计量装置所配置的电能表、互感器的准确度等级应不低于表的规定。
(2)I、II类用于贸易结算的电能计量装置中,电压互感器二次回路电压降应不大于其额定二次电压的0.2%;其他电
能计量装置中二次回路电压降应不大于其额定二次电压的0.5%。
准确度等级
*0.2级电流互感器仅指发电机出口电能计量装置中配用。
3.接线方式
(1)接入中性点绝缘系统的3台电压互感器,35kV及以上的宜采用Y/y方式接线;35kV以下的宜采用V/V方式接线。接入非中性点绝缘系统的3台电压互感器,宜采用Yo/yo方式接线。其一次侧接地方式和系统的接地方式应相一致。
(2)低压供电,负荷电流为5OA及以下时,宜采用电能表直接接入方式;负荷电流为5OA以上时,宜采用电能表经电流互感器接入的接线方式。
(3)三相三线制接线的电能计量装置,其2台电流互感器二次绕组与电能表之间宜采用四线连接。三相四线制连接的电能计量装置,其3台电流互感器二次绕组与电能表之间宜采用六线连接。
(4)所有计费用电流互感器的二次接线应采用分相接线方式。非计费用电流互感器的二次接线可以采用星形或不完全星形接线方式。
应掌握电能计量装置的接线方式及其规则,深入学习电力行业标准《电能计量装置安装接线规则》及《电能计量装置接线图集》,并遵照执行。
4.互感器二次回路导线截面的选择
互感器与电能表连接导线截面的大小,直接影响互感器的实际二次负载,进而影响计量装置的准确性。因此,必须正确选择互感器二次回路导线的截面。
(1)电流互感器二次回路导线截面的选择。电流互感器二次回路导线阻抗是二次负荷阻抗的一部分,尤其在大型发电厂、变电所则是其主要部分,它直接影响电流互感器的准确性。因此,当二次回路连接导线的长度一定时,其截面应按电流互感器的额定二次负荷计算确定,一般应不小于4mm2。
(2)根据负荷电流的大小,配置直接接入式电能表应选择的导线截面如表68所示。
(3)电压互感器二次回路导线截面的选择。电压互感器的负荷电流通过二次导线时会产生电压降,那么加在电能表上的电压就不等于电压互感器二次绕组的端电压,这将造成电能表端电压对于二次绕组端电压的量值和相位上的变化,由此产生电能量的测量误差。一般用加大导线截面或缩短导线长度来减小TV二次回路电压降。当电压二次回路导线长度一定时,其截面应按允许的电压降计算确定。通常电压二次回路的导线截面应不小于2.5mm2。
第五篇:电能计量装置安装前规定
电能计量装置安装前的管理
1.报装中的管理
用户供电方案应按照《中华人民共和国电力法》第二十七条、《电力供应与使用条例》中第六章规定:供用电双方应签订供用电合同,其中要求就计量方式问题要明确规定采用什么样的计量装置、安装的位置、如何安装;计量管理的责任(维修和保护责任)及计量装置产生误差的纠正办法的要求,在报装方案时,给予明确;例如在电能计量方式上应明确电能计量装置的装设地点、装设电压等级、电能表类型及专用互感器及二次回路等“用电计量装置表”的内容。2.设计审定中的管理
电能计量装置的设计审定的基本内容包括用户的电能计量方式、电能表与互感器的接线方式、计量器具的准确度等级、专用互感器及二次回路专用互感器的额定二次负荷及额定功率因数、电流互感器额定一次电流、电能表的标定电流、电能计量柜、电能表的安装条件、高压互感器及其高压电气设备的电气间和安全距离等;主要依据SDJ9《电测量仪表装置设计技术规程》、GBJ63电力装置的电测量仪表装置设计规范》。3. 电能表及互感器的选择
在设计时要遵循电能计量装置的技术要求进行选择。在农村,特别强调以下方面:
(1)准确度:由于农电大多数是IV类负荷,有功电能表选2.2级,无功电能表选3.0级,电压互感器选0.5级,电流互感器选0.5级或o.5S级。
(2)二次导线的选择:二次回路的连接导线应采用铜质单芯绝缘线。连接导线的截面积由计算确定:电流二次回路,应按电流互感器的额定二次负荷来计算,但至少应不小于4(2.5)mm 2;电压二次回路应按电压降来计算,但至少应不小于2.5mm2。
(3)一次电流的确定:应保证其在正常运行的实际负荷电流达到额定值的60%左右,至少应不小于30%。(4)电压互感器二次回路压降应不大于额定二次电压的0.5%。
(5)关于安装电能柜的要求:对10kV以下三相线路供电的用户要配置全国统一标准的电能计量柜;35kV供电的用户宜配置专用互感器柜或电能计量柜,35kV以上线路供电的用户,应有电流互感器专用的二次绕组和电压互感器的二次回路,并不得与保护、测量回路共用。
(6)居民用户电能表选择:电能表额定容量的大小,根据用户负荷的高低来选择。用电负荷上限应不超过电能表的额定容量,下限应不小于电能表允许误差规定的负荷电流值。
【例5-1】 某家庭有彩电1台、80W,微波炉1台、800W,40W电灯泡5只,洗衣机1台、400W,电炊具800W。试问应配多大的电能表。
解 计算使用功率:P=80十800十5×40十400十800=2280(W)计算同时系数为1时,通过电能表的电流值:I = =10.4 答:可配单相220/6(12)A的电能表。
例5-2】 某动力兼照明用户,装电灯容量为1kW,电动机动10kW,用电的功率因数按0.8考虑,同时系数为1。试问选用多大的电能表? 解 计算三相电流: I= P / UIcos∮
=(1000+10000)/ ×380×0.8=20.8(A)
答:应选取一只三相四线3×220/380V,25A的电能表或3台30/5A电流互感器及3只5A的电能表。安装后的验收
(1)电能计量方式符合设计要求;(2)电能计量装置的接线正确、安装工艺质量尤其是接点、触点、熔断器等的接触良好;
(3)测量一、二次回路的绝缘电阻应合格,有电压互感器和电流互感器的单位要进行二次回路压降或二次回路负荷的测试;
(4)计量器具有有效期内的合格标志;(5)计量装置的接地系统; 运行中的管理
农村供电所电能计量管理,运行中的主要工作内容是掌握本地区和所辖范围电能计量装置中电能表、互感器的规格、形式和数量;根据本地区和所辖范围,对电能计量装置管理的业务安排制定计划,认真执行电能计量装置的周期轮换和检修任务,及时处理故障差错等。1.电能表的管理
(1)检定依据:根据DL448-91《电能计量装置管理规程》、SD109-83《交流电能表检定规程》进行。
(2)室内检定:包括新装和运行中定期轮换的电能表。农村用电中,电能表的检定一般要求用精度比被校表的准确度高3倍的校验装置(如:在检定2.0级表时,检定装置等级为0.6级),在规定的实验条件下,运用恰当的方法及必要的调整确定电能表准确度的等级。
检定内容:①直观检查;②启动试验;③潜动试验;④测定基本误差;⑤绝缘强度试验;⑥走字试验;⑦需量表需量指示器试验。重要项目是测定基本误差(检定方法可依据有关规程)。
由于电能表的检定是在规定条件下进行的,对安装和使用时中的表计都要满足规程中或生产厂家对安装条件的要求,使表计在实际运行中依然能保证其准确度的要求。要充分考虑如频率、电压、波形、温度、倾斜、自热等对影响电能表运行的外部主要因素,其中温度、倾斜、自热与安装的环境直接有关。
(3)轮换周期:执行规程中关于安装式电能表第IV类电能计量装置的规定,如2.0级。
(4)现场检验:按规定的检验周期,在电能表安装现场用实际负荷对其进行检验。实际负荷要求为:通入标准表的电流不低于其标定电流的20%,现场的负荷应为实际的经常负荷,当负载电流低于被检表的10%或功率因数低于0.5时,不宜进行误差测定。
现场检验条件还要符合对电压、频率、温度等的要求。检查内容:①在实际运行中测定电能表的误差;②检查是否有计差错,计量方式是否合理;③检查电能表与互感器二次回路连接是否正确。为满足现场检验的需要。许多厂家还生产了不同类型的现场检验设备,如ST9040E多功能电能表等。2.互感器的管理
1)依据DL448-91《电能计量装置管理规程》、JJG313-94《测量用电流互感器》、JJG314-94《测量用电压互感器》的规定进行检定。
2)实验室检定内容:①外观检查;②绝缘电阻的测定;③工频电压试验;④绕组极性的检查;⑤退磁(电压互感器不做);⑥误差测定。检定方法可依据上述规程。
由于互感器的检定是在规定条件下进行的,对安装和使用时中的互感器都要满足规程中或生产厂家对安装条件的要求;要充分考虑如频率、电压、波形、温度、外界电磁场、二次回路的实际负荷等对影响互感器运行的外部主要因素。其中外界电磁场、二次回路的实际负荷与安装的环境直接有关。
3)轮换周期:按DL448-91的规定,互感器的轮换(现场检验)周期:至少每10年轮换一次,或现场检验一次;低压电流互感器,至少每20年轮换一次。目前,根据JJG313-94和HG314-94两个规程的要求,标准用的互感器室内检定周期一般为2年。
3.通过电能计量进行窃电行为的判定和处理
在《电力供应与使用条例》第三十一条明确规定禁止窃电行为并规定涉及计量装置的以下行为属于窃电行为:(1)绕越供电企业的用电计量装置用电;
(2)伪造或者开启法定的或授权的计量检定机构加封的用电计量装置封印用电;(3)故障损坏供电企业用电计量装置;
(4)故意使供电企业的用电计量装置不准或者失效。
在发现上述窃电行为时根据《中华人民共和国电力法》第七十一条规定:“盗窃电能的,由电力管理部门责令停止违法行为,追缴电费并处应交电费5倍以下的罚款;构成犯罪的,依照刑法相关条款追究刑事责任。”另外,在《刑法》第二百六十三条、第二百六十四条、第二百六十九条也都有明确的规定。农电计量管理人员要认真维护电力企业供电的权益,堵塞漏洞,对查获的窃电者,应对予制止,并可当场中止供电。窃电者应按所窃电量补交电费,并承担补交电费3倍的违约使用电费。拒绝承担窃电责任的,应报请电力管理部门依法处理。窃电数额较大或情节严重的,应提请司法机关依法追究刑事责任。因违约用电或窃电造成供电企业供电设施损坏的,责任者必须承担供电设施的修复费用或进行赔偿。因违约用电或窃电导致他人财产、人身安全受到侵害的,受害人有权要求违约用电或窃电者停止侵害,赔偿损失,供电企业应予协助。主要的故障及原因
1.电能计量装置发生故障的重点(1)互感器变比差错;
(2)电能表与互感器接线差错;(3)倍率差错;
(4)电能表的机械故障和电气故障(包括卡字、倒转、擦盘、跳字、潜动);(5)电流互感器开路或匝间短路;
(6)电压互感器熔丝断开或二次回路接触不良;(7)雷击或过负荷烧毁电能表或互感器;
(8)因计量标准器具失准造成大批量电能表、互感器的重新检定。2.电能表运行常见故障分析
电能表在投入运行时,由于运输、装接、雷击、湿潮热等影响及装配工艺、修理技术等原因,会出现一些故障,主要故障原因如下:
(1)过热烧坏。在统计故障退表中,60%以上是端钮盒烧毁。故障原因是长期过负荷使用,内引线在内接线端上未紧固,外引线端上、下螺钉未拧紧等引起局部发热,直到绝缘破坏,造成对地短路。
(2)计度器故障。故障表中30%为计度器的各类故障。主要是:①进位故障,在进位时发生卡字,尤其在轻载时造成圆盘呆滞或停转。②组装差错,包括齿轮轴、横轴连接片变形、铭牌或刻度盘松动脱落、传动轮组装错位、计度器传动比与铭牌常数不符;洗涤剂使用不当,使有关零件腐蚀生锈、部分紧固镙钉松动等造成。(3)表响(噪声)。表响对计量精度的影响不大,但产生的噪声对环境有影响,产生的主要原因是:①铁芯组装不紧凑;②电压线圈或防潜舌片及元件上的调整装置,漏磁气隙内所嵌的铜片、各类紧固螺钉松动;③转盘静平衡不好、上、下轴承不同心或宝石轴承等安装配合不好;④当上轴针的固有频率与50Hz相近时产生的谐振。
(4)预防电能表在无负荷时表空转。产生的主要原因有:①防潜装置失灵;②防潜钩松动、位移或断裂;③电磁元件安装不对称、倾斜;④轻补偿力矩过大;⑤三相相序与调整时的相序不一致。
(5)灵敏度不合格。表计起动不灵敏或不起动。主要原因是:①工作气隙中有铁屑等杂物;②转盘不平整,起动时有轻微碰盘;③转动部分安装或调整不合理或元件变形;④防潜动力矩调整过大;⑤计度器呆滞;⑥表计密封性差,致使蜗杆、轮、轴承等有油垢。计量装置的接线检查
计量装置的接线检查是为了保证经过修校调整准确的电能表在接入电路后计量准确的必要条件,主要检查互感器的极性、三相电压互感器接线组别、二次连接导线接线的正确。在带电检查时,应注意遵守安全工作制度,特别注意电流互感器绝对不允许开路;电压互感器绝对不允许短路。当与保护共用互感器二次回路,必要时,要请保护人员协作。
常见退补电量的计算实例
1.因计量装置误差超出范围的退补电量×K×B 式中G--电能表的实际误差值,负值表示表慢、应为补交电量,正值表示表块、为退电量;
K--电流、电压互感器倍率乘积;B--退补月数,起讫时间查不清时,电客用户最多6个月退补。2.电能表潜动退补的电量(kWh)3.因电能计量装置故障时的退补电量 如卡盘、卡字、电压线圈不通、电压互感器熔丝断等,并分如下情况进行处理。
照明用户应补电量= ×事故日数×(原表正常前1个月抄表电量/这个月的抄表用电日 数+换表后至抄表日的抄用电量/换表后至抄表日用电日数)
新装照明用户应补电量=自更换电表至抄表日用电量/用电日数×事故日数-故障期已交电量 3只电能表中1只或2只出现故障时,按下列公式计算应补电量: 1只故障应补电量=2只正确电能表当月电量/2-故障表电量
2只故障应补电量=1只正确电能表当月电量×2-2只故障表电量
1只三相电能表或3只单相电能表全部发生故障停止运行时,月用电量比较正常的按照
照明用户或新装照明用户办理,即月用电量不正常时,可根据用户的产品产量以及有关用电 记录等计算。
4.跳字应退电量按下式计算
应退电量=已收电量一1/2(原正常月的日均电量十抄表后至抄表日均电量)×30(天)(隔月抄表按60天计算)