第一篇:电力系统短路故障浅析
电力系统短路故障浅析
摘要:破坏电力系统正常运行的最为常见的原因是各种类型的短路故障。它危害性极大,由此引发的其他电气故障也最多。本文简要探讨了各种类型的短路故障的原因、特点、危害、查找方法、预防措施等,对指导生产有一定的参考作用。
关键词:短路原因特点故障短路预防
概念
电力系统的短路故障,是指不同电位导电部分之间的不正常短接。由于此时故障点的阻抗变得很小,电流便会在一瞬间升高,短路点以前的电压下降,会影响到电力系统的稳定运行,严重短路甚至会造成系统瘫痪。
在正常运行时,除中性点外,相与相或者相与地之间是绝缘的。三相系统中,短路故障的基本类型为三相短路、两相短路、单相短路、单相短路接地、两相短路接地等。其中,三相短路属对称短路,其它形式的短路,均属不对称短路;在中性点直接接地的系统中,发生单相短路接地故障最为常见,大约占短路故障的65%,两相短路约占10%,两相短路接地约占20%,发生三相短路故障的可能性最小,虽然只占短路故障的5%[1]左右,却是危害系统最严重的,在实际中一定要引起我们的足够重视。
1.1 单相接地短路:是指三相交流供电系统中一根相线与大地成等电位状态,既该相线的电位与大地的电位相等,都是“零”。通俗的讲就是A相或B相或C相一相接地。
1.2 两相短路:任意两相导线,直接金属性连接或经过小阻抗连接在一起。通俗讲指两相直接短接在一起。
1.3 两相短路接地:是指三相交流供电系统中两根相线与大地成等电位状态了。通俗讲就是A、B、C三相中的任意两相同时与大地的无电阻的直接连接。
1.4 三相短路:就是电力系统内A、B、C三相在某一点的零电阻、零电抗的直接连接。这时会产生很大的短路电流,破坏程度很大。
三相短路分三种:单相接地短路;两相之间短路;三相全部短路。发生短路的原因
产生短路的原因有很多,既有客观的,也有主观的,但是主要原因是电气设备载流部分的相间绝缘或者相对地绝缘被损坏。
2.1 由于设计、制造、安装、维护不当等造成的设备缺陷发展成为短路。如选择电缆截面太小或扩大生产增加负荷使电路超载、过载,长期持续下去,就可能造成绝缘老化或者绝缘的完全失效,导致短路。
2.2 假冒、伪劣电器设备的绝缘不合格也会造成短路。
2.3 气候恶劣,低温导线覆冰引起架空线倒杆断线造成短路;架空线路弧垂不一致或弧垂太大,刮大风时会引起短路;雷电冲击使架空线路的绝缘子发生闪络短路;环境温度过高、机械损伤等。
2.4 误操作引起的短路故障。工作人员违反操作规程带负荷拉刀闸,引起电弧短路;违反电业安全工作规程带电误合接地刀闸造成的短路故障。检修人员在检修低压带电开关设备时,距离带电体较近,未采取必要的安全措施防止短路造成故障。
2.5 电缆、变压器、发电机等设备中载流部分的绝缘材料在运行中损坏[1]。
2.6 动物作祟,如鸟兽跨接在裸露的载流部分;老鼠窜入高压配电室造成短路故障;老鼠咬破置于管道中的电缆绝缘等。
短路特点
电力系统发生短路故障后,电流剧增,短路电流比正常工作时的电流要大几十倍,甚至几百倍,在高压下,电流可达数千万安。因此应千方百计限制短路电流,并使短路电流持续时间尽量缩短。
3.1 短路点距离电源越进线路阻抗越小,短路电流会越来越大。
3.2 短路故障持续时间的长短,直接导致电气设备损坏的厉害程度,时间越长损坏越严重。
短路故障的危害[2]
短路故障引起的后果是破坏性的。
具体表现在以下几个方面:
4.1 当电路发生短路时,短路点的电弧有可能烧坏电气设备,同时很大的短路电流会通过设备使发热增加,当短路持续时间较长时,可能使设备过热,使导体发红,甚至溶化损坏绝缘,破坏设备。
4.2在供电系统中,强大的短路电流,特别是冲击电流,使两相邻导体之间产生巨大的电动力。一般可以计算为:
F(3)=■.Im2.l/a×10一7(N)(三相短路)
F(2)=2.Im2.l/a×10一7(N)(单相短路)
由上式可见,短路电流越大,电动力越大,破坏性越强。这种电动力可能使母线变形,使母线定固件损坏,也可能使开关相邻刀片变形,开关损坏。
4.3 电力系统发生短路时,有可能使并列运行的发电厂失去同步,破坏系统稳定,使整个系统的正常运行遭到破坏,引起大片地区的停电。这是短路故障最严重的后果。
4.4 短路产生的电弧、火花可能引发恶性事故,如火灾、电击、爆炸等。
4.5 短路故障发生后,短路点电压将降到零,短路点附近各点的电压也将明显降低,对用户工作影响很大,系统中最主要的负荷是异步电动机,它的电磁转矩同它的端电压的平方成正比,电压下降时,电磁转矩将明显降低,使电动机停转,以致造成产品报废及设备损坏等严重后果。
4.6 不对称接地短路所造成的不平衡电流,将产生零序不平衡磁通。会在邻近的平行线路内感应出很大的电动势,将会造成对通信的干扰,并危及设备和人身的安全。
短路的预防
为了保证安全可靠供电,除设计时要科学、合理以外,还应采取各种必要的安全措施,减少各类短路故障的发生。
5.1 做好短路电流的计算工作,选择正确的电气设备,使电气设备的额定电压和线路的额定电压相符。
5.2 对继电保护的整定值和熔体的额定电流要正确选择,采用速断保护装置,以便发生短路时能迅速切断短路电流,减少短路电流持续时间,把短路造成的损失降到最小。
5.3 采用电抗器。以增加系统的阻抗来限制短路电流。
5.4 变电站要安装避雷针,变压器附近和线路上要安装避雷器,减少恶劣天气中雷击造成的灾害。
5.5 始终保持线路弧垂一致并符合安全规定,保证架空线路施工质量。
5.6 对带电安装和检修电气设备的工作,工作人员一定要注意力要高度集中、防止出现错接线、误操作。
5.7 一旦发生故障,要从电力系统中把故障线路或设备切断,使其余部分可以继续运行。
5.8平时要加强管理。及时清除导电粉尘、防止导电粉尘进入电气设备;防止老鼠等小动物进入高压配电室,爬上电气设备。
5.9 保证电力系统的安全稳定运行。维护人员应严格遵守规章制度,正确操作电气设备,禁止带负荷拉刀闸,带电合接地刀闸。线路施工、维护人员在距带电部位距离较近的地方工作,要采取防止短路的措施。要对线路、设备进行经常巡视检查,及时发现并处理各类缺陷。
小结
通过对电力系统短路故障的浅析,可以在实际运用中更快的了解故障的原因,做好相应的预防措施。同时也能加快对故障的维修处理,缩短短路故障运行时间,尽可能把损失降到最低,保障电力系统的安全稳定运行。
参考文献:
[1]夏道止.电力系统分析[M].北京:中国电力出版社,2004.[2]刘万顺.电力系统故障分析[M].北京:中国电力出版社,2004.
第二篇:电力系统的短路分析
电力系统的短路分析
短路是电力系统的严重故障。所谓短路,其内容是指一切不正常的相与相或相与地(对于中性点接地的系统)之间发生通路的情况。
一、短路的原因
产生短路的原因很多,其主要原因如下:
1、元件损坏,如绝缘材料自然老化等。
2、气象条件恶化,如雷击等。
3、人为事故,如运行人员带负荷拉闸等。(发生概率较高)
4、其他,如工程建设时挖沟损伤电缆等。
二、短路的类型
在三相系统中,可能发生的短路有三相短路、两相短路、两相接地短路和单相接地短路等四种。三相短路也称对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。
注:
1、单相接地短路发生的几率达65%左右。
2、短路故障大多数发生在架空输电线路。
3、电力系统中在不同地点发生短路,称为多重短路。
三、短路的后果 短路的主要后果如下:
1、短路故障使短路点附近支路出现比正常电流大许多倍的短路电流,产生较大的电动效应和热效应,破坏设备。(此为最常见)
2、短路时系统电压大幅度下降,对用户影响很大。
3、短路会使并列运行的发电机失去同步,破坏系统的稳定,造成系统的解列,出现大面积停电。
4、不对称短路对附近通信线路和无线电波会产生电磁干扰。
四、电力系统降低短路故障的发生概率采取的措施
1、采用合理的防雷设施,加强运行维护管理等。
2、通过采用继电保护装置,迅速作用于切除故障设备,保证无故障部分的安全运行。
3、架空线路普遍采用自动重合闸装置,发生短路时断路器迅速跳闸,经一定时间(0.4-1s)断路器自动合闸。
4、线路上的电抗器,通常也是为限制短路电流而装设的。
五、短路电流计算的目的
为确保设备在短路情况下不至于被破坏,减轻短路后果和防止故障扩大,必须事先对短路电流进行计算。在电力系统和电器设备的设计和运行中,短路计算也是解决一系列技术问题不可缺少的基本计算。
计算短路电流的具体目的如下:
1、选择有足够机械稳定和热稳定的电器设备。
2、合理配置各种继电保护和自动装置并正确整定其参数。
3、设计和选择发电厂和电力系统主接线。
4、进行电力系统暂态稳定计算,分析短路对用户的影响。
5、确定输电线路对通信的影响。
为了方便计算,在高压系统中采用标幺值的计算方法。
标幺值是某些电气量的实际有名值与所选的同单位规定值之比,即 标幺值=实际有名值/同单位规定值
第三篇:电力系统短路计算电力系统分析课程设计
课
程
设
计(论文)
课程名称
电力系统分析
题目名称
电力系统短路计算
学生学部(系)
机械电气学部电气工程系
专业班级
电气工程及其自动化班
学
号
学生姓名
指导教师
2012年X
月X日
课程设计(论文)任务书
题目名称
电力系统短路计算
学生学部(系)
机械电气学部电气工程系
专业班级
电气工程及其自动化班
姓
名
学
号
一、课程设计(论文)的内容
1、掌握比较复杂的电网进行电力系统三相短路起始次暂态电流的计算,短路后指定时刻短路电流周期分量的计算。
2、给短路点处赋予平均额定电压及基准容量,求解等值网络数值并根据电力系统网络画出等值网络。
3、不对称短路时短路点故障相电流和非故障相电压的计算。
4、对称和不对称短路后任意支路故障电流和节点电压的计算。
5、书写课程设计说明书(电子版),并打印纸质版上交。
二、课程设计(论文)的要求与数据
二、课程设计(论文)应完成的工作
1、按照规范的格式,独立完成课程设计说明书的撰写;
2、完成电力系统三相短路电流、对称短路电流、不对称短路电流的计算三相短路起始次暂态电流的计算,短路后指定时刻短路电流周期分量的计算。
3、完成计算的手算过程
4、运用计算机的计法。
四、课程设计(论文)进程安排
序号
设计(论文)各阶段内容
地点
起止日期
资料收集,完成电力系统三相短路电流计算
图书馆
2012.5.25-6.1
电力系统不对称短路电流计算
图书馆
6.2-6.3
课程设计说明书撰写
C8-323
6.12-6.18
课程设计上交
1-110
五、应收集的资料及主要参考文献
[1]
科技创新报导[J].武昌:华中科技大学出版社,2010年第9期
[2]
何仰赞.电力系统分析题解[M].武汉:华中科技大学出版社2008.7
[3]
蒋春敏.电力系统结构与分析计算[M].北京:中国水利水电出版社,2011.2
[4]
戈东方.电力工程电气设计手册[M].北京:中国电力出版社,1998.12
[5]
李梅兰、卢文鹏.电力系统分析
[M]
北京:中国电力出版社,2010.12.
发出任务书日期:
2012
年
X
月
X
日
指导教师签名:
计划完成日期:
2012
年
X
月
X
日
教学单位责任人签章:
电力系统发生三相短路故障造成的危害性是最大的。作为电力系统三大计算之一,分析与计算三相短路故障的参数更为重要。设计示例是通过两种不同的方法进行分析与计算三相短路故障的各参数,进一步提高短路故障分析与计算的精度和速度,为电力系统的规划设计、安全运行、设备选择、继电保护等提供重要依据。
一、基础资料
1.电力系统简单结构图
电力系统简单结构图如图1所示。
2.电力系统参数
如图1所示的系统中K(3)点发生三相短路故障,分析与计算产生最大可能的故障电流和功率。
(1)发电机参数如下:
发电机G1:额定的有功功率110MW,额定电压=10.5kV;次暂态电抗标幺值=0.264,功率因数=0.85。
发电机G2:火电厂共两台机组,每台机组参数为额定的有功功率25MW;额定电压UN=10.5kV;次暂态电抗标幺值=0.130;额定功率因数=0.80。
(2)变压器铭牌参数由参考文献《新编工厂电气设备手册》中查得。
变压器T1:型号SF7-10/110-59-16.5-10.5-1.0,变压器额定容量10MV·A,一次电压110kV,短路损耗59kW,空载损耗16.5kW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=1.0。
变压器T2:型号SFL7-31.5/110-148-38.5-10.5-0.8,变压器额定容量31.5MV·A,一次电压110kV,短路损耗148kW,空载损耗38.5kW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=0.8。
变压器T3:型号SFL7-16/110-86-23.5-10.5-0.9,变压器额定容量16MV·A,一次电压110kV,短路损耗86kW,空载损耗23.5kW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=0.9。
(3)线路参数由参考文献《新编工厂电气设备手册》中查得。
线路1:钢芯铝绞线LGJ-120,截面积120㎜2,长度为100㎞,每条线路单位长度的正序电抗X0(1)=0.408Ω/㎞;每条线路单位长度的对地电容b0(1)=2.79×10﹣6S/㎞。
对下标的说明
X0(1)=X单位长度(正序);X0(2)=X单位长度(负序)。
线路2:钢芯铝绞线LGJ-150,截面积150㎜2,长度为100㎞,每条线路单位长度的正序电抗X0(1)=0.401Ω/㎞;每条线路单位长度的对地电容b0(1)=2.85×10﹣6S/㎞。
线路3:钢芯铝绞线LGJ-185,截面积185㎜2,长度为100㎞,每条线路单位长度的正序电抗X0(1)=0.394Ω/㎞;每条线路单位长度的对地电容b0(1)=2.90×10﹣6S/㎞。
(4)负载L:容量为8+j6(MV·A),负载的电抗标幺值为;电动机为2MW,起动系数为6.5,额定功率因数为0.86。
3.参数数据
设基准容量SB=100MV·A;基准电压UB=UavkV。
(1)SB的选取是为了计算元件参数标幺值计算方便,取SB-100MV·A,可任意设值但必须唯一值进行分析与计算。
(2)UB的选取是根据所设计的题目可知系统电压有110kV、6kV、10kV,而平均额定电压分别为115、6.3、10.5kV。平均电压Uav与线路额定电压相差5%的原则,故取UB=Uav。
(3)为次暂态短路电流有效值,短路电流周期分量的时间t等于初值(零)时的有效值。满足产生最大短路电流的三个条件下的最大次暂态短路电流作为计算依据。
(4)为冲击电流,即为短路电流的最大瞬时值(满足产生最大短路电流的三个条件及时间=0.01s)。一般取冲击电流=××=2.55。
(5)为短路电流冲击系数,主要取决于电路衰减时间常数和短路故障的时刻。其范围为1≤≤2,高压网络一般冲击系数=1.8。
二、电抗标幺值定义
(1)发电机电抗标幺值
公式①
式中
——发电机电抗百分数,由发电机铭牌参数的;
——已设定的基准容量(基值功率),;
——发电机的额定有功功率,MW
——发电机额定有功功率因数。
(2)负载电抗标幺值
公式②
式中
U——元件所在网络的电压标幺值;
——负载容量标幺值;
——负载无功功率标幺值。
(3)变压器电抗标幺值
公式③
变压器中主要指电抗,因其电抗,即可忽略,由变压器电抗有名值推出变压器电抗标幺值为
公式④
式中
%——变压器阻抗电压百分数;
——基准容量,MVA、——变压器铭牌参数给定额定容量,MVA、额定电压,kV;
——基准电压取平均电压,kV。
(4)线路电抗标幺值
公式⑤
式中
——线路单位长度电抗;
——线路长度,km;
——基准容量,MVA;
——输电线路额定平均电压,基准电压,kV。
输电线路的等值电路中有四个参数,一般电抗,故0。由于不做特殊说明,故电导、电纳一般不计,故而只求电抗标幺值。
(5)电动机电抗标幺值(近似值)
cos
公式⑥
式中
——设定的基准容量,MVA;
——电动机额定的有功功率,MW;
cos——电动机额定有功功率因数。
三、短路次暂态电流(功率)标幺值计算
(1)短路次暂态电流标幺值()
(取)
(kA)
公式⑦基准容量;基准电压(kV)。
(2)冲击电流()的计算
(kA)
公式⑧
(3)短路容量的计算
()
公式⑨
四、各元件电抗标幺值
1.电力系统等值电路如图2
2.各元件电抗标幺值的计算
设基准容量;
基准电压。
(1)发电机电抗标幺值由公式①得
;
(2)变压器电抗值标幺值由公式③得
;;
(3)线路电抗标幺值由公式④得
;;
(4)负载电抗标幺值由公式②得
(5)电动机电抗标幺值由公式⑥得
3.等值简化电路图
(1)
等值电路简化过程如图2和图3所示。
(2)
考虑电动机的影响后,短路点的等值电抗为五、三相短路电流及短路功率
短路次暂态电流标幺值
短路次暂态电流有名值
冲击电流
短路功率
六、Y矩阵形成于计算
计算机编程计算中,考虑了对地电容标幺值和变压器实际变比标幺值。
(1)
导纳矩阵等值电路如图4所示,节点数为⑥,电抗标幺值参考图2。
(2)导纳计算公式为:
公式⑩
式中
(3)变压器变比的定义
式中
变压器变比标幺值
(4)Y矩阵的形成。
对地电纳
Y=
短路点的电抗标幺值为
短路点次暂态短路电流为
短路点次暂态短路电流有名值为(kA)
短路点冲击电流为(kA)
短路点短路功率为(MVA)
两种算法的次暂态短路电流比较误差为ΔI=10.08-9.22=0.86(kA)
七、结论
1.解析法
短路点的电抗标幺值为
短路点的次暂态短路电流为
2.Y矩阵
短路点的电抗标幺值为
短路点的导纳标幺值为
短路点的次暂态短路电流为
3.优缺点
(1)解析法误差大,每一短路处需要逐一分析与计算。
(2)Y矩阵计算时考虑对地电容,变压器实际变比,则误差小;Y矩阵对角元素将各节点的等值短路电抗(阻抗)均求出;使分析其他点的短路故障提供了更容易更直观的参数值;Y矩阵程序通用性强等特点。
(3)两种分析与计算三相短路故障的各参数结果如图5
心
得
体
会
通过这次课程设计,我发现自己有很多不足的地方,如基础知识掌握不牢固,很多知识点都忘记了,计算速度慢及准确性低,分析问题能力不够全面等等。同时,在设计的过程中遇到很多问题,如怎样使用WORD的工具,计算公式输入,画图等。明白了有些东西看起来很简单,但一旦做起来却需要很多心思,要注意到很多细节问题。要做到能好好理解课本的内容,一定要认认真真做一次计算。因此,完成课程设计使我对课本的内容加深了理解。总体来说,这次的课程设计不单在专业基础方面反映了我的学习还要加倍努力,还在对一些软件的应用需要加强。
由于一开始找的网络是开路的,列不出导纳矩阵,所以再找了一个环形网络作补充。但对C语言编程的计算机计法有待探究,只是基本上明白程序过程,还不能明白的彻底。随着科技发展及计算机计法的方便,简单,我将认真学好这种方法,以便以后工作的需要。
总体而言,这次的课程设计对我们运用所学知识,发现、提出、分析和解决实际问题、锻炼实践能力的考察,使我们更清楚地知道不足之出,从而提高我们。
学生签名:
2012年X
月
X
日
教
师
评
语
****年**月**日
成绩
及
签
名
指导教师签名:
****年**月**日
第四篇:TCO中频电源短路故障总结报告
TCO中频电源短路故障处理总结报告
一、短路故障发生经过
2011年08月19日,设备人员在TCO车间巡检过程中发现车间有一股淡淡的烧焦味道,同时,还发现有一台中频AE电源损坏。我们测量损坏AE电源的供电电压在300VAC以上,判断电压异常;检查中频电源的供电变压器,发现其三相220VAC输出端子中有两相对零线电压是300VAC,另一相电压是60VAC,并且这两相输出端子有烧黑的迹象,判断变压器输出异常;关断变压器前端电源,用万用表测量变压器各相绕组电阻值均正常,即变压器正常。测量变压器输出线与地线电阻值,C相对地只有几十欧姆阻值,通过这些测量数据,初步判断中频AE电源损坏及变压器端子烧黑的故障原因是由于变压器输出侧C相绕组对地短路而引起。
二、短路故障处理过程
1、损坏的中频AE电源处理
关闭中频供电电源断路器,拆除损坏了的中频AE电源,用绝缘胶带把拆下线头包扎好。因TCO设备尚在保修期内,所以我们把损坏的中频AE电源寄往湖南宏大真空公司免费维修。
2、短路故障查找及处理
我们把变压器输出侧C相拆开,把C相连接到各中频电源的12组电源线全部拆除,并且分别作好绝缘处理,然后用万用表一根一根的测量查找短路点,发现有一根电源线在电柜顶部有对电柜外壳短路现象,我们用绝缘胶带把短路点包扎好,并且把电柜顶部所有可能将发生短路的地方都用5MM厚的橡胶皮绝缘隔离好。
3、变压器接线头处理
更换烧黑的电木板,更换氧化的连接镙杆和镙母,打磨铜接线头接触面,把变压器柜子门盖改换成网状开孔门盖,有利于变压器的散热。这里面的有些工作已经完成,有些工作要等到请购备件购回后才能完成。
三、短路故障原因分析
中频AE电源柜顶位置电源线绝缘层有破损,直接与柜体短路,使变压器的零线上产生很大的电流,变压器输出侧零位电势发生偏移,致使其余两相没有短路的输出对零线电压升高达到300VAC(正常电压220VAC),从而烧坏了一台中频AE电源。幸运的是这次故障发现及时,没有造成更多的中频AE电源损坏。
四、类似故障的预防措施
1、定期巡检各电源电缆线绝缘状况和测量电缆线温度;
2、加大设备点检巡检力度,把一些设备故障消灭在萌芽状态; 3、把设备的一些薄弱点进行改进,增强设备的稳定性; 4、加强设备维护人员的培训,提高维修质量和维修效率。
第五篇:输电线路短路跳闸故障的防范措施
输电线路短路跳闸故障的防范措施
作者:未知 文章来源:中国电力网 点击数:41 更新时间:2007-11-20 23:26:17 【字体:小 大】
湖北安全生产信息网(安全生产资料大全)寻找资料>>
据统计,鸟害、绝缘子融雪闪络、大风刮上的异物这3种原因造成的输电线路短路跳闸故障一直居高不下,给电网安全可靠运行带来了严重的安全隐患。对此,笔者认为应采取以下措施。
(1)输电线路主管领导应高度重视线路跳闸故障,应根据不同季节的气候特点,及时制定线路的定期巡视和特殊巡视制度,并认真执行。所制定的制度要任务明确,责任到人。运行人员若发现绝缘子破损、裂纹、有放电痕迹、有鸟窝或导线上挂有异物,要及时报告并排除。
(2)运行单位要认真研究和分析线路故障的原因和特点,从中吸取教训,并在本系统内经常开展安全大检查活动,提高各级人员的安全意识。做到防微杜渐,警钟长鸣。
(3)设计、生产部门要根据线路所处的污秽区域情况,做好绝缘子的爬距配置工作,使其适应所处自然环境污秽等级的要求。在污秽严重的地区,对爬距不能满足要求的线路,要换成防污型绝缘子或复合型绝缘子,以提高输电线路的防污闪能力。
(4)结合春、秋检工作,利用多种形式定期对输电线路绝缘子进行污秽清除,并健全定期清扫、巡视制度,保证清扫、巡视责任制的落实。
(5)在鸟害集结和大风季节,要加强对线路的巡视和消缺,及时清扫横担上的鸟窝和导线上的异物,并在横担上安装各类防鸟装置,确保线路安全可靠运行。