第一篇:传感器复习资料..
1.1、金属电阻应变片与半导体材料的电阻应变效应有什么不同? 答:金属电阻的应变效应主要是由于其几何形状的变化而产生的,半导体材料的应变效应则主要取决于材料的电阻率随应变所引起的变化产生的。1.2、直流测量电桥和交流测量电桥有什么区别? 答:它们的区别主要是直流电桥用直流电源,只适用于直流元件,如电阻应变片,交流电桥用交流电源,适用于所有电路元件,如电阻应变片、电容。1.3、简述电阻应变式传感器产生横向误差的原因。
粘贴在受单向拉伸力试件上的应变片 , 如图2-3所示,其敏感栅是有多条直线和圆弧部
图2-3 横向效应
分组成。这时,各直线段上的金属丝只感受沿轴向拉应变x,电阻值将增加。但在圆弧段上,沿各微段轴向(即微段圆弧的切向)的应变与直线段不相等,因此与直线段上同样长度的微段所产生的电阻变化就不相同,最明显的在/2处圆弧段上,按泊松关系,在垂直方向上产生负的压应变y,因此该段的电阻是最小的。而在圆弧的其它各段上,其轴向感受的应变由 +x变化到-y。由此可见 , 将直的电阻丝绕成敏感栅之后,虽然长度相同,但应变状态不同,其灵敏系数降低了。这种现象称横向效应。
应变片横向效应表明 , 当实际使用应变片时,使用条件与标定灵敏系数 k 时的标定规则不同时,实际 k 值要改变,由此可能产生较大测量误差,当不能满足测量精确度要求时,应进行必要的修正。
1.4、采用阻值为120Ω灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的固定电阻组成电桥,供桥电压为4V,并假定负载电阻无穷大。当应变片上的应变分别为1和1 000时,试求单臂、双臂和全桥工作时的输出电压,并比较三种情况下的灵敏度。
KUKU421062106/V,应解:单臂时U0,所以应变为1时U0444KU421032103/V; 变为1000时应为U044KUKU421064106/V,应变为双臂时U0,所以应变为1时U0222KU421034103/V; 1000时应为U022全桥时U0KU,所以应变为1时U08106/V,应变为1000时应为U08103/V。从上面的计算可知:单臂时灵敏度最低,双臂时为其两倍,全桥时最高,为单臂的四倍。1.5、差动电桥有哪些有优点?
答:差动电桥比单臂电桥的灵敏度高,此外,还可以有效地改善电桥的温度误差、非线性误差。
1.6、如图所示为一直流电桥,供电电源电动势E=3V,R3=R4=100Ω,R1和R2为同型号的电阻应变片,其电阻均为50Ω,灵敏度系数K=2.0。两只应变片分别粘贴于等强度梁同一截面的正反两面。设等强度梁在受力后产生的应变为5000με,试求此时电桥输出端电压Uo。
题2.5图
KU23510315mV 解:此电桥为输出对称电桥,故U0222.1、电容式传感器有哪些类型?
解:电容式传感器分为变极距型、变面积型和变介质型三种类型。
2.2、试分析变面积式电容传感器和变间隙式电容的灵敏度?为了提高传感器的灵敏度可采取什么措施并应注意什么问题? 解:以变面积式电容传感器为例进行说明,如图所示是一直线位移型电容式传感器的示意图。
Δxbxda直线位移型电容式传感器
当动极板移动△x后,覆盖面积就发生变化,电容量也随之改变,其值为
C=εb(a-△x)/d=C0-εb·△x/d(1)
电容因位移而产生的变化量为
CCC0其灵敏度为 KbdxC0x aCb xd可见增加b或减小d均可提高传感器的灵敏度。
2.3、为什么说变间隙型电容传感器特性是非线性的?采取什么措施可改善其非线性特征? 解:下图为变间隙式电容传感器的原理图。图中1为固定极板,2为与被测对象相连的活动极板。当活动极板因被测参数的改变而引起移动时,两极板间的距离d发生变化,从而改变了两极板之间的电容量C。
1d21–固定极板 2--活动极板
设极板面积为A,其静态电容量为CAd,当活动极板移动x后,其电容量为
xAd(1)CC0dxx212d1当x< xx2121 则CC0(1)(2) dd由式(1)可以看出电容量C与x不是线性关系,只有当 x< 2.4、变间隙电容传感器的测量电路为运算放大器电路,如题4.8图所示。C0=200pF,传感器的起始电容量Cx0=20pF,定动极板距离d0=1.5mm,运算放大器为理想放大器(即K→∞,Zi→∞),Rf极大,输入电压ui=5sinωtV。求当电容传感动极板上输入一位移量△x=0.15mm使d0减小时,电路输出电压uo为多少? 题4.8图 解:由测量电路可得 u0C0C0200uiui5sint45sintV Cx0d0201.5Cx1.50.15d0x2.5、如图3-22所示正方形平板电容器,极板长度a=4cm,极板间距离δ=0.2mm.若用此变面积型传感器测量位移x,试计算该传感器的灵敏度并画出传感器的特性曲线.极板间介质为空气,08.8510-12F/m。 ax 解:这是个变面积型电容传感器,共有4个小电容并联组成。 C040a24161048.85101228.32 /pF 2103C0kx28.3270.8x(x的单位为米) 40ax)Cx40a(ax)CCxC0 CxC040a48.8510124102K70.8 /pF x2103CxpF4030201004123xcm 3.1、试述影响差动变压器输出线性度和灵敏度的主要因素是什么? 解:影响差动变压器输出线性度和灵敏度的主要因素是:传感器几何尺寸、线圈电气参数的对称性、磁性材料的残余应力、测量电路零点残余电动势等。 3.2、试述电涡流式传感器的灵敏度主要受哪些因素影响?它的主要优点是什么? 解:电涡流式传感器的灵敏度主要受导体的电导率、磁导率、几何形状,线圈的几何参数,激励电流频率以及线圈到被测导体间的距离等因素影响。电涡流式传感结构简单、频率响应宽、灵敏度高、测量范围大、抗干忧能力强,特别是有非接触测量的优点,因此在工业生产和科学技术的各个领域中得到了广泛的应用。 4.1、为什么压电传感器通常都用来测量动态或瞬态参量? 解:如作用在压电组件上的力是静态力,则电荷会泄露,无法进行测量。所以压电传感器通常都用来测量动态或瞬态参量。 4.2、压电式传感器测量电路的作用是什么?其核心是解决什么问题? 解:压电式传感器的产生的电量非常小,内阻很高。测量电路的作用是进行阻抗变换和放大,即要求测量电路的输入阻抗很高,输出阻抗很低,通常用高输入阻抗运放。其核心是要解决微弱信号的转换与放大,得到足够强的输出信号。 4.3、某加速度计的校准振动台,它能作50Hz和1g的振动,今有压电式加速度计出厂时标出灵敏度K=100mV/g,由于测试要求需加长导线,因此要重新标定加速度计灵敏度,假定所用的阻抗变换器放大倍数为1,电压放大器放大倍数为100,标定时晶体管毫伏表上指示为9.13V,试画出标定系统的框图,并计算加速度计的电压灵敏度。解:此加速度计的灵敏度为 K913091.3 mV/g 100标定系统框图如下: 加速度计阻抗变换器电压放大器晶体管毫伏表 4.4、用石英晶体加速度计及电荷放大器测量机器的振动,已知:加速度计灵敏度为5pC/g,电荷放大器灵敏度为50mV/pC,当机器达到最大加速度值时相应的输出电压幅值为2V,试求该机器的振动加速度。 已知:ka=5pC/g,kq=50mV/pC,Vomax=2V 求:amax=? 解: 因为: kaQ/a;kqV0/Q 则有: V0kakqa 所以: amaxV0max8g kakq4.5、用石英晶体加速度计及电荷放大器测量机器振动,已知,加速度计灵敏度为5pC/g;电荷放大器灵敏度为50mV/pC,最大加速度时输出幅值2V,试求机器振动加速度。解:KK1K2550250mV/g KUU2000a4g aK2504.6、什么叫正压电效应?什么叫逆压电效应?常用压材料有哪几种? 答:某些电介质在沿一定的方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷,当外力去掉后,又重新回到不带电的状态,这种现象称为压电效应。这种机械能转化成电能的现象,称为正压电效应。反之,在电介质的极化方向上施加交变电场或电压,它会产生机械变形,当去掉外加电场时,电介质变形随之消失,这种现象称为逆压电效应。应用于压电式传感器中的压电材料通常有三类:一类是压电晶体,它是单晶体,如石英晶体、酒石酸钾钠等;另一类是经过极化处理的压电陶瓷,它是人工合成的多晶体,如钛酸钡等;第三类是有机压电材料,是新型的压电材料,如聚偏二氯乙烯等。4.7、一只x切型的石英晶体压电元件,其,相对介电常数,横截面积A=5cm2,厚度t=0.5cm。求: (1)沿石英晶体电轴方向施加力的作用,产生电荷的压电效应称为什么?若沿电轴方向受Fx=9.8N的压力作用时两电级间输出电压值为多大? (2)若此元件与高输入阻抗运放连接时连接电缆的电容为Cc=4pF,该压电元件的输出电压值为多大? 解:(1)沿石英晶体电轴方向施加力的作用,产生电荷的压电效应称为纵向压电效应。对于x切型的石英晶体压电元件,纵向受力时,产生的电荷量为 压电元件的电容量为 两电极间的输出电压值为 (2)此元件与高输入阻抗运放连接时,连接电缆的电容与压电元件本身的电容相并联,输出电压将改变为 5.1、光电效应有哪几种?与之对应的光电元件各有哪些? 答:光电效应有外光电效应、内光电效应和光生伏特效应三种。基于外光电效应的光电元件有光电管、光电倍增管等;基于内光电效应的光电元件有光敏电阻、光敏晶体管等;基于光生伏特效应的光电元件有光电池等。 5.2、常用的半导体光电元件有哪些?它们的电路符号如何? 答:常用的半导体光电元件有光敏二极管、光敏三极管和光电池三种。它们的电路符号如下图所示: 光敏二极管 光敏三极管 光电池 5.3、什么是光电元件的光谱特性? 答:光电元件的光谱特性是指入射光照度一定时,光电元件的相对灵敏度随光波波长的变化而变化,一种光电元件只对一定波长范围的人射光敏感,这就是光电元件的光谱特性。5.4、光电传感器由哪些部分组成?被测量可以影响光电传感器的哪些部分? 答:光电传感器通常由光源、光学通路和光电元件三部分组成,如图所示。图中Ф1是光源发出的光信号,Ф2是光电器件接受的光信号,被测量可以是x1或者x2,它们能够分别造成光源本身或光学通路的变化,从而影响传感器输出的电信号I。光电传感器设计灵活,形式多样,在越来越多的领域内得到广泛的应用。 光源Φ1光学通路Φ2光电元件Ix1x2x3 5.5、模拟式光电传感器有哪几种常见形式? 答:模拟式光电传感器主要有四种。一是光源本身是被测物,它发出的光投射到光电元件上,光电元件的输出反映了光源的某些物理参数,如图a所示。这种型式的光电传感器可用于光电比色高温计和照度计;二是恒定光源发射的光通量穿过被测物,其中一部分被吸收,剩余的部分投射到光电元件上,吸收量取决于被测物的某些参数。如图b所示。可用于测量透明度、混浊度;三是恒定光源发射的光通量投射到被测物上,由被测物表面反射后再投射到光电元件上,如图c所示。反射光的强弱取决于被测物表面的性质和状态,因此可用于测量工件表面粗糙度、纸张的白度等;四是从恒定光源发射出的光通量在到达光电元件的途中受到被测物的遮挡,使投射到光电元件上的光通量减弱,光电元件的输出反映了被测物的尺寸或位置。如图d所示。这种传感器可用于工件尺寸测量、振动测量等场合。 31122a)a)被测量是光源b)b)被测量吸收光通量 c)被测量是有反射能力的表面2c)d)被测量遮蔽光通量d)133121-被测物 2-光电元件 3-恒光源 6.2超声波有哪些传播特性? 答:超声波是一种在弹性介质中的机械振荡,它是由与介质相接触的振荡源所引起的。振荡源在介质中可产生两种形式的振荡,即横向振荡和纵向振荡。横向振荡只能在固体中产生,而纵向振荡可在固体、液体和气体中产生。 超声波的一种传播特性是在通过两种不同的介质时,产生折射和反射现象,超声波的另一种传播特性是在通过同种介质时,随着传播距离的增加,其强度因介质吸收能量而减弱。 9.2(1)如图所示为光纤传感器中光线传播原理,请推导入射角的临界入射角与空气折射率n0、纤芯折射率n1及包层折射率n2的关系式。 (2)解释光纤数值孔径的物理意义。 解:(1) 在纤芯和包层界面A处,当入射角逐渐增大到临界角时,折射角等于90度,此时 光线由折射率为0n的空气,从界面O处射入纤芯时实现全反射的临界角为 9.3试计算n1=1.48和n2=1.46的阶跃折射率光纤的数值孔径。如果外部是空气n0=1,试问:对于这种光纤来说,最大入射角是多少? 解:根据光纤数值孔径NA定义 光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。如果两个光栅距相等,即W=0.02mm,其夹角θ=0.1°,则莫尔条纹的宽度B=11.46㎜莫尔条纹的放大倍数K= 573.2。 光栅传感器结构为:光源→标尺光栅→指示光栅→光电元件 在平行极板电容传感器的输入被测量与输出电容值之间的关系中,①(①变面积型,②变极距型,③变介电常数型)是线性的关系。 传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件 和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。 电阻应变片式传感器按制造材料可分为①金属材料和②半导体体材料。它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由电阻应变效应形成的光电传感器的工作原理是基于物质的光电效应,目前所利用的光电效应大致有三大类:第一类是利用在光线作用下材料中电子溢出表面的现象,即外光电效应,光电管以及光电倍增管传感器属于这一类;第二类是利用在光线作用下材料电阻率发生改变的现象,即内光电效应。光敏电阻传感器属于这一类。第三类是利用在光线作用下 光势垒现象,即光生伏特效应,光敏二极管及光敏三极管_ 传感器属于这一类。 传感器由敏感元件、传感元件、测量转换电路三部分组成。依据传感器的工作原理,传感器分敏感元件,转换元件,测量电路三个部分组成。 光电式传感器是将光信号转换为电信号的光敏元件,其中内光电效应可以分为光电导效应、光生伏特效应 光电倍增管是利用 二次电子释放效应,将光电流在管内部进行放大。它由 光电阴极、若干倍增极和阳极三部分组成。 编码器用来测量角位移。在数控机床直线进给运动控制中,通过测量角位移间接测量出直线位移,表达式为 x=t/360× 。 绝对式编码器输出二进制编码,增量式编码器输出脉冲。 增量式编码器输出信号要进行辨向、零标志和倍频等处理。 根据传感器感知外界信息所依据的基本效应,可将传感器分为三大类,分别是:物理传感器、化学传感器、生物传感器 变磁阻式传器是利用被测量调制磁路的磁阻,导致线圈电感量改变,实现对被测量测量的。 为了测得比栅距W更小的位移量,光栅传感器要采用细分技术。.旋转式编码器可以测量转轴的角位移,其中绝对式编码器在任意位置都有固定的数字编码与位置对应,线数为360线的增量式编码器分辨力为1(角)度。 莫尔条文的光强度变化近似正弦变化,因此,便于将电信号作进一步细分,即采用“倍频技术”技术 把一导体(或半导体)两端通以控制电流I,在垂直方向施加磁场B,在另外两侧会产生一个与控制电流和磁场成比例的电动势,这种现象称霍尔效应,这个电动势称为霍尔电势。外加磁场使半导体(导体)的电阻值随磁场变化的现象成磁阻效应。 某些电介质当沿一定方向对其施力而变形时内部产生极化现象,同时在它的表面产生符号相反的电荷,当外力去掉后又恢复不带电的状态,这种现象称为正压电效应;在介质极化方向施加电场时电介质会产生形变,这种效应又称逆压电效应。 在光线作用下电子逸出物体表面向外发射称外光电效应;入射光强改变物质导电率的现象称光电导效应;半导体材料吸收光能后在PN结上产生电动式的效应称光生伏特效应。 电阻应变片磁敏电阻霍尔元件气敏传感器湿敏传感器 光电耦合器压电传感器电容传感器热敏电阻CCD电荷耦合器 压阻式传感器光纤传感器磁电传感器光电二极管差动变压器 热释电器件磁敏晶体管电涡流传感器光电池超声波传感器 热电偶红外传感器色敏传感器 正确选择以上传感器填入以下空内: 1.可以进行位移测量的传感器有光纤传感器、差动变压器、电阻传感器; 2.可以完成温度测量的有热电偶、热敏电阻;热释电; 3.半导体式传感器是磁敏、霍尔元件、气敏传感器、压阻传感器; 4.光电传感器有光电耦合器、色敏传感器、光纤传感器、光电二极管; 5.用于磁场测量的传感器霍尔器件、磁敏晶体管; 6.进行振动(或加速度)测量的传感器磁电传感器、压电传感器; 7.利用物体反射进行非电量检测的传感器超声波传感器、红外传感器; 绝对式编码器的码制绝大多数采用格雷码 电容式液位传感器属于下列那一种型式:变介质型 测量微位移工作台的位移量(行程200μm,分辨力1μm),可选用电容传感器 为了减小非线性误差,采用差动变隙式电感传感器,其灵敏度和单线圈式传感器相比提高一倍 电感式传感器采用变压器式交流电桥作为测量电路时,如想分辨出衔铁位移的方向,则应在电路中加相敏检波电路。压电陶瓷与天然石英的压电性能比较,通常压电常数大,居里点低 对热电耦传感器,形成热电势的必要条件是两种导体材料不同;节点所处的温度不同 光敏元件中光电池是直接输出电压的.变间隙型电容式传感器输出特性属于非线性 利用热电偶测温时,只有在保持热电偶冷端温度恒定条件下才能进行.一应变片,所受应变ε为1000μ,若取Ks=3,n=1,非线性误差为0.15% 光敏二极管工作时,加反向电压 一个热电偶产生的热电势为E0,当打开其冷端串接与两热电极材料不同的第三根金属导体时,若保证已打开的冷端两点的温度与未打开时相同,则回路中热电势不变 热电偶产生的热电势由哪几种电势组成,试证明热电偶的中间导体定律。 制作霍尔元件应采用什么材料,为什么?为何霍尔元件都比较薄,而且长宽比一般为2 :1? 简述霍尔电动势产生的原理。 说明光电管工作原理。 说明α射线、β射线、γ射线各自的突出特性 热电效应 压阻效应 简述热电偶的工作原理 简述电阻应变片式传感器的工作原理 光电效应可分为哪三种类型,简单说明其原理并分别列出以之为基础的光电传感器。 热电偶产生的热电动势由哪几种电动势组成,试证明热电偶的中间导体定律。 传感器的定义和组成? 试列出你所学过的不同工作原理传感器哪些可用于非接触式测量,哪些用于接触式测量,测量何种物理量?(各大于3种) 光电效应可分为哪三种类型,简单说明传感器的原理并分别列出以之为基础的光电传感器。 根据你所学的传感器相关知识,请分别列出下列物理量可以使用什么传感器来测量? 1、加速度: 2、温度: 3、工件尺寸: 4、压力: 1、电阻应变片,电容等 2、热电偶,热电阻等 3、电感,电容等 4、压电,霍尔等 什么是红限频率? 压电式传感器往往采用多片压电晶片串联或并联方式,当采用多片压电晶片并联方式时,适合于测量何种信号? 光电效应可分为哪三种类型,简单说明其原理并分别列出以之为基础的光电传感器。 热电偶产生的热电动势由哪几种电动势组成,试证明热电偶的标准电极定律。 传感器的定义和组成? 试列出你所学过的不同工作原理传感器哪些可用于非接触式测量,哪些用于接触式测量,测量何种物理量?(各大于3种) 光电效应可分为哪三种类型,简单说明传感器的原理并分别列出以之为基础的光电传感器。 根据你所学的传感器相关知识,请分别列出下列物理量可以使用什么传感器来测量? 1、加速度: 2、温度: 3、工件尺寸: 4、压力: 1、电阻应变片,电容等 2、热电偶,热电阻等 3、电感,电容等 4、压电,霍尔等 什么是红限频率? 分析如图1所示自感传感器当动铁心左右移动(x1,x2发生变化时自感L变化情况。已知空气隙的长度为x1和x2,空气隙的面积为S,磁导率为μ,线圈匝数W不变)。 ΦIW R,LΨWΦW2 解:mIIRm n 又Rlnilx1lx2ll m i1iSiS 0S000i0 i1iSi0S0 空气隙的长度x1和x2各自变,而其和不变,另外其他 差动式变极距型电容传感器原理分析图1 变量都不变,故L不变。 无线传感器网络课程总结 1、现代信息科学的六个组成部分 信息的生成、获取、存储、传输、处理及其应用是现代信息科学的六大组成部分 2、WSN的定义 大规模、无线、自组织、多跳、无分区、无基础设施支持的网络,其中的节点是同构的、成本较低、体积较小、大部分节点不移动、被随意撒布在工作区域,要求网络系统有尽可能长的工作时间。 3、WSN和Ad-hoc网络的区别 不同点:(1)网络拓扑结构和工作模式各不相同。 Ad hoc网络: 网络拓扑结构动态变化。 WSN: 网络拓扑结构是静态的。 (2)工作模式不同。 WSN:多对一(Many-to-One)通信,节点之间几乎不会发生消息交换。以数据为中心(Data Centric),与组播正好相反 Ad Hoc网络 :网络中任意两节点之间都有通信的可能。 相同点(补充): 基本不需要人的干预,大部分工作是以自组织的方式完成的,二者统称为自组织网络(Self-Organization Networks)。二者的研究都是追求低功耗的自组织网络设计。 4、无线传感器网络的特点 (1)传感器节点数目大,密度高,采用空间位置寻址 (2)传感器接点的能量、计算能力和存储能力有限(能量、计算存储低、关键在有效简单的路由协议) (3)无线传感网络的拓扑结构易变化,有自组织能力(与传统的有不同的特点和技术要求:它根据需要可以在工作和休眠之间切换,因此网络的拓扑结构容易发生变化,传统的网络重在QoS和更大的宽带保证,并且是静止的。无线传感器网络需要节省能量,保证连通性和延长运行寿命) (4)传感器节点具有数据融合能力(与Mesh网络区别,数据小,移动,重能源。与无线Ad-hoc网络比数量多、密度大、易受损、拓扑结构频繁、广播式点对多通信、节点能量、计算能力受限。) 5、路由两个基本功能:确定最佳路径和通过网络传输信息 6、WSN路由协议的基本概念 WSN路由协议是一套将数据从源节点传输到目的节点的机制 7、内爆和重叠现象的解释(做图) 内爆(Implosion):节点向邻居节点转发数据包,不管其是否收到过相同的(将同一个数据包多次转发给同一个节点的现象就是内爆)(左图)重叠(Overlap):感知节点感知区域有重叠,导致数据冗余(右图) 8、SPIN协议的三步握手协议,并解释 (1)节点A有新数据,通过ADV发布新数据信息,使用元数据 (2)B节点收到ADV后,发现自己没有该数据,通过REQ向A请求新数据 (3)A节点向B节点传送源数据 (4)B节点融合新数据,并通过ADV发布新数据消息DATA (5)如果节点ADV中描述的数据的副本就忽略该消息 SPIN协议采用三次握手协议来实现数据的交互,协议运行过程中使用三种报文数据:ADV、REQ和DATA。ADV用于数据的广播,当某个节点有数据可以共享时,可以用ADV数据包通知其邻居节点;REQ用于发送数据,当某一个收到ADV的节点希望收到DATA数据包时,发送REQ数据包;DATA为原始感知数据包,里面装载了原始感知数据。 9、SPIN协议的协商通过元数据来解决 元数据:节点感知数据的抽象描述,一种对源数据的一个映射,比源数据短(数据压缩)(1)元数据描述实数据(2)元数据与时数据一一对应 避免传输冗余数据 10、DD协议的三个阶段----兴趣扩散、梯度建立和路径加强(会画图)·汇聚节点发送查询消息 ·兴趣消息:任务性质、数据采集/发送数率、时间戳等 ·中间节点:记录、转发 ·梯度:表示了数据的传输方向 11、LEACH协议经过2个阶段(簇头建立和数据传输) 网络按照周期工作,每个周期分为两个阶段:(1)簇头建立阶段: ·节点运行算法,确定本次自己是否成为簇头; ·簇头节点广播自己成为簇头的事实; ·其他非簇头节点按照信号强弱选择应该加入的簇头,并通知该簇头节点; ·簇头节点按照TDMA的调度,给依附于他的节点分配时间片;(2)数据传输阶段:节点在分配给它的时间片上发送数据。 12、LEACH协议的基本思想 网络周期性地随机选择簇头节点,其他的非簇头节点以就近原则加入相应的簇头,形成虚拟簇,簇内节点将感知到的数据直接发送给簇头,由簇头转发给Sink节点,簇头节点可以将本簇内的数据进行融合处理以减少网络传输的数据量。延长节点的工作时间,并且实现节点的能耗平衡。 13、LEACH协议的簇头选择的策略 每个传感器节点选择[0,1]之间的一个随机数,如果选定的值小于某一个阈值,那么这个节点成为簇头节点,计算如下: k 如n GNk[rmod(n/k)] 0 其它情况 N表示网络中传感器节点的个数,k为一个网络中的簇头节点数,r为已完成的回合数,G为网络生存期总的回合数。一个回合表示一个周期,分为两个阶段:簇的建立和稳定的数据传输阶段。 14、ZigBee技术定义:ZigBee是一种短距离、低复杂度、低功耗、低数据率、低成本的双向无线通讯技术,是一组基于IEEE 802.15.4无线标准研制开发的有关组网、安全和应用软件方面的技术。 15、ZigBee可工作在2.4GHz的ISM频段、欧洲的868MHz 和美国的915 MHz 3个频段上,分别具有最高250kbit/s、20kbit/s和40kbit/s的传输速率。不同频段可使用的信道分别是16、1、10个,在中国采用2.4G频段,是免申请和免使用费的频率 16、ZigBee的两类地址: (1)IEEE物理地址:每个ZigBee设备都有一个64位的IEEE长地址,即MAC地址。物理地址是在出厂时候初始化的。它是全球唯一的。(2)网络地址 网络地址也称短地址,通常用16位的短地址来标识自身和识别对方,对于协调器来说,短地址始终为0x0000,对于路由器和节点来说,短地址由其所在网络中的协调器分配。 T(n) 17、(1)无线传感器网络包括4类基本实体对象:目标、观测节点、传感节点和感知视场。(2)无线传感器网络系统通常包括传感器节点、汇聚节点和管理节点。传感器节点一般由4部分组成:数据采集模块、处理控制模块、无线通信模块(能量消耗的主要集中部分)、能量供应模块。 (3)无线传感器节点的基本功能:采集数据、数据处理、控制和通信 (4)无线传感器网络通信体系结构包括:物理层、数据链路层、网络层、传输控制层、应用层。 18、CSMA/CA机制: 当某个站点(源站点)有数据帧要发送时,检测信道。若信道空闲,且在DIFS时间内一直空闲,则发送这个数据帧。发送结束后,源站点等待接收ACK确认帧。如果目的站点接收到正确的数据帧,还需要等待SIFS时间,然后向源站点发送ACK确认帧。若源站点在规定的时间内接收到ACK确认帧,则说明没有发生冲突,这一帧发送成功。否则执行退避算法。 19、目前无线传感器网络采用的主要传输介质包括无线电、红外线和光波等。 (1)无线通信的介质包括电磁波和声波。电磁波是最主要的无线通信介质,而声波一般仅用于水下的无线通信。根据波长的不同,电磁波分为无线电波、微波、红外线、毫米波和光 波等,其中无线电波在无线网络中使用最广泛。 (2)无线电波是容易产生,可以传播很远,可以穿过建筑物,因而被广泛地用于室内或室外的无线通信。无线电波是全方向传播信号的,它能向任意方向发送无线信号,所以发射方和接收方的装置在位置上不必要求很精确的对准。20.传感器节点定位的基本术语: (1)邻居节点(Neighbor Nodes):是指传感器节点通信半径内的所有其他节点,也就是说:在一个节点通信半径内,可以直接通信的所有其他点。(2)跳数(Hop Count):是指两个节点之间间隔的跳段总数。 (3)跳段距离(Hop Distance):是指两个节点间隔的各跳段距离之和。 (4)接收信号强度指示(Received Signal Strength Indicator,RSSI):是指节点接收到无线信号的强度大小。 (5)到达时间(Time of Arrival,TOA):是指信号从一个节点传播到另一节点所需要的时间。 (6)到达时间差(Time Difference of Arrival,TDOA):两种不同传播速度的信号从一个节点传播到另一节点所需要的时间之差。 (7)到达角度(Angle of Arrival,AOA):是指节点接收到的信号相对于自身轴线的角度。(8)视线关系(Line of Sight,LOS):是指两个节点间没有障碍物间隔,能够直接通信。(9)非视线关系(Non Line of Sight,NLOS):是指两个节点之间存在障碍物。(10)基础设施(Infrastructure):是指协助传感器节点定位的已知自身位置的固定设备(如卫星、基站等)。 (11)网络连接度:网络连接度是所有节点的邻居数目的平均值,它反映了传感器配置的密集程度。 (12)信标节点:锚点 通过其它方式预先获得位置坐标的节点。 21.(1)无线传感器网络需要时间同步,因为:在分布式的无线传感器网络应用中,每个传感器节点都有自己的本地时钟。不同节点的晶体振荡器频率存在偏差,以及湿度和电磁波的干扰等都会造成网络节点之间的运行时间偏差,RBS、TPSN是典型的时间同步算法,其原理: RBS同步协议的基本思想是多个节点接收同一个同步信号,然后多个收到同步信号的节点之间进行同步。这种同步算法消除了同步信号发送一方的时间不确定性。这种同步协议的缺点是协议开销大 TPSN协议采用层次型网络结构,首先将所有节点按照层次结构进行分级,然后每个节点与上一级的一个节点进行时间同步,最终所有节点都与根节点时间同步。 22.无线传感器网络需要节点定位,因为传感器节点的自身定位是传感器网络应用的基础。许多应用都要求网络节点预先知道自身的位置,并在通信和协作过程中利用位置信息完成应 用要求。若没有位置信息,传器节点所采集的数据几乎是没有应用价值的。所以,在无线传感器网络的应用中,节点的定位成为关键的问题。 基于距离的定位算法:通过测量节点与信标节点间的实际距离或方位进行定位 三边测量算法:已知A、B、C三个节点的坐标,以及它们到节点D的距离,确定节点D的坐标 三角测量算法:已知A、B、C三个节点的坐标,节点D相对于节点A、B、C的角度,确定节点D的坐标 浅谈创新型人才的体会 摘要: 建设创新型国家,人才是关键因素。创新型人才的成长是一个综合培养的过程,教育是这个过程的源头和关键环节 关键字: 创新 人才教育思维 创新型人才指富于开拓性,具有创造能力,能开创新局面,对社会发展做出创造性贡献的人才。通常表现出灵活、开放、好奇的个性,具有精力充沛、坚持不懈、注意力集中、想像力丰富以及富于冒险精神等特征。 作为新时代的创新型人才还必须具备一定的条件:一是有可贵的创新品质 当前,我国正处于发展的重要战略机遇期,大力培育创新型人才,为建设创新型国家、国家创新体系和全面建设小康社会,提供坚强的人才保证和智力保障,显得尤为迫切和重要。从一定意义上说,创新型人才正以前所未有的时代需求承载着推进国家自主创新,在激烈的国际竞争中占据主动,实现中华民族伟大复兴的历史使命。二是有坚韧的创新意志 创新是一个探索未知领域和对已知领域进行破旧立新的过程,充满各种阻力和风险,可能遇到重重的困难、挫折甚至失败。人类科学技术发展到今天,要获得每一点进步相当困难。因此,创新型人才每前进一步都是需要非凡的胆识和坚忍不拔的毅力,为了既定的目标必须始终不懈地进行奋斗,锲而不舍,遭到阻挠和诽谤不气馁,遇到挫折和挫败不退却,牺牲个人利益也在所不惜,不达目的誓不罢休,不 自暴自弃,不轻言放弃。 三是有敏锐的创新观察 历史上的科学发现和技术突破,无一不是创新的结果。从这个意义上讲,创新就是发现,而且是突破,要实现突破,就要求创新型人才必须具有敏锐的观察能力、深刻的洞察能力、见微知著的直觉能力和一触即发的灵感和顿悟,不断地将观察到的事物与已掌握的知识联系起来,发现事物之间的必然联系,及时地发现别人没有发现的东西。创新型人才的观察力同时还应当是准确的,能够入木三分,发现事物的真谛,具有善于在于常中求不寻常的创新观察能力。 四是有超前的创新思维 创新思维是创新的基本前提,创新型人才具备思维方式的前瞻性、独创性、灵活性等良好思维品质,才能保证在对事物进行分析、综合和判断时做到独辟蹊径。 五是有丰富的创新知识 创新是对已有知识的发展,在人类知识越来越丰富和深奥的今天,要求创新型人才的知识结构既有广度,又有深度。因此,创新型人才须具有广博而精深的文化内涵,既要有深厚而扎实的基础知识,了解相邻学科及必要的横向学科知识,又要精通自己专业并能掌握所从事学科专业的最新科学成就和发展趋势,这是从事创新研究的必要条件。只有通过知识的不断积累才能用更为宽广的眼界进行创新实践。创新型人才拥有的信息量越大,文化素养越高,思路便越开阔。同时,完备的知识结构使他们具有料学综合化、一体化意识,有助于 增强综合思维能力和创新能力。 六是有科学的创新实践 创新的过程是遵循科学,依据事物的客观规律进行探索的过程,任何一种创新都不能有半点马虎和空想,因此,创新型人才必须具有严谨而求实的工作作风,严格遵循事物的客观规律,从实际出发,以科学的态度进行创新实践。 学习了传感器与技术大家应该都知道什么是创新型人才了,但是如何才能成为创新型人才呢? 成为创新型人才的前提就是更新教育观念: 教育观念的更新对于培养创新型人才有一下几个方面的影响: 第一,教育的目标。传统教育目标是为社会培养合格人才,现在我们谈教育目标主要是促进人的全面发展。前者是以社会为本,后者是以学生个体为本。我们现在要做的就是积极推动学生的自主发展,使其成为积极适应社会的人才。 第二,教育的使命。传统的教育使命是教授前人的知识,现代教育的使命是使人获得持续发展能力。教育不再是简单知识的传递,而是使当代学生获得发展的能力。 第三,教育的特征。传统的学校教育是建立在工业经济基础上的,是按工业经济的要求来培养学生。现代教育则反映的是知识经济对人的需求,教育方式、教育过程强调个体化、个性化。 第四,教育的组织形式。传统的组织形式是以学科、课堂为基础 体系,现代教育强调建立以问题为中心的跨学科结构。现代教育应该突出问题取向的方式,让学生提高面对现代问题的解决能力。 第五,教育思想。传统教育讲人人有受教育的权利,现代教育更加强调机会平等、过程平等,是尊重个人发展性的教育。 第六,教育过程。传统教育过程是传授和读书,现代教育强调实践性的过程和创新。教育的根本结果就是要使人获得广泛的生活经验、完整的生活概念。 以上六条是现代教育的核心理念,如果我们能够把上述思想渗透到创新教育实践中,创新型人才培养必将取得很好的效果。成为创新型人才的核心是自我发展能力 21世纪最伟大成就,不只是在征服自然和物质生产方面的科学发展,而应是在终身教育理念指导下,人的潜能的开发,人的自我发展。学习型社会要求,我们的教育不仅要给学生第一次专业技能和职业能力,更重要的是为学生奠定终身教育、自我发展的牢固基础,后一种功能在当代社会显得愈来愈重要。 成为创新型人才的关键是评价机制 评价机制是导向。现行的评价机制存在一些问题。比如:录取学生的标准单一,就是看分数,过分看重考试成绩,分分学生的命根。对学生的评价,更重要的是学生的健康、道德、兴趣、爱好,如果学生善良、诚实、忠厚和助人为乐,那就不在乎考试高分。学生是人,“人”是高山大海,“分数”只是小丘小溪;“人”是蓝天苍穹,成绩仅是天上的一颗星星。 在当今这样一个信息化的时代里,企业对人才的需求同地方相比,既有专业性,更显通用性、兼容性,与企业对专业人才的短缺有所不同,社会中既包容有众多企业迫切需要的专业人才,又有大量的人才闲置。我们完全可以利用这些专业人才,稍加培训就可以充实到企业中来,既节约了成本,实现企业与地方的人才互补,又解决了企业对人才的迫切需要。 参考文献: [1]21世纪高等院校创新型人才培养系列规划教材•企业管理学胥悦红(编者)(2008年5月版) [2]新型传感器技术及应用宋晓辉(作者)(2009年03月版) [3]传感器技术陈建元 机械工业出版社(2008-10出版) [4]传感器与检测技术高等职业技术教育研究会、宋雪臣 人民邮电出版社(2009-05出版) [4]全国高等院校测控技术与仪器专业创新型应用人才培养规划教材•传感器原理及应用 赵燕 北京大学出版社(2010-02出版) 传感器总结 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 结构 很多非电学量(包括物理量,化学量,生物量等),早期都采用非电学 量方法测量。随着科学技术的飞速发展,对被测量的准确度、速度和精度提出了新的要求,传统方法已不能满足测量要求,必须采用传感器电测技术,把非电学量信号转换为电信号。在现代化生产过程中,需用各种传感器来监控生产过程的各个参数,使设备工作在正常状态或最佳状态。特别是传感器与计算机结合,使自动化过程更具有准确、快捷、效率高等优点。 传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,能完成检测任务,它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;输出量是某种物理量,便于传输、转换、处理、显示等,可以是气、光、电物理量,主要是电物理量;输出输入有对应关系,且应有一定的精确程度。传感器的作用包括信息的收集、信息数据的转换和控制信息的采集。传感器一般由敏感元件和转换元件两大部分组成。有时也将转换电路及辅助电路作为其组成部分。 材料 传感器材料分半导体材料、陶瓷材料、金属材料和有机材料四大类。 半导体传感器材料主要是硅,其次是锗、砷化镓、锑化铟、碲化铅、硫化镉等。主要用于制造力敏、热敏、光敏、磁敏、射线敏等传感器。 陶瓷传感器材料主要有氧化铁、氧化锡、氧化锌、氧化锆、氧化 钛、氧化铝、钛酸钡等,用于制造气敏、湿敏、热敏、红外敏、离子敏等传感器。 金属用作传感器的功能材料不如半导体和陶瓷材料广泛,主要用在机械传感器和电磁传感器中,用到的材料有铂、铜、铝、金、银、钴合金等。 有机材料用于传感器还处在开发阶段,主要用于力敏、湿度、气体、离子、有机分子等传感器,所用材料有高分子电解质、吸湿树脂、高分子膜、有机半导体聚咪唑、酶膜等。 性能 传感器性能指标主要有:灵敏度、使用频率范围、动态范围、相移。 灵敏度:指沿着传感器测量轴方向对单位振动量输入x 可获得的电压信号输出值u,即s=u/x。与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u 可加辨认的最小机械振动输入变化量△x 的大小。为了测量出微小的振动变化,传感器应有较高的灵敏度。 使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。其两端分别为频率下限和上限。为了测量静态机械量,传感器应具有零频率响应特性。传感器的使用频率范围,除和传感器本身的频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。 动态范围:动态范围即可测量的量程,是指灵敏度随幅值的变化 量不超出给定误差限的输入机械量的幅值范围。在此范围内,输出电压和机械输入量成正比,所以也称为线性范围。动态范围一般不用绝对量数值表示,而用分贝做单位,这是因为被测振值变化幅度过大的缘故,以分贝级表示使用更方便一些。 相移:指输入简谐振动时,输出同频电压信号相对输入量的相位滞后量。相移的存在有可能使输出的合成波形产生崎变,为避免输出失真,要求相移值为零或Π,或者随频率成正比变化。 有机材料用于传感器还处在开发阶段,主要用于力敏、湿度、气体、离子、有机分子等传感器,所用材料有高分子电解质、吸湿树脂、高分子膜、有机半导体聚咪唑、酶膜等。 优缺点 从传感器分类看优缺点 按传感器输出信号分类 模拟式:输出信号为模拟信号。数字式:输出信号为数字信号。 按结构形式分类:柱式、桥式、轮辐式、悬臂梁式、板环式等。柱式:特点是结构简单、紧凑,易于加工,成本费用低,密封性能良好,对于潮湿环境很适用,可设计成压式或拉式的,可以承受很大的载荷;其缺点是位移量小、灵敏度低。 桥式:传感器弹性体为桥式,其两端用两只螺栓紧固到下面的支撑体上,其弹性体与支撑体之间有一间隙,为弹性体的受力变形空间。 该类传感器的特点如下:由于传感器与秤体之间的连接为要求很低的间隙配合,所以安装方便,维护简单,重复性好。 轮辐式:高度低、精度高、抗偏心载荷和侧向力强。 剪切梁式:该类传感器有以下特点:输出信号不受称重点位置变化的影响;线性好、精度高;传感器受拉伸与压缩时,切应力的幅度与分布基本相同,即传感器的拉伸、压缩灵敏度基本相同,所以特别适用于同时受拉和压的测量;外形低、体积小、重量轻,易于安装和维修;结构简单易于密封;抗侧向力强。 板环式:特点是输出灵敏度高、受力状态稳定、温度均匀性好、结构简单、易于加工,可制成拉压2种型号,对于0.5~30吨的拉压方式称重传感器,这种方式是很好的。 发展方向 对比传感器技术的发展历史与研究现状可以看出,随着科学技术的迅猛发展以及相关条件的日趋成熟,传感器技术逐渐受到了更多人士的高度重视。当今传感器技术的研究与发展,特别是基于光电通信和生物学原理的新型传感器技术的发展,已成为推动国家乃至世界信息化产业进步的重要标志与动力。 由于传感器具有频率响应、阶跃响应等动态特性以及诸如漂移、重复性、精确度、灵敏度、分辨率、线性度等静态特性,所以外界因素的改变与动荡必然会造成传感器自身特性的不稳定,从而给其实际应用造成较大影响。这就要求我们针对传感器的工作原理和结构,在 不同场合对传感器规定相应的基本要求,以最大程度优化其性能参数与指标,如高灵敏度、抗干扰的稳定性、线性、容易调节、高精度、无迟滞性、工作寿命长、可重复性、抗老化、高响应速率、抗环境影响、互换性、低成本、宽测量范围、小尺寸、重量轻和高强度等。 同时,根据对国内外传感器技术的研究现状分析以及对传感器各性能参数的理想化要求,现代传感器技术的发展趋势可以从四个方面分析与概括:一是开发新材料的开发与应用;二是实现传感器集成化、多功能化及智能化;三是实现传感技术硬件系统与元器件的微小型化;四是通过传感器与其它学科的交叉整合,实现无线网络化。第二篇:传感器原理与应用复习资料
第三篇:无线传感器总结复习资料02016学生
第四篇:传感器作业
第五篇:传感器总结