论电力系统三相短路的原因和防范措施

时间:2019-05-15 01:06:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《论电力系统三相短路的原因和防范措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《论电力系统三相短路的原因和防范措施》。

第一篇:论电力系统三相短路的原因和防范措施

论电力系统三相短路的原因和防范措施

重庆中机龙桥热电有限公司 ——王超——

【摘要】电力是维持当今社会发展的主要能源之一,是人类生活当中不可缺少的重要部分,整个电力系统的稳定和发展关系到我们每一个人正常的生活次序,大则关系到整个国家长治久安,小则关系到每一个家庭。目前由于电力系统经过多年的构建和发展,同时随着电子产品的日新月异,形成了错综复杂的连接方式,电气系统重大短路事故也有了新的解释和任务。本文针对新形势下电力系统短路故障做一个分析,并制定相关对策。

【关键词】电力系统、短路、大电流、损坏

一、电力系统中短路原因的分析

导致短路发生的最终原因是承载电力的载体绝缘受到破坏,引起绝缘破坏的原因主要有:

1、电气设备绝缘材料的自然老化、污秽或机械损伤。

2、雷击引起过电压,自然灾害引起杆塔倒地或断线。

3、鸟兽跨接导线引起短路。

4、运行人员误操作(如检修后未拆除地线就合闸等)。电力系统的运行经验表明,各类短路发生的几率不同,其中单相接地发生得最多,三相短路发生得最少。根据某些系统的统计资料,在所有短路故障中,三相短路占5%,单相接地占65%,两相短路占10%,两相接地短路占20%。虽然三相短路发生的几率最小,但其产生的后果最严重,同时它又是分析不对称故障的基础,因此将重点进行研究。

二、短路对电力系统的正常运行和电气设备的危害 短路故障一旦发生,往往造成十分严重的后果,主要有:、电流急剧增大。短路时的电流要比正常工作电流大得多,严重时可达正常电流的十几倍。大型发电机出线端三相短路电流可达几万甚至十几万安培。这样大的电流将产生巨大的冲击力,使电气设备变形或损坏,同时会大量发热使设备过热而损坏。有时短路点产生的电弧可能直接烧坏设备。

2、电压大幅度下降。三相短路时,短路点的电压为零,短路点附近的电压也明显下降,这将导致用电设备无法正常工作,例如异步电动机转速下降,甚至停转。

3、可能使电力系统运行的稳定性遭到破坏。电力系统发生短路后,发电机输出的电磁功率减少,而原动机输入的机械功率来不及相应减少,从而出现不平衡功率,这将导致发电机转子加速。有的发电机加速快,有的发电机加速慢,从而使得发电机相互间的角度差越来越大,这就可能引起并列运行的发电机失去同步,破坏系统的稳定性,引起大片地区停电。

4、不对称短路时系统中将流过不平衡电流,会在邻近平行的通讯线路中感应出很高的电势和很大的电流,对通讯产生干扰,也可能对设备和人身造成危险。

5、使系统中部分地区的电压降低,给用户造成经济损失。

6、破坏系统运行的稳定性,甚至引起系统强烈振荡,造成大面积停电或使整个电力系统瓦解。

7、巨大的短路电流将在周围空间产生很强的电磁场,尤其是不对称短路所产生的不平衡交变磁场,会对周围的通信网络、信号系统、晶闸管触发系统及控制系统产生干扰。

在以上后果中,最严重的是电力系统并列运行稳定性的破坏,整个电网呈现低电压,在低电压的情况下各运转设备电流增加,最易烧坏运行设备的线圈,导致人身和设备损坏事故的不断扩大。

三、防范短路电流的有效措施

短路电流的危害性很大,结合相关领域的专家、企业和政府部门的研究成果,总结出一些有效的短路电流防范措施,具体措施如下:

1、合理规划电网结构

合理规划电网结构是防范短路电流的一项基本措施,从电网的发展历程来看,也可以将这一历程视为不断对低电压等级进行合理分区以及不断升高电压等级的过程。在规划电网结构时,可以采取的措施是比较多的,既可以发展更高等级的电网电压,也可以在建设输电线路时,根据相应的标准合理降低网络的紧密程度;或者分片运行减压电网等,总体而言,应该根据每个地方和各个电网的实际情况进行合理的选择和应用,不能不加选择地盲目使用。

2、正确选择电网的接线方式

电网的接线方式对防范短路电流的发生具有重要的作用,正确的选择会起到有效限制短路电流的效果。接线方式的种类是比较多的,根据不同的情况有不同的选择,如当限制的是大电流接地系统中的短路电流,那么可以采用部分变压器的中心点不接地的接线方式;如果是发生的地点是在降压变电所的话,则最有效的方式是变电器低压侧分列运行,这种方法可以有效对低压和中压配电装置里的短路电流进行限制。总体原则就是要随着不同的系统、不同的场所来选择不同的接线方式。

3、大力发展直流输电

通过大力发展直流输电也可以有效防控短路电流的产生。因为通过控制换流器触发相位,能够很快地对直流输电系统进行调节,同时会自动将电流保持为定值,这样就可以起到保持直流电流平稳输送的作用,进而有效确保直流电网的正常运作。而对与交流系统来说,当使用直流输电时,由于直流电网被分为多个相互间独立的交流子系统,这样就有效避免了短路电流相互注入的发生,一旦出现短路电流就可以起到大大降低短路电流危害性的作用。

4、使用故障电流限制器

故障电流限制器是当前电力系统必备的元件之一,它在防范短路电流方面具有突出的作用,表现在以下三个方面:

(1)通常而言,随着电压的不断升高,故障电流也会越来越强,这时候也就越来越难以断开。而使用故障电流器后可以有效减轻断路器的开端负担,电路的开断就变得容易多了。

(2)故障电流限制器还可以快速地限制短路电流,这样就能够大大减轻线路的电压损耗,同时发电机的失步概率也会显著降低。另外系统电压、频率等的稳定性也会得到增强,因短路电流所引起的电网和设备事故就能够得到及时和有效的防范。

(3)由于当前绝大部分的输电线路其实际输送能力都小于稳定极限,当出现短路电流时极易受损。而在引入故障电流限制器后,它可以在短路电流达到峰值之前就起作用,使大部分电力设备的动稳定极限和热稳定极限有效降低,同时也能够相应地减小电网的极限比,从而提高了输电线路的利用率,确保线路输送的安全和稳定,并降低电网的整体投入。

5、加强变电器绕组变形的诊断工作

电网系统其实有其脆弱的一面,很多因素,如雷击、继电保护误动等因素都很有可能造成电网出现短路。而一旦出现短路故障,短路电流就会强烈冲击电网,造成变压器绕组出现局部变形的现象,很多时候直接造成了绕组的损坏,即使没有损坏,也会遗留下很多故障隐患,例如,会使得绝缘距离发生变化,并损害固体绝缘,引发局部放电。如果是因雷电过压引起的,则会因饼间击穿而产生突发性绝缘事故。另外,还是使绕组的机械性能下降,一旦接着再出现短路事故,损坏事故将无法避免。因此,当变电器绕组因短路电流的冲击而出现变形时就要及时进行诊断和抢修,避免因二次短路的出现而彻底损坏。

随着现代电气技术的飞速发展,将各类短路事故限制在萌芽状态,严格控制短路事故后果的扩大化,已不再是科技难题,通过各界人士的共同努力我相信,日后的电力系统短路故障将越来越少。

第二篇:三相变压器空载和短路实验

南京工程学院

电力工程学院

/

学年

第二

学期

课程名称

电机实验

实验名称

三相变压器空载、短路实验

班级名称

建筑电气

学生姓名

同组同学

实验时间

2011

实验地点

实验报告成绩:

评阅教师签字:

****年**月**日

电力工程学院二〇〇七年制

一、实验目的1、通过空载和短路实验,测定三相变压器的变比和参数。

2、通过负载实验,測取三项变压器的运行特性。

二、实验项目

1、测定变比

2、空载实验

测取空载特性U0=f(I0),P0=f(U0),cosφ0=f(U0)。

3、短路实验

测取短路特性UK=f(IK),PK=f(IK),cosφK=f(IK)。

4、纯电阻负载实验:保持U1=U1

n,cosφ=1的条件下,測取U2=f(I2)。

三、实验方法

1、实验设备

1、BMEL系列电机系统教学实验台2、交流电压表,电流表,功率因数表3、三相可调电阻器4、三相变压器5、开关板

2、短路实验

1)

是实验线路如图1所示,变压器高压线圈接电源,低压线圈直接短路

接通电源前,将交流电压跳到输出电压为零的位置,接通电源后,逐渐增大电源电压,达到20V左右,使变压器的短路电流Ik=1.1—0.5In的范围内,測取变压器的三箱输入电压、电流、功率共取几组数据,记录于表中,其中I

k=In点必测。实验时,记下周围环境温度,作为线圈的实际温度。

图1

三相变压器短路实验接线图

表2-1

室温

UK(V)

IK(A)

PK(W)

UK

(V)

IK

(A)

PK

(W)

cosΦK

U1u1.1v1

U1v1.1w1

U1w1.1u1

I1u1

I1v1

I1w1

PK1

PK2

18.94

18.71

19.19

3.5

3.364

3.361

18.94666667

3.408333333

119

0.614258012

16.59

15.89

16.35

3.0

2.892

2.818

16.27666667

2.903333333

0.620724729

14.00

13.44

13.93

2.5

2.431

2.387

13.79

2.439333333

0.624286406

11.11

11.03

11.07

2.0

1.962.1.934

11.07

1.965333333

0.612850995

8.20

7.64

8.12

1.5

1.397

1.362

7.986666667

1.419666667

0.6173708163、空载实验

1)测定变比

1实验接线图如图,被试变压器选用三相变压器,1.在三湘交流电源断开的条件下,将调压器旋钮逆时针方向旋到底,并合理选择仪表量程

2.合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=0.5Un,測取高,低压线圈的线电压U1u1.1v1,U2u1.2v1

Uv

U1u1.1v1

U2u1.2v1

220.78

1.69

Kuv==1.69

三相变压器变比实验接线图

图2三相变压器空载实验接线图

2)空载实验

a)

空载实验接线图如图,变压器低压线圈接电源,高压线圈开路。

b)

v

/w分别为交流电压表,电流表,功率表。功率表接线时,需要注意电压线圈和电流线圈的同名端,避免接错线

c(接通电源前,先将交流电源跳到输出电压为零的位置。合上交流电源开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=1.2Un

d(表2-3然后,逐次降低电源电压,在1.2—0.5U的范围内,測取变压器的三箱线电压,电流和功率,共取几组数据,记录于表中,其中U=U

n的点必测点,并在该点附近测的点密集一些

e(测量数据以后,断开三相电源,以便为下次的实验做好准备

U0(V)

I0(A)

P0(W)

U0

(V)

I0

(A)

P0

(W)

cosΦ0

U2u1

2v1

U2v1

2w1

U2w1

2u1

I2u10

I2v10

I2w10

P01

P02

450.1

445.2

447.5

0.169

0.122

0.174

130

447.6

0.155

-53

-0.441055728

420.2

416.4

417.3

0.137

0.098

0.141

417.9666667

0.125333333

0.110212571

400.0

397.3

397.8

0.121

0.086

0.125

398.3666667

0.110666667

0.536937095

380.4

376.6

377.2

0.109

0.077

0.111

0

378.0666667

0.099

0.678716592

360.2

358.2

358.3

0.098

0.071

0.101

358.9

0.09

0.714962718

330.1

328.6

328.0

0.085

0.059

0.086

328.9

0.076666667

0.755584182

300.1

299.6

298.6

0.076

0.055

0.076

299.4333333

0.069

0.782434818

260.2

259.9

258.3

0.066

0.046

0.065

259.4666667

0.059

0.791999821

220.2

220.6

219.2

0.059

0.042

0.060

220

0.053666667

0.782405785

190.5

190.2

189.0

0.054

0.037

0.053

189.9

0.048

0.823410731

4纯电阻负载实验

实验线路图如图所示,变压器低压线圈接电源,高压线圈经开关S接三相负载电阻Rl.1将负载电阻R

l调至最大,合上开关S1接通电源,调节交流电压,使变压器的输入电压U1=U1n

3.在保持U1=U1n的条件下,逐次增加负载电流,从空载到额定负载范围内,測取变压器三相输出线电压和相电流,共取几组数据,记录于表中,其中I=0和I2=In

两点必测

表1-4U

un=U1n

=220V,cosφ2==1

序号

U(V)

I(A)

U1u1.1v1

U1v1.1w1

U1w1.1u1

U2

I1u1

I1v1

I1w1

I2

373.9

381.6

377.75

220.5

0.816

0.613

0.410

1.0

357.6

370.0

363.8

217.6

1.334

0.865

0.396

2.0

351.3

370.4

360.85

215.3

1.855

1.122

0.389

3.0

347.9

370.5

359.2

214.7

2.111

1.248

0.385

3.5

344.2

370.2

357.2

213.3

2.388

1.386

0.384

4.0

三项变压器负载实验接线图

根据空载实验数据作出空载特性曲线并计算激参数:

U0=f(I0)

P0=f(U0)

cosΦ0

=f(u0)

计算激磁参数

从空载特性曲线查出对应于U0=U

n时的I0和P0的值,并由下面式子求取激磁参数

Rm=P0/(3I0*I0)=1960(欧)Zm=2505(欧)Xm=1560(欧)

绘出短路特性曲线和计算短路参数:

Uk=f(Ik)

Pk=f(Ik)

cosΦK

=f(Ik)

计算短路参数

从短路特性曲线查出对应于Ik=In时的Uk和Pk的值,并有计算出的实验环境温度时的短路参数

Rk‘

=4.169(欧)

Zk=3.918(欧)

Zk’=11.189(欧)

Xk‘=8.504(欧)

Uk=122.108%

Ukr=45.5%

Ukx=92.8%

变压器的电压变化率ΔU

根据试验数据,描绘出

cosφ2==1时的特性曲线U2=F(I2),由特性曲线计算出I2=I2n时的电压变化率ΔU

ΔU=0.456%

绘出被试的效率特性曲线

`

第三篇:电力系统的短路分析

电力系统的短路分析

短路是电力系统的严重故障。所谓短路,其内容是指一切不正常的相与相或相与地(对于中性点接地的系统)之间发生通路的情况。

一、短路的原因

产生短路的原因很多,其主要原因如下:

1、元件损坏,如绝缘材料自然老化等。

2、气象条件恶化,如雷击等。

3、人为事故,如运行人员带负荷拉闸等。(发生概率较高)

4、其他,如工程建设时挖沟损伤电缆等。

二、短路的类型

在三相系统中,可能发生的短路有三相短路、两相短路、两相接地短路和单相接地短路等四种。三相短路也称对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都是不对称短路。

注:

1、单相接地短路发生的几率达65%左右。

2、短路故障大多数发生在架空输电线路。

3、电力系统中在不同地点发生短路,称为多重短路。

三、短路的后果 短路的主要后果如下:

1、短路故障使短路点附近支路出现比正常电流大许多倍的短路电流,产生较大的电动效应和热效应,破坏设备。(此为最常见)

2、短路时系统电压大幅度下降,对用户影响很大。

3、短路会使并列运行的发电机失去同步,破坏系统的稳定,造成系统的解列,出现大面积停电。

4、不对称短路对附近通信线路和无线电波会产生电磁干扰。

四、电力系统降低短路故障的发生概率采取的措施

1、采用合理的防雷设施,加强运行维护管理等。

2、通过采用继电保护装置,迅速作用于切除故障设备,保证无故障部分的安全运行。

3、架空线路普遍采用自动重合闸装置,发生短路时断路器迅速跳闸,经一定时间(0.4-1s)断路器自动合闸。

4、线路上的电抗器,通常也是为限制短路电流而装设的。

五、短路电流计算的目的

为确保设备在短路情况下不至于被破坏,减轻短路后果和防止故障扩大,必须事先对短路电流进行计算。在电力系统和电器设备的设计和运行中,短路计算也是解决一系列技术问题不可缺少的基本计算。

计算短路电流的具体目的如下:

1、选择有足够机械稳定和热稳定的电器设备。

2、合理配置各种继电保护和自动装置并正确整定其参数。

3、设计和选择发电厂和电力系统主接线。

4、进行电力系统暂态稳定计算,分析短路对用户的影响。

5、确定输电线路对通信的影响。

为了方便计算,在高压系统中采用标幺值的计算方法。

标幺值是某些电气量的实际有名值与所选的同单位规定值之比,即 标幺值=实际有名值/同单位规定值

第四篇:电力系统短路故障浅析

电力系统短路故障浅析

摘要:破坏电力系统正常运行的最为常见的原因是各种类型的短路故障。它危害性极大,由此引发的其他电气故障也最多。本文简要探讨了各种类型的短路故障的原因、特点、危害、查找方法、预防措施等,对指导生产有一定的参考作用。

关键词:短路原因特点故障短路预防

概念

电力系统的短路故障,是指不同电位导电部分之间的不正常短接。由于此时故障点的阻抗变得很小,电流便会在一瞬间升高,短路点以前的电压下降,会影响到电力系统的稳定运行,严重短路甚至会造成系统瘫痪。

在正常运行时,除中性点外,相与相或者相与地之间是绝缘的。三相系统中,短路故障的基本类型为三相短路、两相短路、单相短路、单相短路接地、两相短路接地等。其中,三相短路属对称短路,其它形式的短路,均属不对称短路;在中性点直接接地的系统中,发生单相短路接地故障最为常见,大约占短路故障的65%,两相短路约占10%,两相短路接地约占20%,发生三相短路故障的可能性最小,虽然只占短路故障的5%[1]左右,却是危害系统最严重的,在实际中一定要引起我们的足够重视。

1.1 单相接地短路:是指三相交流供电系统中一根相线与大地成等电位状态,既该相线的电位与大地的电位相等,都是“零”。通俗的讲就是A相或B相或C相一相接地。

1.2 两相短路:任意两相导线,直接金属性连接或经过小阻抗连接在一起。通俗讲指两相直接短接在一起。

1.3 两相短路接地:是指三相交流供电系统中两根相线与大地成等电位状态了。通俗讲就是A、B、C三相中的任意两相同时与大地的无电阻的直接连接。

1.4 三相短路:就是电力系统内A、B、C三相在某一点的零电阻、零电抗的直接连接。这时会产生很大的短路电流,破坏程度很大。

三相短路分三种:单相接地短路;两相之间短路;三相全部短路。发生短路的原因

产生短路的原因有很多,既有客观的,也有主观的,但是主要原因是电气设备载流部分的相间绝缘或者相对地绝缘被损坏。

2.1 由于设计、制造、安装、维护不当等造成的设备缺陷发展成为短路。如选择电缆截面太小或扩大生产增加负荷使电路超载、过载,长期持续下去,就可能造成绝缘老化或者绝缘的完全失效,导致短路。

2.2 假冒、伪劣电器设备的绝缘不合格也会造成短路。

2.3 气候恶劣,低温导线覆冰引起架空线倒杆断线造成短路;架空线路弧垂不一致或弧垂太大,刮大风时会引起短路;雷电冲击使架空线路的绝缘子发生闪络短路;环境温度过高、机械损伤等。

2.4 误操作引起的短路故障。工作人员违反操作规程带负荷拉刀闸,引起电弧短路;违反电业安全工作规程带电误合接地刀闸造成的短路故障。检修人员在检修低压带电开关设备时,距离带电体较近,未采取必要的安全措施防止短路造成故障。

2.5 电缆、变压器、发电机等设备中载流部分的绝缘材料在运行中损坏[1]。

2.6 动物作祟,如鸟兽跨接在裸露的载流部分;老鼠窜入高压配电室造成短路故障;老鼠咬破置于管道中的电缆绝缘等。

短路特点

电力系统发生短路故障后,电流剧增,短路电流比正常工作时的电流要大几十倍,甚至几百倍,在高压下,电流可达数千万安。因此应千方百计限制短路电流,并使短路电流持续时间尽量缩短。

3.1 短路点距离电源越进线路阻抗越小,短路电流会越来越大。

3.2 短路故障持续时间的长短,直接导致电气设备损坏的厉害程度,时间越长损坏越严重。

短路故障的危害[2]

短路故障引起的后果是破坏性的。

具体表现在以下几个方面:

4.1 当电路发生短路时,短路点的电弧有可能烧坏电气设备,同时很大的短路电流会通过设备使发热增加,当短路持续时间较长时,可能使设备过热,使导体发红,甚至溶化损坏绝缘,破坏设备。

4.2在供电系统中,强大的短路电流,特别是冲击电流,使两相邻导体之间产生巨大的电动力。一般可以计算为:

F(3)=■.Im2.l/a×10一7(N)(三相短路)

F(2)=2.Im2.l/a×10一7(N)(单相短路)

由上式可见,短路电流越大,电动力越大,破坏性越强。这种电动力可能使母线变形,使母线定固件损坏,也可能使开关相邻刀片变形,开关损坏。

4.3 电力系统发生短路时,有可能使并列运行的发电厂失去同步,破坏系统稳定,使整个系统的正常运行遭到破坏,引起大片地区的停电。这是短路故障最严重的后果。

4.4 短路产生的电弧、火花可能引发恶性事故,如火灾、电击、爆炸等。

4.5 短路故障发生后,短路点电压将降到零,短路点附近各点的电压也将明显降低,对用户工作影响很大,系统中最主要的负荷是异步电动机,它的电磁转矩同它的端电压的平方成正比,电压下降时,电磁转矩将明显降低,使电动机停转,以致造成产品报废及设备损坏等严重后果。

4.6 不对称接地短路所造成的不平衡电流,将产生零序不平衡磁通。会在邻近的平行线路内感应出很大的电动势,将会造成对通信的干扰,并危及设备和人身的安全。

短路的预防

为了保证安全可靠供电,除设计时要科学、合理以外,还应采取各种必要的安全措施,减少各类短路故障的发生。

5.1 做好短路电流的计算工作,选择正确的电气设备,使电气设备的额定电压和线路的额定电压相符。

5.2 对继电保护的整定值和熔体的额定电流要正确选择,采用速断保护装置,以便发生短路时能迅速切断短路电流,减少短路电流持续时间,把短路造成的损失降到最小。

5.3 采用电抗器。以增加系统的阻抗来限制短路电流。

5.4 变电站要安装避雷针,变压器附近和线路上要安装避雷器,减少恶劣天气中雷击造成的灾害。

5.5 始终保持线路弧垂一致并符合安全规定,保证架空线路施工质量。

5.6 对带电安装和检修电气设备的工作,工作人员一定要注意力要高度集中、防止出现错接线、误操作。

5.7 一旦发生故障,要从电力系统中把故障线路或设备切断,使其余部分可以继续运行。

5.8平时要加强管理。及时清除导电粉尘、防止导电粉尘进入电气设备;防止老鼠等小动物进入高压配电室,爬上电气设备。

5.9 保证电力系统的安全稳定运行。维护人员应严格遵守规章制度,正确操作电气设备,禁止带负荷拉刀闸,带电合接地刀闸。线路施工、维护人员在距带电部位距离较近的地方工作,要采取防止短路的措施。要对线路、设备进行经常巡视检查,及时发现并处理各类缺陷。

小结

通过对电力系统短路故障的浅析,可以在实际运用中更快的了解故障的原因,做好相应的预防措施。同时也能加快对故障的维修处理,缩短短路故障运行时间,尽可能把损失降到最低,保障电力系统的安全稳定运行。

参考文献:

[1]夏道止.电力系统分析[M].北京:中国电力出版社,2004.[2]刘万顺.电力系统故障分析[M].北京:中国电力出版社,2004.

第五篇:为什么电力系统采用三相制

为什么电力系统采用三相制? 技术:

1、因为发电机是三相的,那发电机为什么是三相?那就要从发电机最开始的设计来

说,如果让我们来设计发电机,我们会考虑什么?(假设大家都有基本的高中物

理知识,知道发电机的核心原件就是一个矩形导体框切割磁力线从而产生电流,在一个圆周上放N个矩形框就是N相),我的考虑点有:

1.发电机中的空间利用率(N越大越好)

2.发电机中的同样材料(铜)的发电效率(N越大越好)

3.发电机中的每个相位之间的稳定性和波动性。(N越大越好)

4.输电线所需要的材料。(N越小越好)

5.发电,输电,用电等一系列环节的设备复杂程度。(N越小越好)由此可知,太大也不行,太小也不行,怎么办?最终通过人量的实验和实践证明

N=3才是最好的平衡点。

2、三相是交流电在不使用辅助设备能产生“稳定旋转磁场”的最小相数,这点最重 要的。

3、二相交流电相位互差1200,相较于四相等其它相,二相中任意两相之间的线压

相同,使其较之单相交流电有很多优点,已在发电、输配电以及电能转换为机械

能方面都有明显的优越性。

经济:

1、采用三相是和成本自接相关的,相数越多,电力生产和运输的成本越高,但如果 采用两相的话,为保证两相稳定运行的成本也很高,于是乎,现在实际使用中的“交

流电,’k卜是二相的。

2、制造三相发电机、变压器较制造单相发电机、变压器省材料,而且构造简单、性

能优良。又如,用同样材料所制造的三相电机,其容量比单相电机大500/0,三相旋转

电机的瞬时功率是恒定的,其瞬时转矩也是恒定的,运转就比较平稳;在输送同样功

率的情况下,三相输电线较单相输电线,可节省有色金属25%,而目电能损耗较单相 输电时少。

3、使用4相、5相、6相不可以吗?当然可以。使用更多相时会使发电、输配电及

用电环节变得复杂,输电线路根数要增加,发电机、变压器、电动机等设备也趋于复

杂化,增加制造成本,当然大容量设备假定使用四相交流电单从设备制造上也许会更

合理,但电网就不同了。另外三相不平衡己经引起很多问题了,相数多了会引起更多 的问题。为什么电力系统采用三相制? 技术:

1、因为发电机是三相的,那发电机为什么是三相?那就要从发电机最开始的设计来

说,如果让我们来设计发电机,我们会考虑什么?(假设大家都有基本的高中物

理知识,知道发电机的核心原件就是一个矩形导体框切割磁力线从而产生电流,在一个圆周上放N个矩形框就是N相),我的考虑点有:

1.发电机中的空间利用率(N越大越好)

2.发电机中的同样材料(铜)的发电效率(N越大越好)

3.发电机中的每个相位之间的稳定性和波动性。(N越大越好)

4.输电线所需要的材料。(N越小越好)

5.发电,输电,用电等一系列环节的设备复杂程度。(N越小越好)由此可知,太大也不行,太小也不行,怎么办?最终通过人量的实验和实践证明

N=3才是最好的平衡点。

2、三相是交流电在不使用辅助设备能产生“稳定旋转磁场”的最小相数,这点最重 要的。

3、二相交流电相位互差1200,相较于四相等其它相,二相中任意两相之间的线压

相同,使其较之单相交流电有很多优点,已在发电、输配电以及电能转换为机械

能方面都有明显的优越性。

经济:

1、采用三相是和成本自接相关的,相数越多,电力生产和运输的成本越高,但如果

采用两相的话,为保证两相稳定运行的成本也很高,于是乎,现在实际使用中的“交

流电,’k卜是二相的。

2、制造三相发电机、变压器较制造单相发电机、变压器省材料,而且构造简单、性

能优良。又如,用同样材料所制造的三相电机,其容量比单相电机大500/0,三相旋转

电机的瞬时功率是恒定的,其瞬时转矩也是恒定的,运转就比较平稳;在输送同样功 率的情况下,三相输电线较单相输电线,可节省有色金属25%,而目电能损耗较单相 输电时少。

3、使用4相、5相、6相不可以吗?当然可以。使用更多相时会使发电、输配电及

用电环节变得复杂,输电线路根数要增加,发电机、变压器、电动机等设备也趋于复

杂化,增加制造成本,当然大容量设备假定使用四相交流电单从设备制造上也许会更

合理,但电网就不同了。另外三相不平衡己经引起很多问题了,相数多了会引起更多 的问题。

1、三相交流电在交流电机定子绕组中可以产生旋转磁场,而且这个磁场是稳定的具有固定旋转方向的旋转磁场,4、5、6...能产生更稳定的旋转磁场,但是那样会增加变电设备和动力的成本。

2、单相电机的瞬时功率是变化的,而三相电机瞬时功率是不变的,就等于平均功率。从而电机转矩恒定,运行稳定,噪声小等等。主要是交流电机方面的知识吧,正在痛苦的补电机中。。

首先,要在不使用使用辅助设备的情况下产生旋转磁场必须至少三相供电,三相交流电在交流电机定子绕组中可以产生旋转磁场,而且这个磁场是稳定的具有固定旋转方向的旋转磁场,4、5、6...能产生更稳定的旋转磁场,但是那样会增加变电设备和动力的成本。而正交排列的两相系统也能构成旋转磁场,但是不具有固定的旋转方向(是不是这样,回去后好好研究下),这会造成电机极距下线圈无法均布,从而不但降低了电机容量,还会产生主磁场的严重崎变。

此外,三相供电系统具有很多优点,为各国广泛采用。在发电方面,相同尺寸的三相发电机比单相发电机的功率大,在三相负载相同的情况下,发电机转矩恒定,有利于发电机的工作;在传输方面,三相系统比单相系统节省传输线,三相变压器比单相变压器经济;在用电方面,三相电容易产生旋转磁场使三相电动机平稳转动。

为什么交流电源是正弦波呢?因为切割磁感线的导线圈的有效面积的变化率符合正弦曲线,这就决定了交流电源是正弦波,这个和弹簧阵子的规律是一样的。

为什么我国采用50Hz交流电?50Hz或60Hz(美国、日本等国家采用)也是在考虑综合成本的情况下确定的,频率太低,电力转换成动力的效率就会太低,频率太高,变压设备的损耗会增加以及远程输电的功率因数会下降。50赫的两极发电机的同步转速是3000转/分,而如果频率上升一倍达到100赫,那么同步转速将会是6000转/分。如此高的速度将会给发电机的制造带来很多问题,特别是转子表面的线速度太高,必将大大限制容量的增加。另外,从使用角度看,频率过高,使得电抗增加,电磁损耗大,加剧了无功的数量。譬如以三相电机为例,其电流大大下降,输出功率及转矩也大大下降,实在没有益处。另外,如果采用较低的频率譬如30赫,变压效率低,那么将不利于交流电的变压和传输。交流电在中国以220V 50HZ接入送电,他的50HZ频率,可以使用普通的工频变压器(则一般的变压器)进行变压,比较方便,而直流电想变压,则需要用开关电源,而开关电源相当贵,所以对于电网公司来说,投入太大了。

但是,为什么超高压,比如远距离送电,跨省的这些,都是直流输送?因为直流输送可以更加高效的利用导线的有效面积,主要是交流电存在感抗而影响效率的。但直流送电一般只用在远距离,比如西电东送,这样总体上看可以更加节约成本,但是两端需要建设整流设备以及逆变设备将交流变为直流以及将直流变为交流并网。所以如果是短距离传输,则成本太高了。适合长距离传输或者作为非同步联网背靠背直流输电(扯远了,有兴趣请自行研究)

2.为什么是三相?是电力的输送及使用过程中的技术合理性与节省设备投资的综合平衡结果。原因如下:

a)旋转磁场:三相是交流电在不使用辅助设备能产生“稳定旋转磁场”的最小相数,这点最重要,有了旋转磁场其它的事情就好理解了......。也许有人说了不对,家用电器都用单相,没有旋转磁场小电机怎么会转?其实家用电器是利用通过电容时电流相位超前的特性从单相电源分出来一相与原来的一相产生旋转磁场,这点不符合上述条件吧?--不使用辅助设备能产生“稳定旋转磁场”

b)三相交流电相位互差120°,任意两相之间的线压相同,使其较之单相交流电有很多优点,它在发电、输配电以及电能转换为机械能方面都有明显的优越性。例如:制造三相发电机、变压器都较制造单相发电机、变压器省材料,而且构造简单、性能优良。又如,用同样材料所制造的三相电机,其容量比单相电机大50%,三相旋转电机的瞬时功率是恒定的,其瞬时转矩也是恒定的,运转就比较平稳;在输送同样功率的情况下,三相输电线较单相输电线,可节省有色金属25%,而且电能损耗较单相输电时少。

c)使用4相、5相、6相...不可以吗?

当然可以。使用更多相时会使发电、输配电及用电环节变得复杂,输电线路根数要增加,发电机、变压器、电动机等设备也趋于复杂化,增加制造成本;当然大容量设备假定使用四相交流电单从设备制造上也许会更合理,但电网就不同了。另外三相不平衡已经引起很多问题了,相数多了会不会更困难?

写道这儿,想到了里想到了另外一个问题:发动机的问题,农村用的手扶拖拉机是单缸发动机,夏利是三缸,桑塔纳是四缸。。,奔驰宝马用到了六缸、八缸甚至更多,功率(马力)越大,使用的缸数越多。虽然四缸车比较普遍,但也不能否认六缸发动机的合理性吧,当然不同的车可以行驶在同一道路上,可以并存;电网就不同了,只能统一。

d)类似的问题还有频率为什么是50Hz或60Hz?这也是在考虑综合成本的情况下确定的,频率太低电力转换成动力的效率就会太低,频率太高,输变电的损耗会增加以及远程输电的功率因数会下降,选择50Hz、60Hz也是有其道理的。

实际上,现代输电技术还会不断革新。

我记得美国有人研究采用高频电磁波直接传输电能,导体都省了。

下载论电力系统三相短路的原因和防范措施word格式文档
下载论电力系统三相短路的原因和防范措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电力系统短路计算电力系统分析课程设计

    课程设计(论文)课程名称电力系统分析题目名称电力系统短路计算学生学部(系)机械电气学部电气工程系专业班级电气工程及其自动化班学号学生姓名指导教师2012年X月X日课程设计(论文......

    输电线路短路跳闸故障的防范措施

    输电线路短路跳闸故障的防范措施作者:未知 文章来源:中国电力网 点击数:41 更新时间:2007-11-20 23:26:17 【字体:小 大】 湖北安全生产信息网(安全生产资料大全)寻找资料>>据统......

    产生习惯性违章行为的原因和防范措施

    习惯性违章行为的产生、表现及预防措施 (重大事故反思活动班组安全学习资料之三)人的不安全行为是导致工伤事故的主要原因,习惯性违章又是职员思想隐患导致不安全行为的充分体......

    医患纠纷产生的原因和防范措施

    医患纠纷产生的原因和防范措施 前言:随着改革开放的不断深入,社会对医疗行业的要求逐渐增高,医院这个救死扶伤的场所中医患关系成为了社会关注的焦点。近年来,由于医疗纠纷明显......

    井下电网短路越级跳闸的原因分析和探讨

    井下电网短路越级跳闸的原因分析和探讨 摘要:本讲义介绍了目前煤矿井下供电系统的现状,针对井下短路故障时越级跳闸的原因进行了分析,并给出了自己认为可行的解决办法:对于短路......

    医疗纠纷原因分析与防范措施

    医疗纠纷原因分析与防范措施近年来,随着社会的进步,法制的健全和法律知识的普及,人们的法律意识逐步增强。患者的健康水平日益提高,对医疗服务的期望值逐步增大,维护个人利益的观......

    变压器运行中短路损坏的原因分析

    变压器运行中短路损坏的原因分析 【内容摘要】 通过近几年短路造成变压器损坏的具体实例分析,主要原因由于低压侧过载、违章加油等。在、就该原因提出了防止变压器损坏的对策......

    电线短路起火原因及预防措施5篇范文

    电线短路起火原因及预防措施 电气线路故障是引起火灾的常见原因之一,下面简单介绍电气线路起火的主要原因和预防措施。 一、电气线路起火的主要原因: (一)线路短路。所谓短路,就......