基于视觉传感器kinect的移动机器人

时间:2019-05-15 10:48:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基于视觉传感器kinect的移动机器人》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基于视觉传感器kinect的移动机器人》。

第一篇:基于视觉传感器kinect的移动机器人

基于视觉传感器的移动机器人

摘要:

移动机器人的视觉系统研究已成为机器人导航领域中的一项关键研究内容,随着机器人导航在机器人应用领域中变得越来越重要,在机器人视觉导航系统中,获取图像深度信息逐渐成为研究的重点。

在机器人视觉领域,深度检测一般是通过对普通RGB图像处理的方法来实现,具有不小的工作量。本文利用Kinect深度摄像机来获取、显示深度图像这一方法,并应用于机器人视觉系统。进而实现移动机器人的认路。

关键词: 视觉系统 Kinect 深度图像

Abstract The visual system research in the field of robot navigation has become a key research content, as robot navigation in the robot navigation application fields become more and more important, in the robot vision navigation system, obtain image depth information has become the focus of research.In robot vision areas, Depth detection is generally through to the ordinary RGB image processing methods to realize, have a lot of workload.This paper put forward according depth camera to gain、show the depth image this method, and application in robot vision system.The experimental results show that this method can achieve the depth information of the image extraction and greatly reduce the workload.so the robot can know the road.Keywords: Visual system Kinect Depth image 1 引言

智能自主移动机器人是当今国际机器人研究领域的热点,而路径规划则是智能移动机器人中的一个重要组成部分,其研究目的是使机器人能在不同的环境中自主路径规划。环境感知是移动机器人进行自主路径规划的关键技术,获取这些信息的传感器既需要足够大的视场来覆盖整个工作区,又需要较高的采集速率以保证在运动的环境中能够提供实时的信息。近几年来,由于计算机图像处理能力和技术的飞速发展以及大量的数字图像处理设备性能价格比的提高,加之视觉系统具有信号探测范围宽、目标信息完整等优势,视觉传感器在移动机器人导航中的应用越来越受到人们的重视并表现出很好的发展前景[1]。

本文的移动机器人主要是通过Kinect深度摄像机来获取场景的深度信息,然后对深度图象的处理来确定前方是否有障碍物,当移动机器人与目标障碍物有一定的距离时,做出相应的反应跟动作。机器人使用的视觉传感器:Kinect

Kinect是美国微软公司于2010年11月4日推出的Xbox 360游戏机体感周边外设的正式名称,起初名为Natal,意味初生。它实际上是一种3D体感摄影机,利用即时动态捕捉、影像辨识、麦克风输入、语音辨识、社群互动等功能让玩家摆脱传统游戏手柄的束缚,通过自己的肢体控制游戏,并且实现与互联网玩家互动,分享图片、影音信息。Kinect是微软最新的畅销产品,它是吉尼斯世界记录中销售速度最快的消费电子产品。自从2010年11月发布至2011年4月,微软已经在全球售出了超过1000万台Kinect。

多年以来,机器人科技领域一直被一个基本问题所困扰:机器人要移动,就必须能够创建它所处周围环境的地图,同时能够理解身处的位置。机器人学家已经开发出了实现这一项功能的工具,名为“同步定位绘图”。但是用于工具中绘制地图的传感器要么昂贵,要么计算不准确。而Kinect的出现,既能够实时拍摄3D图象的摄像头,而且重量轻,可以为机器人添加导航算法,执行路径追踪,路径规划,是“视觉传感器”的不二选择[2]。

2.1 Kinect传感器的主要结构

图2.1 Kinect传感器

Kinect的“心脏”:PS1080系统级芯片(SoC),PS1080 SoC 拥有超强的并行计算逻辑,可控制近红外光源,进行图象编码并主动投射近红外光谱。同时,通过一个标准的CMOS图象传感器接收投影的Light Coding 红外光谱并且将编码后的反射斑点图象输送给PS1080,PS1080对此进行处理并生成深度图象。

Kinect有三只不对称的“眼睛”,从左到右,分别是红外投影仪,彩色摄像头,以及红外摄像头。中间的摄像头提供了彩色图像;剩余的两个元件通过发射接收红外线,提供深度数据,如上图所示,尺寸上他们接近于网络摄像头,其镜头大,具备自动对焦功能[3]。

2.2 Kinect传感器获得深度图象的原理

Kinect 红外发射器(Infrared Projector)发射出雷射光,通过红外发射器镜头前的光栅(diffuser),均匀地投射到测量空间,测量空间的粗糙物体反射,形成随机的散斑,再通过红外摄影机(Infrared Camera)记录空间的每个散斑,通过晶片的计算便得到3D深度图像[4]。

运用Kinect传感器的一种名叫Light Coding的技术。Light Coding,是Kinect的核心技术,顾名思义就是用光源照明给需要测量的空间编上码。但与传统的结构光方法不同的是,他的光源打出去的并不是一副周期性变化的二维的图像编码,而是一个具有三维纵深的“体编码”。这种光源叫做激光散斑,是当激光照射到粗糙物体或穿透毛玻璃后形成的随机衍射斑点。Light Coding技术理论是利用连续光(近红外线)对测量空间进行编码,经感应器读取编码的光线,交由晶片运算进行解码后,产生成一张具有深度的图像。这些散斑具有高度的随机性,而且会随着距离的不同变换图案。也就是说空间中任意两处的散斑图案都是不同的。只要在空间中打上这样的结构光,整个空间就都被做了标记,把一个物体放进这个空间,只要看看物体上面的散斑图案,就可以知道这个物体在什么位置了。当然,在这之前要把整个空间的散斑图案都记录下来,所以要先做一次光源的标定。标定的方法是这样的:每隔一段距离,取一个参考平面,把参考平面上的散斑图案记录下来。如下图:

图2.2 光源标定

假设Kinect规定的用户空间是距离摄像头1~4m的范围,每隔1cm取一个参考平面,那么标定下来我们就保存了300幅散斑图像。标定的间距越小,精度越高,如图2.2所示。需要进行测量的时候,拍摄一幅待测量的散斑图像,将这幅图像和我们保存下来的300幅参考图依次做互相关运算,进而得到300幅相关度图像。而空间中的物体存在的位置,会在相关图像上会显示出峰值,把这些峰值叠加在一起,再经过插值运算后就会得到整个场景的三维形状了。

2.3 Kinect传感器与机器人的结合实现认路

在移动机器人身上安装Kinect传感器以及导航软件:

图2.3 会认路的机器人

当机器人经过一场景时,Kinect会侦测这个拐角里面的墙壁、道路、障碍,导航软件将 Kinect所看到的东西统统绘制成三维图像,同时通过传感器,软件还会计算机器人目前的位置,然后计算出路径,并储存起来。当机器人再次经过这个场景时,Kinect再次绘制了三维图像,软件就把这次的得到的三维图像和之前得到的三维图像对比,看是否相同,如果相同就按照之前的路径去走,如果不同就重新计算新的路径,也就是说如果下次机器人经过这个拐角,它就能够轻松绕过不知从那里冒出来的箱子。

3.总结与展望

本文简单介绍了Kinect传感器的机构,工作原理。以及通过Kinect深度图象技术和导航软件的移动机器人进行认路功能,相信以后Kinect传感器的应用会更加的广泛。

Kinect传感器还具有识别人体动作等很多功能,因此还能开发出跟随人体而动的机器人,日本电影《环太平洋》里面的机器人场景也许在将来也会实现。

参考文献

[1] 钟玉琢, 乔秉新.机器人视觉技术[M].北京: 国防工业出版社, 1992.[2] 余涛.Kinect应用开发实战[M].机械工业出版社, 2013.[3] 余涛.Kinect应用开发实战[M].机械工业出版社, 2013.[4] Helen Knight.New system allows robots to continuously map their environment,MIT news[J].2012.4.

第二篇:kinect外文文献翻译解析

3D与Kinect 扬斯米谢克,米哈尔Jancosek和Tomas Pajdla控制论,费用,在布拉格捷克技术大学的CMP

摘要

我们分析的Kinect作为3D测量设备,实验调查深度测量分辨率和误差性能和使超高动力学的定量比较精度立体声重建从单反相机和一个3D-TOF相机。我们提出的Kinect几何模型和它的校准程序提供精确的校准Kinect的3D测量和Kinect摄像头。我们通过整合演示的Kinect校准的功能它变成一个SFM管道,其中三维测量从运动的Kinect被变换成一个共同的坐标系统通过从比赛计算相对姿态 彩色摄像机。

1.简介

Kinect正成为一个重要的三维传感器。它接收了大量的关注表示感谢,以人迅速对构成三维测量上开发识别系统。测量的成本低,可靠性承诺使Kinect的主要3D测量室内机器人,三维场景重建设备,和物体识别。

在本文中,我们提供的几何分析Kinect的,设计它的几何模型,提出了一个校准过程,并展示其性能。方法建模Kinect的几何形状,从而出现近日,为了解一个良好的基础传感器。主要有以下几种最相关的作品。文献结合OpenCV的摄像机标定用Kinect的逆差距的计量模型来获得基本Kinect的校准程序。他没有学习Kinect的传感器的特定功能,并没有纠正他们。几乎相同的程序实施活性氧,其中该红外线之间的表观位移和深度图像被校正。这种做法的另一个变化出现在,其中的OpenCV校准替换通过Bouguet的校准工具箱。我们建立在以前的工作之上,并设计了一个精确的校准程序的基础上考虑的几何模型,以及作为一个额外的校正程序会计“学习”对于剩下的非建模误差。我们使用全相机型号和他们的校准程序为实现在,超高动力学逆视差之间的关系和深度如,正确深度和红外图像位移如,并添加其他校正训练有素的校准板的例子。我们证明该校准超高动力学可以与结构相结合运动来获得三维数据一致的坐标系中,允许通过多视角来构建观测到的景物的表面立体声。我们的对比表明,Kinect是优越在精度SwissRanger SR-40003D-TOF相机接近中等分辨率单反立体声钻机。我们的研究结果是根据[10]其中兼容观测关于Kinect的深度量化被提及。

图1.Kinect的由红外(IR)投影仪,红外照相机和RGB摄像头。

图2.Kinect的两尼康D60单反相机钻机。

2.作为Kinect的三维测量装置

Kinect是由一个红外投影仪的复合设备一图案和IR照相机,其用于三角测量点在太空中。它可以作为一个深度摄像头,以及一颜色(RGB)相机,它可以用来识别图像内容和纹理的3D点,图1作为测定装置,超高动力学提供三种输出:红外图像,RGB图像,以及(逆向)深度图像。

2.1 红外图像

IR(1280×1024像素的57×45度视场,6.1 mm焦距长,5.2μm像素大小)摄像头是用来观察和解码红外投射图案三角3D场景。如果由卤素灯[16,19],同时提供适当的照明红外投影受阻,如图7(c,d)中,它可以可靠地校正由[2]使用用于相同的棋盘图案在RGB摄像头。相机表现出不可忽略的径向和切向变形,标签2。

2.2 RGB图像

RGB(1280×1024像素的63×50度视场,2.9毫米焦距,2.8μm像素大小)相机提供介质质量的图像。它可以由[2]进行校准和用于跟踪由SFM系统,例如照相机运动[17,7]。

2.3 深度图像

超高动力学的主要原料输出是对应的图像到的深度在场景中。而不是提供实际深度z,Kinect的返回“逆深度”d图。图3(a)。考虑到深度分辨率达到的Kinect的(部分2.4),我们通过模型等式。5建议在[3]。深度图像是通过三角测量构造从红外图像和投影,因此它是由IR图象,等式“携带”。5。

2.4 深度解析

图3(b,c)表示深度分辨率的函数距离。深度决议通过移动测量Kinect的距离(0.5米,15米)从平面靶足够精心录制返回所有值约5◦视图围绕图像中心领域。量化步骤q的大小,也就是距离两个连续的记录值之间,被发现是深度z的以下函数:

q(z)= 2.73 z2 + 0.74 z − 0.58 [mm].(1)以Z米。q中开始,RESP值。的操作范围在末端,分别为q(0.50 m)=0.65 mm, resp.q(15.7 m)= 685 mm.(a)Kinect逆深度作为实际深度的函数。

(b)深入Kinect的量化步长Q(0-15米)。

(c)Kinect的深度量化步长(0-5米细节)。

2.5 红外图像和深度图像之间切换

发现IR和深度图像被移位。为了确定移位[U0,V0]?几个不同的目标被捕获红外和深度图像,图。图4(a)。对比目标从背景和分割出移是通过使分割的形状在确定最好对准,图图4(b)。几个实验对象不同结果形状如表1所示。1.移估计为平均值在所有实验。我们的结果表明,在深度使用尺寸的相关窗口7×7像素计算处理。这是接近9×9的窗口大小估计在[11]。

(a)对准前

(b)对准后

图4.红外深度图像移位和校正。

一个目标的红外图像显示为黑色。的深度图像目标是通过其白边表示。

表1.红外深度摄像头像素位置偏移。

3.Kinect的几何模型

我们建模的Kinect作为由多视图系统RGB,红外和深度摄像头。RGB的几何模型和红外摄像机,其投射一个三维点X为图像点[U,V]?,由[2]给出的失真参数K =[K1,K2。。,K5],摄像机标定矩阵K,旋转R和摄像机中心C[6]。

图5.Kinect的几何模型。

超高动力学的深度相机相关联的几何红外相机。它返回逆深度d沿z轴,图5,对每个像素[U,V]的红外摄像机作为

其中,U,V是由方程给出。3,真正的深度z由公式。4,[U0,V0]按Tab键。1,X代表一个3D的三维坐标点,以及C1和C0是模型的参数。我们联想Kinect的坐标系与红外相机,因此得到RIR=我和CIR=03D点XIR构造从测量[X,Y,D]在深度图像通过

并投射到RGB图像作为

其中,存款保险计划是由等式给出的失真函数。3,基里巴斯,kRGB是红外的各自失真参数和RGB摄像头,KIR是红外摄像机标定矩阵KRGB,RRGB,CRGB是校准矩阵,所述旋转矩阵和中心将RGB摄像头。

4.Kinect的标定

我们校正[2] Kinect的摄像头一起通过展示相同的校准目标到IR和RGB照相机,图7(c)。以这种方式,两个照相机被校准w.r.t.该相同的3D点和相机WRT的因此姿势点可以链接给他们的相对姿态,图8.以直角坐标红外相机作为系统Kinect的全球坐标系,使相机相对造成等于RRGB,CRGB。标签。2,第3显示内部参数和图图6显示效果在摄像机的扭曲。我们包括切线畸变,因为它的非忽略增加了整体三维测量的精度。图。图7(a)示出了该IR图像在正常运行的Kinect标定板当它是由其IR发射照亮。更好的图像是通过阻断红外投影仪和照明获得由卤素灯图偏出。图7(b)。

图6.既Kinect的摄像头预估失真的影响。

红色数字表示的尺寸和箭头的方向像素位移引起的透镜失真。交叉显示图像中心的圆的主点的位置。

图7.在IR,RGB和深度图像的校准板。

参数C0,深度相机的C1被校准如下。我们得到了N次测量,正从深度图像全部校准点,图7(d)。笛卡尔坐标相同XIRi校准点测量在IR笛卡尔系统通过交叉投影点进去红外图像的光线用最好的平面装配到重建的校准点。参数C0,C1进行了优化,以最合适的XDI到使用等式6。

表2.Kinect的红外摄像机内部参数。

表3.Kinect的摄像头RGB内部参数。

图8.位置和Kinect的IR和RGB摄像头的方向

与单反一对立体声(左,右)与3D完全校准重建在平面校准目标点。

图9.平面残差拟合出的固定模式噪声

从不同的距离的深度图象。

表4.评价的z修正。的标准偏差

平面的残差拟合到平面目标的测量已经减少。

4.1 学习复杂的剩余误差

它已经观察到超高动力学校准与上述程序仍然呈现小而相对复杂的残余错误近距离测量。图。9显示残差平面拟合到校准Kinect的测量后平面靶的跨越视场。目标已被抓获,从18个不同的距离,从0.7至1.3米,高度相关的残差进行核算。沿250水平深度图像行残差图10(a)。残值是一贯的积极中心和负在外围。为了补偿该残留误差,我们形成z值的Z校正图像构造为所有的残余图像的逐像素平均。的z校正图像是从z中减去坐标XIR的计算等式所。6。为了评估该修正方法,在z校正图像从甚至图像,然后对残差构建施加到奇数(表的第一行。4)和偶数(第二行选项卡中。4)深度图像。的标准偏差残差下降。施加的z校正Kinect的测量后从在第5.1节,平均所描述的实验的残留误差减少了约0.25毫米,图。图10(b)。在4410点的残差进行评价跨越视场。

5.验证

5.1 Kinect的,SLRStereo和3DTOF的比较

我们比较的平面靶的测定精度通过Kinect的,单反立体声和3D TOF相机。Kinect和单反立体声(图像尺寸2304×1536像素)分别为刚性地安装(图2)和校准(图8)在一起。单反立体声被重建校准点完成由[2]提取并通过线性最小二乘三角三角[6]。他们测量了同一平面靶中315控制校准点在每个14的目标。SR-40003D TOF[13]不同的测量平面靶,但在一个可比的距离范围0.9Kinect的标定:代码完成。http://,2010年2月

[20]柳树车库。摄像机标定和三维重建。HTTP:// OPENCV。

willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction。HTML,2011年6月

[21]柳树车库。Turtlebot。HTTP:// www.xiexiebang.com/turtlebot,2011年1月

第三篇:传感器总结

1.7 什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标?

答:传感器的静态特性是指被测量的值处于稳定状态时传感器的输出与输入的关系,指标:线性度,灵敏度,迟滞,重复性等。

1.8什么是传感器的动态特性?其分析方法有哪几种?

答:传感器的动态特性是指传感器的输出对随时间变化的输入量的响应特性,反映输出值真实再现变化量的输入量的能力。可以从时域和频域两个方面,采用瞬态响应法和频率响应法分析。2.2金属电阻应变片与半导体应变片的工作原理有何区别?各有何优缺点?

答:金属应变片的工作原理是基于金属的应变效应。半导体应变片的工作原理是基于半导体的压阻效应。半导体应变片的主要优点是灵敏系数比金属电阻应变片的灵敏系数大数十倍,且它的横向效应和机械滞后极小。但半导体应变片的温度稳定性和线性度比金属电阻应变片差得多。2.5试述应变片温度误差的概念,产生原因和补偿方法?

答:由于测量现场环境温度改变而给测量带来的附加误差,成为应变片的温度误差。产生原因:电阻温度系数的影响,材料和电阻丝材料的线膨胀系数的影响。补偿方法:电桥补偿法,应变片的自补偿法,热敏电阻补偿法。3.1何谓零点残余电压?说明该电压产生的原因以及消除方法。

答:零点残余电压的存在使传感器输出特性在零点附近的范围内不灵敏,限制着分辨率的提高,零点残余电压太大,将使线性度变坏,灵敏度下降,甚至回使放大器饱和阻塞有用信号的通过,致使一起不在反映被测量的变化。

产生原因:(1)由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同;(2)由于铁心的B-H特性的非线性,产生高次谐波不同,不能互相抵消。

消除方法:(1)在设计和工艺上,力求做到此路对称、线圈对称,铁心材料要均匀,要经过热处理去除机械应力和改善磁性。两个二次侧线圈窗口一致,两线圈绕制要均匀一致。一次侧线圈绕制也要均匀;(2)采用拆圈的试验方法减小残余误差。其思路是,由于两个二次侧线圈的等效参数不相等;(3)在电路上进行补偿。线路补偿主要有:加串联电阻、加并联电容、加反馈电阻或加反馈电容等。

3.2如何改善单极式边极距型电容传感器的非线性?

答:在实际中,为了改善非线性,电容传感器常做成差动形式。3.3为什么电容式传感器易受干扰?如何减少干扰?

答:电容式传感器的容量受其电极的几何尺寸等限制,一般为几十到几百皮法,使传感器的输出阻抗很高。因此传感器的负载能力差,易受外界干扰影响而产生不稳定现象。3.11什么是压磁效应?什么是正压磁伸缩,什么是负压磁伸缩?

答:某些铁磁物质在外界机械力的作用下,其内部产生机械应力,从而引起磁导率的改变,这种现象称为压磁效应。

当某种材料受拉时,在受力方向上磁导率升高,而在与作用力相垂直的方向上,磁导率降低,这种现象称为正压磁伸缩。相反,某些材料受拉时,在受力方向上,磁导率降低,而在与作用力相垂直的方向上,磁导率升高,这种现象称为负压磁伸缩。

4.1光电传感器的特点是什么?若采用光电传感器可能测量的物理量有哪些?

答:光电传感器就是以光电器件为检测元件的传感器。电绝缘抗电线位移,线速度,角位移,角速度。

4.3二进制码和循环码各有何特点?

答:二进制:(1)n位的二进制码盘具有2种不同编码,其容量为2,其最小分辨率

nn(2)二进制码为有权码,编码Cn,Cn1……C1对应于1=360°/2n,它的最外圈角节距为21。由零位算起的转角为=C12i11(3)码盘转动中,C1变化时,所有Cj(j

i1n

循环码:(1)n位循环码码盘与二进制码一样具有2种不同码制,最小分辨率为

n1=360°/2n。最内阻为Rn码道,一半透光,一半不透光。其它第i码道相当于二进制码盘第i+1码道向零位方向转过1角,它的最外圈R1码道的角节距为41;(2)循环码码盘具有轴对称性,其最高位相反,而其余各位相同;(3)循环码为无权码;(4)循环码码盘转到相邻区域时,编码中只有一位发生变化,不会产生粗大误差。

4.7说明光导纤维的组成并分析其导光原理,指出光导纤维导光的必要条件是什么?

答:光导纤维是用比头发丝还细的石英玻璃丝制成的,每一根光导纤维由一个圆柱形内芯和包层组成,而且内芯的折射率略大于包层的折射率。真空中光是沿直线传播的,然而入射到纤维中的光栈都能限制在光导纤维中,随光导纤维弯曲而走弯曲的路线,并能传播很远的距离,在光导纤维中,传输信息的载体为光,当光导纤维的直径比光的波长大的多时,可以用几何光学原理,说明光在光纤内的传播。

5.1试述磁电式传感器的基本结构及其工作原理。

答:磁电式传感器由两部分组成,一部分是磁路系统,由它产生恒定直流磁场,为减少传感器的体积,一般采用永久磁铁;另一部分是线圈,有它运动切割磁力线产生感应电动势。另外,还有一些外壳、支撑、阻尼器、接线装置。磁电式传感器以电磁感应原理为基础。根据法拉第电磁感应定律dE=—kdt,如果线圈是N匝,磁场强度为B,每匝线圈平均长度为la,线圈相对磁场运动的速度为ddx=-NBla=-NBlav,可以用来来直接测量速度,如果dtdt在传感器的信号调节电路上加一个积分电路或微分电路,就可以用来测量位移或加速度。v=dx/dt,则整个线圈产生的电动势为E=-N5.2试述霍尔效应的定义及霍尔传感器的告你工作原理。

答:半导体薄片至于磁场中,当他的电流方向与磁场方向不一致时,半导体薄片上平行与电流和磁场方向的两个面之间产生电动势,这种现象称为霍尔效应。

工作原理:在垂直与外磁场B的方向上放置半导体薄片,当半导体薄片流有电流I时,在半导体薄片前、后两个端面之间产生霍尔电势UH,霍尔电动势的大小和激励电流I和磁场的磁感应强度成IB,RH为霍尔常数。d5.7说明单晶体和多晶体压电效应原理,比较石英晶体和压电陶瓷各自的特点。答:(1)石英晶体是天然的六角形晶体,在直角坐标系中,x轴平行于它的棱线,称为电轴,通常把沿电轴方向的作用下产生电荷的压电效应称为纵向压电效应;y轴垂直于它的棱面,称为机械轴,把沿机械轴方向的力作用下产生电荷的压电效应称为横向压电效应;z轴表示其纵轴,称为光轴,正比,与半导体薄片厚度d成反比,级UH=RH 2 在光轴方向时,不产生压电效应。

压电陶瓷是人工制造的多晶体,在极化处理以前,各晶粒的电畴按任意方向排列,当陶瓷施加外电场时,电畴由自发极化方向转到与外加电场方向一致,此时,压电陶瓷具有一定极化强度,这种极化强度称为剩余极化强度。由于束缚电荷的作用,在陶瓷片的电极表面上很快就吸附了一层来自外界的自由电荷,正负电荷距离大小因压力变化而变化,这种由机械能转变成电能的现象就是压电陶瓷的正压电效应,放电电荷的多少与外力的大小成比例关系,Q=d33F(2)石英晶体作为常用的压电传感器具有转换效率和装换精度高,线性范围宽,重复性好,固有频率高,动态特性好,工作温度高达550℃(压电系数不随温度变化而改变),工作湿度高达100%等优点,它的稳定性是其它压电材料无法比拟的,刚刚极化后的压电陶瓷的特性是不稳定的,经过两三个月以后,压电系数才近似保持为一定常数,经过两年以后,压电常数又会下降,所以做成的压电传感器要经常校准,另外,压电陶瓷也存在逆压电效应。5.9简述压电传感器的特点及应用

答:压电式传感器具有体积小,重量轻,结构简单,工作可靠,动态特性好,静态特性差的特点,该传感器多用于加速度和动态力或压力的测量。6.4什么是电阻温度计的三线制连接?有何优点?

答:如图所示(背面),G为检流计,R1,R2,R3为固定电阻,Ra为零位调节电阻,热电阻Rt通过电阻为r1,r2,r3的三根导线与电桥连接,r1和r2分别接在相邻的两桥臂内,当温度变化时,只要他们的长度和电阻温度系数相等,它们的电阻变化就不会影响电桥的状态。电桥在零位调整时,使用R3=Ra+Rt0,Rt0为热电阻在参考温度时的电阻值。优点,能够有效的消除由于连接导线电阻随环境温度变化而造成的测量误差。6.5简述热电偶的工作原理

答:热电偶传感器是一种将温度变化转换为电势变化的传感器,它由两种不同的金属A和B构成一个闭合回路,当两个接触端温度不同,即T>T0时,回路中会产生热电势EAB(T,T0),其中,T称为热端,T0称为冷端,A和B称为热电极。热电势的大小由两种材料的接触电势和单一材料的温差电势所决定。

6.6试用热电偶的基本原理,证明热电偶的中间导体定则

6.7简述热电偶冷端补偿的必要性,常用的冷端补偿有几种方法?并说明补偿原理?p175 答:由热电偶的测温公式可知,热电偶的热电势大小不仅与热端温度有关,而且也与冷端温度有关。只有当冷端温度恒定时,才能通过测量热电势的大小得到热端的温度。当热电偶冷端处在温度波动较大的地方时,必须首先使用补偿导线将冷端延长到一个温度稳定的地方,再考虑将冷端处理为0℃,这就是热电偶的冷端处理和补偿。

补偿导线法:补偿导线在100℃(或200℃)以下的温度范围内,具有与热电偶相同的热电特性,用它连接热电偶可起到延长热电偶冷端的作用。

热电偶冷端温度恒温法:在一个保温瓶里放冰水混合物,1个标准大气压(101.325KPa)的冰和纯水的平衡温度为0℃。在密封的盖子上插上若干支试管,试管的直径应尽量小,并有足够的插入深度。试管底部有少量高度相同的水银或变压器油,若放水银则可把补偿导线与铜导线直接插入试管中的水银里,形成导电通路。不过在水银面上应加少量蒸馏水并用石蜡封结,以防止水银蒸发和溢出。

计算修正法:在实际应用中,热电偶的参比端往往不是0℃,而是环境温度T1,这时测量出的回路热电势要小。因此,必须加上环境温度T1与冰点T0之间温差所产生的热电势后才能符合热电偶分度表的要求。根据连接导体和中间温度则有:E=(T,0)=E(T,T1)+E(T1,0)。可用室温计测出环 境温度T1,从分度表查出E(T1,0)的值,然后加上热电偶回路热电势E(T,T1),得到E=(T,0)的值,反查分度表即可得到准确的被测温度T值。6.8简述热电偶冷端补偿导线的作用。答:

1、实现冷端迁移。

2、降低电路成本

6.9在一测温系统中,用铂铑——铂热电偶测温,当冷端温度为t0=30℃时,在热端温度t时测的热电势E=(t,30℃)=6.63mV,求被测对象的真实温度。解:查表可得:E=(30,0)=0.173mV,E(t,30℃)=6.63mV,所以E(T,0)=6.63+0.173=0.803 mV 反查铂铑——铂分度表可得,t=121℃

6.10有哪些非接触式测温方法?请简述其工作原理 答:(1)光学高温计:它是目前工业中应用较广的一种非接触式测温仪表。精密光学高温计用于科学实验中的精密测试;标准光学高温计用于量值的传递。光学高温计可用来测量800℃到3200℃的高温。由于用肉眼进行色度比较,所以测量误差与人的经验有关。光学高温计测量的温度称为亮度温度(TL),被测对象为非黑体时,要通过修正才能得到非黑体的真是温度。

(2)光电高温计:光电高温计是由人工操作来完成亮度平衡工作的,其测量结果带有操作者的主观误差。它不能进行连续测量和记录,当被测温度低于800℃时,光学高温计对亮度无法进行平衡。它采用新型的光电器件自动进行平衡,达到连续测量的目的。

(3)辐射温度计:它是根据全辐射强度定理,即物体的总辐射强度与物体的四次方成正比的关系来测量的。它由辐射感温器和显示仪表两部分组成,可用于400℃到2000℃的高温。辐射高温计测量的温度称为辐射温度TE.。被测对象为非黑体时,要通过修正才能得到非黑体的真实温度。

(4)比色温度计:比色温度计是通过测量热辐射体在两个或两个以上波长的光谱辐射亮度之比来测量温度的。其特点是准确度高,响应快,可观察小目标(最小可到2mm)。用比色温度计测得的温度称为比色温度Ts,它与物体的真实温度T很接近,一般可以不进行校正。7.3差压式流量计由哪几部分组成?简述每部分的功能

答:差压式流量计由节流装置、引压导管和差压变送器组成。

节流装置:安装于管道中产生差压,节流件前后的差压与流量成开方关系。引压导管:将节流装置前后产生的差压传送给差压变送器。

差压变送器:将节流装置前后产生的差压转换为标准电线号(4—20mA)。7.6:质量流体计可以分为哪几种类型?科里奥利流体计的工作原理?

答:质量流量计可分为两类:一类是直接式,即直接输出质量流量;另一类为间接式或推导式,如应用超声流量计和密度计组合,对它们的输出再进行乘法运算以得出质量流量。答(1)该流量计是一种直接精密地测量流体质量流量的新颖仪表,以结构主体采用两根并排的U形管,让两根管的回弯部分相向微微振动起来,则两侧的直管会跟着振动,即它们会同时靠拢或同时张开,即两根管的振动是同步的,对称的。科里奥利质量流量计是利用流体在直线运动的同时处于一旋转系中,产生与质量流量成正比的科里奥利原理而制成的一种直接式质量流量仪表。

7.11比较差压流量计,电磁流量计,涡街流量计的优缺点。

答:差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。优点:(1)应用最多的孔板式流量, 计结构牢固,性能稳定可靠,使用寿命长;

(2)应用范围广泛,至今尚无任何一类流量计可与之相比拟;

(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。缺点:(1)测量精度普遍偏低;(2)范围度窄,一般仅3:1~4:1;

(3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。优点:(1)结构简单牢固;(2)适用流体种类多;(3)精度较高;(4)范围度宽;(5)压损小。

缺点:(1)不适用于低雷诺数测量;(2)需较长直管段;(3)仪表系数较低(与涡轮流量计相比);(4)仪表在脉动流、多相流中尚缺乏应用经验。电磁流量计

电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。

电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。优点:(1)测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;(2)不产生流量检测所造成的压力损失,节能效果好;(3)所测得体积流量实际上不受流体密度、粘度、温度、压力和电导率变化的明显影响;(4)流量范围大,口径范围宽;(5)可应用腐蚀性流体。

缺点:(1)不能测量电导率很低的液体,如石油制品;(2)不能测量气体、蒸汽和含有较大气泡的液体;(3)不能用于较高温度。

7.12:电磁流量计由哪几部分组成以其各部分的功能?

答:电磁流量计由传感器和转换器两部分组成。传感器有一个测量管,测量管上下装有励磁线圈,通过励磁电流后产生磁场穿过测量管,一对电极测量管内壁与液体相接触,引出感应电势,送到转换器。励磁电流则由转换器提供。8.1简述成分分析仪器的基本组成。

答:包括取样装置,预处理系统,分离系统,检测系统,信号处理系统,显示环节等。

8.2热导池的结构和工作原理是什么?双桥检测电路怎样把热导池电阻丝的信号转换为被测气体含量的信号?

答:实现将混合气体导热系数的变化转换为电阻值变化的部件,称为热导池或检测器。它包括圆柱形腔体(由铜、铝或不锈钢制造)和悬在热导池中央的电阻原件(细长电阻丝)组成。当电阻原件通过电流I时,电阻从电源吸收的功率将全部转换成热量,即dQ=I2R。

双桥检测电路中除了测量电桥Ⅰ外,还增加了参比电桥Ⅱ。在测量电桥Ⅰ中,R2和R4是两个密封在测量下限气体的热导池中的电阻丝,而R1和R3的电阻值要随着被分析气体的浓度而变化,因此也使测量电桥Ⅰ的输出电压Ucd发生变化。Ucd的极性和Ugh相反,Ucd和Ugh的差值△U送到放大器中,带动可逆电机,推动滑线电阻RAB上的滑点C左右滑动去寻找平衡点,滑线电阻RAB上面的标尺可以直接刻度被测气体的浓度值。双桥检测由于采用了差动测量方式,可以有效地克服电源电压波动和环境温度变化给测量带来的影响。

8.4磁压式氧量分析仪是怎样把氧浓度转变为电信号的? 答:在不均匀磁场中,氧分子具有瞬时性,朝强磁场方向移动,当不同氧气浓度的两种气体在同一磁场相遇时,它们之间会产生一个压力差,参比气从参比气入口进入,样气从样气入口进入,参比气经过两个参比通道进入样气室,其中一路参比气在磁场区域与样气相遇,由于样气中的氧分子朝磁场方向移动以及左右两个参比通道是想通的,所以与氧气浓度成正比的压力差使得两路参比气在微流量传感器处形成压力气流,安装在微流量传感器处的微流量传感器感知该气流并将其转变为电信号。

8.7气相色谱仪的分析原理和工作流程是什么?

答:在气相色谱分析中,流动相为载气,多数使用N2,H2,He等气体。载气由高压气瓶供给,经干燥净化装置除去杂质和水分,再经过计量、调节仪表使之以稳定的压力和精确的流量先后键入汽化室、色谱柱、检测器,然后放空。被分析试样常用微量注射器打进汽化室,当试样为液体时,要经过汽化室加热使之瞬间汽化,成为气体试样。试样被载气带进色谱柱进行分离,其不同组分将按顺序依次进入检测器(如热导池)。

原理:色谱柱中填充固定相,样品中各组分在固定相和流动相之间的分配情况是不同的。以气—液色谱法为例,在一定温度、压力下,组分在气液两相间分配达到平衡时的质量浓度比称为分配系数,即ki= si。式中,si为组分i在固定相中的质量浓度,mimi为组分

i在流动相中的质量浓度。

第四篇:传感器总结

传感器总结

当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。

传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。

传感器的定义

国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。

结构

很多非电学量(包括物理量,化学量,生物量等),早期都采用非电学

量方法测量。随着科学技术的飞速发展,对被测量的准确度、速度和精度提出了新的要求,传统方法已不能满足测量要求,必须采用传感器电测技术,把非电学量信号转换为电信号。在现代化生产过程中,需用各种传感器来监控生产过程的各个参数,使设备工作在正常状态或最佳状态。特别是传感器与计算机结合,使自动化过程更具有准确、快捷、效率高等优点。

传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,能完成检测任务,它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;输出量是某种物理量,便于传输、转换、处理、显示等,可以是气、光、电物理量,主要是电物理量;输出输入有对应关系,且应有一定的精确程度。传感器的作用包括信息的收集、信息数据的转换和控制信息的采集。传感器一般由敏感元件和转换元件两大部分组成。有时也将转换电路及辅助电路作为其组成部分。

材料

传感器材料分半导体材料、陶瓷材料、金属材料和有机材料四大类。

半导体传感器材料主要是硅,其次是锗、砷化镓、锑化铟、碲化铅、硫化镉等。主要用于制造力敏、热敏、光敏、磁敏、射线敏等传感器。

陶瓷传感器材料主要有氧化铁、氧化锡、氧化锌、氧化锆、氧化

钛、氧化铝、钛酸钡等,用于制造气敏、湿敏、热敏、红外敏、离子敏等传感器。

金属用作传感器的功能材料不如半导体和陶瓷材料广泛,主要用在机械传感器和电磁传感器中,用到的材料有铂、铜、铝、金、银、钴合金等。

有机材料用于传感器还处在开发阶段,主要用于力敏、湿度、气体、离子、有机分子等传感器,所用材料有高分子电解质、吸湿树脂、高分子膜、有机半导体聚咪唑、酶膜等。

性能

传感器性能指标主要有:灵敏度、使用频率范围、动态范围、相移。

灵敏度:指沿着传感器测量轴方向对单位振动量输入x 可获得的电压信号输出值u,即s=u/x。与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u 可加辨认的最小机械振动输入变化量△x 的大小。为了测量出微小的振动变化,传感器应有较高的灵敏度。

使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。其两端分别为频率下限和上限。为了测量静态机械量,传感器应具有零频率响应特性。传感器的使用频率范围,除和传感器本身的频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。

动态范围:动态范围即可测量的量程,是指灵敏度随幅值的变化

量不超出给定误差限的输入机械量的幅值范围。在此范围内,输出电压和机械输入量成正比,所以也称为线性范围。动态范围一般不用绝对量数值表示,而用分贝做单位,这是因为被测振值变化幅度过大的缘故,以分贝级表示使用更方便一些。

相移:指输入简谐振动时,输出同频电压信号相对输入量的相位滞后量。相移的存在有可能使输出的合成波形产生崎变,为避免输出失真,要求相移值为零或Π,或者随频率成正比变化。

有机材料用于传感器还处在开发阶段,主要用于力敏、湿度、气体、离子、有机分子等传感器,所用材料有高分子电解质、吸湿树脂、高分子膜、有机半导体聚咪唑、酶膜等。

优缺点

从传感器分类看优缺点 按传感器输出信号分类 模拟式:输出信号为模拟信号。数字式:输出信号为数字信号。

按结构形式分类:柱式、桥式、轮辐式、悬臂梁式、板环式等。柱式:特点是结构简单、紧凑,易于加工,成本费用低,密封性能良好,对于潮湿环境很适用,可设计成压式或拉式的,可以承受很大的载荷;其缺点是位移量小、灵敏度低。

桥式:传感器弹性体为桥式,其两端用两只螺栓紧固到下面的支撑体上,其弹性体与支撑体之间有一间隙,为弹性体的受力变形空间。

该类传感器的特点如下:由于传感器与秤体之间的连接为要求很低的间隙配合,所以安装方便,维护简单,重复性好。

轮辐式:高度低、精度高、抗偏心载荷和侧向力强。

剪切梁式:该类传感器有以下特点:输出信号不受称重点位置变化的影响;线性好、精度高;传感器受拉伸与压缩时,切应力的幅度与分布基本相同,即传感器的拉伸、压缩灵敏度基本相同,所以特别适用于同时受拉和压的测量;外形低、体积小、重量轻,易于安装和维修;结构简单易于密封;抗侧向力强。

板环式:特点是输出灵敏度高、受力状态稳定、温度均匀性好、结构简单、易于加工,可制成拉压2种型号,对于0.5~30吨的拉压方式称重传感器,这种方式是很好的。

发展方向

对比传感器技术的发展历史与研究现状可以看出,随着科学技术的迅猛发展以及相关条件的日趋成熟,传感器技术逐渐受到了更多人士的高度重视。当今传感器技术的研究与发展,特别是基于光电通信和生物学原理的新型传感器技术的发展,已成为推动国家乃至世界信息化产业进步的重要标志与动力。

由于传感器具有频率响应、阶跃响应等动态特性以及诸如漂移、重复性、精确度、灵敏度、分辨率、线性度等静态特性,所以外界因素的改变与动荡必然会造成传感器自身特性的不稳定,从而给其实际应用造成较大影响。这就要求我们针对传感器的工作原理和结构,在

不同场合对传感器规定相应的基本要求,以最大程度优化其性能参数与指标,如高灵敏度、抗干扰的稳定性、线性、容易调节、高精度、无迟滞性、工作寿命长、可重复性、抗老化、高响应速率、抗环境影响、互换性、低成本、宽测量范围、小尺寸、重量轻和高强度等。

同时,根据对国内外传感器技术的研究现状分析以及对传感器各性能参数的理想化要求,现代传感器技术的发展趋势可以从四个方面分析与概括:一是开发新材料的开发与应用;二是实现传感器集成化、多功能化及智能化;三是实现传感技术硬件系统与元器件的微小型化;四是通过传感器与其它学科的交叉整合,实现无线网络化。

第五篇:传感器-习题

传感器原理:习题

第一章 引言

1.国家标准的传感器定义是什么。它一般有哪两种元件组成。各举两个有和中间环节的传感器的例子。

2.概述传感器的发展趋势。

3.概述传感器的分类。

4.什么是传感器的灵敏度和线性度。5.什么是传感器的静态和动态响应

6.给出零阶,一阶,二阶系统的传递函数及响应的公式,并指出基本特征参数。7.某位移传感器描述为0.03dxdt,y是压力(N/m),求3x15y,x是位移(m)其静态灵敏度和时间常数。

d2xdxx800y,x是位移(m)8.某加速度传感器描述为42100040000,y是力

dtdt(N),求其静态灵敏度、固有频率和阻尼比。

第二章 应变式传感器

1.应变式传感器依据什么物理效应?推导单根导电丝的灵敏度。为什么半导体丝的灵敏度比金属丝的大,大多少?

2.用基长L=0.5mm应变计测量应变,应变丝用钢材料,其声速v=5000m/s,若要使测量应变波幅的相对误差e=1%,求其允许测量的最高工作频率。3.应变式传感器的转换元件是什么?导出它的(1)平衡条件;(2)电压灵敏度 4.简述应用电桥作温度补偿的方法的基本思想。5.概述(1)柱式传感器;(2)筒式压力传感器;(3)应变式加速度传感器的基本原理。(各画结构图说明)6.什么是(1)薄膜技术;(2)微细加工技术;(3)各有哪几种基本加工方法。

第三章:光电式传感器

1.光电式传感器根据哪些物理效应或光的性质,分别概述其原理,并各举两个应用的例子。

2.书中图3.7是什么曲线。它对传感器设计有何意义?

3.概述光电池的工作原理。最受重视的是何种光电池,它有何优点? 4.概述光电耦合器件的基本结构和工作原理。它有哪些突出的优点。

第四章 光纤传感器

1.概述光纤传感器的分类,并各举两例。2.光纤的结构及其特点(画结构图说明)。

3.光纤所用材料的折射率是如何设计的?数值孔径是如何定义的,其意义是什么? 阶跃型折射率光纤的V值如何定义的,其意义是什么? 4.光纤的衰减率是如何定义的。3dB/km的意义是什么? 5.概述弯曲损耗的类型。

6.概述微弯光纤压力传感器的原理(画结构图说明)。7.概述迈克尔干涉仪原理(画结构图说明)。

8.概述马赫—泽德干涉仪基本原理(画结构图说明)。9.概述萨格奈克干涉仪的原理。为什么萨格奈克干涉仪中激光器和光检测器必需与光学系统一起旋转(画结构图说明)。10.概述法布里—珀罗干涉仪的原理。推导法布里—珀罗干涉仪中下一个输出光束的强度时上一个的多少倍(画结构图说明)。

第五章 变磁阻式传感器

1.概述电动式传感器测量位移、压力的基本原理(画结构图说明)

第六章 压电传感器

1.什么叫压电效应?为什么说压电效应是可逆的? 2.主要的压电材料。

3.概述压电加速度传感器的工作原理,推导出它的电荷灵敏度和电压灵敏度公式,以及传感器的固有频率公式。

4.讨论压电加速度传感器的两种等效电路,为什么这种传感器要用电荷放大器? 5.概述SAW传感器的基本结构和原理(画叉指结构图说明)。6.概述SAW气敏传感器的基本结构和原理(画结构图说明)。

第七章 压电声传感器

1.概述圆柱形压电水听器的基本结构和原理(画结构图说明)。

2.概述压电陶瓷双叠片弯曲振动换能器的基本结构和原理(画结构图说明)。3.概述压电陶瓷双叠片弯曲振动空气超生换能器的基本结构(各部件的作用)和原理(画结构图说明)。

第八章 半导体传感器

1.晶体二级管PN结热敏器件的温度灵敏度是如何导出的?给出数值的结果。2.根据黑体辐射的维恩位移定律,求出人体红外辐射的峰值波长。红外辐射传感器分为哪两大类型,各期基本原理是什么?

3.提高半导体气敏传感器的气敏选择性有哪些方法? 4.什么是纳米技术?纳米技术的两大效应。

5.什么是霍尔效应?概述其的基本原理(画结构图说明)。6.什么是磁阻(MR)器件?概述其基本原理(画结构图说明)。

下载基于视觉传感器kinect的移动机器人word格式文档
下载基于视觉传感器kinect的移动机器人.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    传感器复习资料..

    1.1、金属电阻应变片与半导体材料的电阻应变效应有什么不同? 答:金属电阻的应变效应主要是由于其几何形状的变化而产生的,半导体材料的应变效应则主要取决于材料的电阻率随应......

    传感器心得体会

    实验中遇到的问题: 1,排版没有排到最恰当的位置,我们是打竖排版的,相当打横排版没有那么好的效果 2,焊工不过关,经常现虚焊,相邻两条线路焊到一起导致短路的现状 3,分不清LED灯和发......

    传感器作业

    浅谈创新型人才的体会 摘要: 建设创新型国家,人才是关键因素。创新型人才的成长是一个综合培养的过程,教育是这个过程的源头和关键环节 关键字: 创新 人才教育思维 创新型人才......

    传感器总结

    传感器总结 传感器,顾名思义就是传递自身感受的仪器,听起来好似很简单,那为什么我们需要单独开设这门课程呢? 传感器是新技术和信息社会的重要技术基础,是现代科技的开路先锋。日......

    传感器复习

    1.传感器定义及组成 传感器是将各种非电量按一定规律转换成便于处理和传输的另一种物理量的装置 一般由敏感元件;转换元件;测量电路组成 2.应变式传感器工作原理及组成 工作原......

    传感器总结报告

    传感器总结报告 机械0806 0401080623 摘要:传感器是被测量进入测量系统的第一个环节——把被测量转换成容易检测、传输和处理的电信号。其性能直接影响整个测试装置和测试......

    轮式移动机器人结构设计开题报告(共五篇)

    一、毕业设计(论文)依据及研究意义: 随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、......

    创意视觉

    创意与视觉研究——论创意与表达的关系 摘要:本文本学期通过记录本学期创意与视觉研究课程的理论学习与实践内容,总结经验教训,在课程的进行过程中,系统的学习了创意的思维方法,......