五年级数学下册青岛版《分数的基本性质》拔高练习

时间:2019-05-15 10:51:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《五年级数学下册青岛版《分数的基本性质》拔高练习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学下册青岛版《分数的基本性质》拔高练习》。

第一篇:五年级数学下册青岛版《分数的基本性质》拔高练习

小学数学精选习题

《分数的基本性质》拔高练习

1.把缩小到原来的,应该怎么办?

2.一个分数,分子比分母小10,它与相等,这个分数是多少?

3.下面各种情况中,分数值的大小有什么变化?(1)分子扩大到原来的4倍,分母不变。

(2)分子缩小到原来的,分母不变。

(3)分母扩大到原来的10倍,分子不变。

(4)分母缩小到原来的,分子不变。

4.在 中,最小的是哪个分数?

第二篇:五年级数学《分数基本性质》说课稿

五年级数学《分数基本性质》说课稿

五年级数学《分数基本性质》说课稿1

各位老师:

下午好!

我今天说课的内容是北师大版小学数学第九册《分数基本性质》首先,对教材进行分析。

教材分析:

《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。

学情分析:

学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。

教学目标:

1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。

3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。

教学重点:

能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。

教学方法:

根据本节课的教学内容和教学目标采用讲授法,小组合作学习。

教具准备:

准备大小相等的圆形纸片,水彩笔等。

教学过程:

一、故事设疑,揭示课题。

我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。

二、合作探索,寻找规律。

请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。

三、巩固练习。

练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母;2/3=??()/186/21=2/()等这样的题,进行练习。

四、梳理知识,沟通联系。

小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。

五、多层练习,巩固深化。

1.(1)把5/6和1/4化为分母为12而大小不变的分数。

(2)把2/3和3/4化为分子为6而大小不变的分数。

2.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。

六、全课小结

现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?

五年级数学《分数基本性质》说课稿2

一、说设计理念

1、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

2、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

二、说教材

1、教学内容:

《分数的基本性质》一课是苏教版五年级下册第六单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变规律等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。要注意加强整数商不变规律的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

2、教学目标:

(1)理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变规律的关系。

(2)能运用分数的基本性质把一个分数化成指定分母或分子而大小不变的分数。

(3)经历探索分数基本性质的过程,感受“变与不变”数学思想方法。培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。

3、教学重点:

理解和掌握分数的基本性质。

4、教学难点:

学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。

三、说教法

“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

1、实际操作法:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

2、启发式教学法:运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

3、直观演示法:验证时,先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

四、说学法

学生在学习分数的基本性质时,引导学生采用猜想验证法、操作体验法,从学生已有的知识经验出发,复习商不变的规律及分数与除法之间的关系,学生自然就想到分数中是否也存在类似的规律,然后让学生提出,进行验证。

古人云:“授之以鱼,不如授之以渔。”教师只是学生的组织者、合作者和引导者,学生才是学习的小主人。新课程提倡:过程重于结果。在探索和操作中我采用了观察、归纳和引导发现法。

五、教学过程:

本节课我打算采用“创设情境,感知规律--研究素材,猜测规律--讨论交流,验证规律--巩固拓展,应用规律”的教学模式进行教学。

1.创设情境,感知规律。

首先创设了动手操作的情境:让学生折一折纸条。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位“1”,问学生:你能把涂色的部分用分数表示吗?这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

2.研究素材,猜测规律。指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

3、讨论交流,验证规律

我在上面教学的基上,引导学生逐一讨论以下问题:

(1)1/2、2/4、3/6、4/8这些分数有什么关系?

(2)你能说出与“1/2”大小相等的其他分数吗?你还能说出与“2/3”大小相等的分数吗?

(3)从“1/2=2/4=3/6=4/8”中,你发现了什么?

(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

最后,让学生完整地概括出分数的基本性质。这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

4.巩固拓展,应用规律。为了加深学生对分数基本性质的理解,激发学生的学习兴趣,我设计了一些练习让学生强化训练,巩固教学效果。

五年级数学《分数基本性质》说课稿3

各位老师,同学:

大家上午好!

我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。

一、教材分析

本节内容属于概念教学。《分数基本性质》在小学数学的学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

二、学情分析

学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

三、教学目标

综合分析课程标准要求及学生实际,我确定本节的教学目标如下:

1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。

2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。

3.受到数学思想的熏陶,养成乐于探究的学习态度。

教学重点:理解掌握分数的基本性质,它是约分、通分的依据。

教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。

四、教法学法

根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

五、教学过程

本节课的教学过程我分五个部分进行

第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。

第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

第五部分:梳理知识,反思小结。主要是总结全课。

其中,第三部分“合作探究,发现规律”可以细化为三个环节:

环节一:动手操作,进行比较

这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。

环节二:呈现问题,引导观察

这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。

环节三:交流汇报,得出规律

这一环节主要是学生汇报交流,得出结论。

如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。

应该强调的是,无论学生说的多么好,教师最后的总结和确认是必不可缺的。

以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

五年级数学《分数基本性质》说课稿4

一、说教学理念

1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

二、说教材

1、教学内容

《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

2、学情分析

学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

3、教学目标:

(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

教学重点:

理解和掌握分数的基本性质

教学难点:

学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。

教具学具:

课件,三张同样大小的长方形纸条、彩笔。

三、说教法

“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

1、实际操作法

指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

2、直观演示法

先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

3、启发式教学法

运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

四、说学法

1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同

的分数,并尝试完成练习题,达到检验自学的目的。

五、说教学过程

(一)、创设情境激趣引新

(二)、新知探索

动手操作、形象感知

观察比较、探究规律

首尾照应、释疑解惑

(三)、巩固新知

判一判填一填找一找

(四)、扩展延伸

1、创设情境,激发兴趣,揭示课题。

上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。

(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。

2、探索新知

(1)、动手操作、形象感知

首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。

(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

(2)、观察比较,探究规律

首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。

(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。

3、巩固新知

在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

4、拓展延伸

通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习内容,激发学生不断探索新知的欲望。

六、板书设计

分数的基本性质。

分数的分子、分母同时乘以或除以相同的数。

分数的大小不变。

五年级数学《分数基本性质》说课稿5

尊敬的各位评委,各位老师:

大家好!

我说课的内容是《分数的基本性质》。这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:

1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、(认知目标)理解和掌握分数的基本性质。

3、(能力、情感目标)培养学生观察、分析、推理的能力。

教学重点:理解和掌握分数的基本性质。

教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?

本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。

我设计的具体教学过程如下:

第一环节:激趣引入,凸显信息技术的趣味性。

“好的开始是成功的一半”,本课运用学生感兴趣的电脑游戏和卡通人物导入新课,有效地开启学生思维的闸门,激起猜测探究的兴趣,通过比较三个分数的大小,凸显矛盾冲突。(我在教学比较这三个分数大小时,学生们各抒己见,坚持着自己的观点不放,使得不同观点的矛盾激化,激发了学生的好奇心和争强好胜的心理,为后面的发现规律埋下伏笔。)

第二环节:探索规律,凸显信息技术的直观性和时效性。

1、提出猜想。

学生进入国外网站,通过操作,直观的观察情境中三个分数的涂色部分,发现这三个分数的大小是相等的。

再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。

(“学起于思,思起于疑”。这个环节中,当学生猜测三个分数谁大谁小,运用网络实验室用比平时更少的时间、更直观的得出三个分数大小相等,为后面猜想的提出提供了更多观察、交流的时间)

2、完善猜想。

在得到初步猜想后,在游戏的大背景下,再出示一组分数:三分之二和十五分之十。学生猜测大小、进入网络实验室验证,发现这两个分数也是相等的。

这一部分的主要目的则在于完善初步猜想,使学生感受到分子、分母不仅可以乘或除以2,分数大小不变,还可以乘或除以像5这样更大的数,从而得到进一步的猜想:“分数的分子、分母都乘或除以同一个数,分数的大小不变”。

(在这一环节中,网络实验室再次起到了快速、直观知道分数大小的作用,唯一不同的是,这次使用了纸条这个不同的表现形式,通过不同的表现形式来表达分数的意义)

3、验证猜想,得出规律。

学生把符合猜想的三组分数记录在学习卡上,(用图片方式呈现)再到网络实验室里进行验证,看看是否也都具有一定的规律。通过大量的例子显示这不仅仅是学生的猜想,而是具有一定规律的。

最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数——如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节——验证上节省了不少时间)

第三环节:游戏巩固,思维提升,凸显信息技术的交互性。

学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)

接着再通过回到第一组分数,利用分数的基本性质写出与第一组分数相等的分数来提升学生的思维,初步感知与第一组分数相等的分数还有很多很多。让学生感受到分数的基本性质应用非常广泛,还需要他们进一步的学习和探索。

第四环节:提炼方法,积累基本的数学活动经验。

师生共同回顾学习过程,总结并提炼出探索规律的方法:猜想→验证→得出结论,为学生今后的学习提供科学的学习方法。

第五环节:网上交流,课内向课外延伸。

一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。

最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”,谢谢大家!

五年级数学《分数基本性质》说课稿6

一、说教材

《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。

二、说学情

学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。

三、说教学目标

依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。

过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。

情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。

教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。

教学准备:三张同样大小的长方形纸张,彩色笔

四、说教学方法

树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。

五、学法

有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

六、说教学过程

为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:

1、创境设疑:回顾旧知,引发思考

2、自主探究:动手实践,发现规律

3、交流归纳:揭示规律,巩固深化

4、分层精练:多层练习,多元评价

5、感悟延伸:课堂小结,加深理解

第一环节:创境设疑

结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。

第二环节:自主探究

通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。

第三环节:交流归纳

在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。

第四环节:分层精练

这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。

第五环节:感悟延伸

通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。

总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。

五年级数学《分数基本性质》说课稿7

一、教学内容的说明

《分数的基本性质》一课是青岛版小学数学五年级下册第二单元的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

教学重点

理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

教学难点

归纳分数基本性质的过程及运用分数的基本性质解决实际问题。

二、教学目标的确定

依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。

过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的应用意识、问题意识及合作意识。

情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物是相互联系、发展变化的辩证唯物主义观点,体会分数的基本性质在社会生活中的作用。

三、教学方法的选择

教法:树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

四、教学媒体的运用

在教学媒体方面,我选择了多种教学媒体综合运用的方式,优化数学的学习过程。正方形纸片,彩笔,直尺等学具准备;通过多媒体教学课件等教具准备,将现代信息技术的运用融合到数学课堂中。

五、教学过程的设计

为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“创设情境,引发思考——复习旧知,引出新知——动手实践,初步感知——引导观察,发现规律——巩固练习,加深理解——课堂小结,任务结尾”六个环节。

(一)创设情境,引发思考

1、教师利用多媒体课件播放动画,故事引入:上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手比一比,从直观上让学生感受到这几个分数大小可能是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢?

2、利用信息技术,创设有趣的故事情境,学生的积极性被调动,纷纷发表自己的不同看法。激发学生学习兴趣,并揭示课题。

(二)复习旧知,引出新知

1、要解决的问题

(1)再现学生的原有知识,建立知识之间的联系,作好迁移的准备。

(2)向学生渗透事物之间相互联系的辨证唯物主义观点,使学生经历猜想的数学活动过程,发展合情推理能力。

2、教学安排

(1)动手操作表示分数

(2)交流分数引导猜想

利用新旧知识的类比进行猜想,鼓励学生根据自己已有的知识经验大胆猜想,建立知识之间的联系,渗透猜想是一种合情的推理。

(三)动手实践,初步感知

1、引导学生利用已有的学习经验找到与1/2大小相等的分数,既能验证1/2=2/4=4/8,又能说明与1/2相等的分数有许多。

2、运用所学知识说明9/12与3/4大小为什么相等?

(1)学生通过自主探索、合作互助的学习方式,自主选择探究的学具和方法,充分尊重学生个人的思维特性。这样设计给学生提供的充足的时间和空间,引起多种知识和方法的整体构建,培养了学生的创新思维。

可能会从如下几方面证明:

①折

纸比较的方式

②画图观察的方式

③用分数、小数的关系发现

④运用商不变的规律发现

⑤其他方法发现

(2)组织交流证明方法和结果,交流时教师及时引导学生针对学生的不同方法给予不同的评价。

(四)引导观察,发现规律

1、解决的问题

(1)观察发现分数的基本性质

(2)培养学生观察--探索--抽象--概括的能力。

2、教学安排

(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?

(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)

引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。

引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?

引导层次三:用自己的话把你观察到的规律概括出来。

引导层次四:除了有这样的规律,你还观察到了什么?(以上注意两个方面:1。观察顺序2。数的拓展)

(4)引导学生初步总结分数的基本性质并板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

在这一环节,教师引导学生在观察与分析、探索与思考的基础上不断生成新问题,发现并归纳出分数的基本性质。让学生经历了观察发现、抽象概括的整个过程,发挥学生学习的主动性。

让学生回答阿凡提说了什么话?师生共同讨论!

(五)巩固练习,加深理解

1、解决的问题

(1)完善对分数基本性质的理解。

(2)回忆探究发现规律的全过程,再次体验探究的方法。

(3)对学生自主练习实施分层评价,在练习中培养学生解决问题的能力,发展应用意识,在评价反思中使学生获得成功的体验。

2、教学安排

通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善,同时培养了学生的问题意识。

解决实际问题

基础层次题是分数基本性质的直接运用,提高层次题是培养学生灵活运用知识解决问题。设计分层练习以求达到巩固知识的效果,结合小学生的年龄特点设计,体现情感性、、趣味性、层次性、开放性,力图使不同层次的学生有不同的收获,不同的学生通过测试评价,都能建立起自信。

(六)课堂小结,任务结尾

为了使学生对本节课所学内容有一个整体的感知,我让学生共同回忆本节课研究了哪些问题,通过这些问题的解决你有哪些收获?使学生在讨论的过程中,进一步体会分数的基本性质,感受知识之间的内在联系,同时增强对迁移推理、猜想验证等数学思想的认识。

运用你今天所学的知识,试试能否为三只小狗找到自己的家游戏,通过提问方式找到前两只小狗的家以后紧接着追问剩下的房子是第三只小狗的家吗?

出示思考题

6/9=4/6

(通分、约分的方式都能得到正确的结论,思考的过程对后面通分、约分部分学习起到较好的铺垫作用。)

六、反思课堂教学评价

《新课程标准》指出评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学,应建立评价目标多元化、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的结果,更要关注他们学习的'过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感态度,帮助学生认识自我,建立信心。

情感是课堂教学的灵魂,是课堂教学的催化剂,是师生情感的黏合剂,我们要善于用教师的激情激发学生学习的热情,是课堂教学充满生命活力的关键要素。因此,我注重“过程与结果”相结合;注重“动手操作与动脑思考”相结合,“奠定基础、获得方法与情感体验”相结合,努力通过多元多样的评价,激励学生的学习和改进教学,建立学生学习的自信。

以上是我对分数的基本性质这节课的说明,通过设计给我以许多新的思考,很不成熟,但我仍然深切地感受到,在新课程理念的指导下,课堂的教学方式、学习方式、评价方式都在发生着巨大的变化。恳请在座的专家批评指正,谢谢!

五年级数学《分数基本性质》说课稿8

一、说教材

《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/64/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过“折、画、想、问、用”五个环节对教学内容作如下处理。

1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

2.想--1/2、2/4、3/6、4/8这些分数有什么关系?你还能说出和“1/2”大小相等的其他分数吧?你还能说出和“2/3”大小相等的分数吧?

3.问—从“1/2=2/4=3/6=4/8”中,你发现了什么?

4.用--用已学过的“分数的基本性质”解决有关的数学问题。这样安排教学有以下几点好处:

(1)有利于知识的迁移。

让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

(2)能发挥学生学习的主动性。

通过学生找和“1/2”大小相等的分数,以及和“2/3”大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

(3)提高了学生的学习能力。

通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。

二、说教学目标

以上各个教学环节的设计体现如下几点教学目标:

1.知识技能性目标:让学生亲身经历“分数基本性质”抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

三、说教法

本节课起打算采用“创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈”的教学模式进行教学。

1.创设情境,复习迁移。

为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位“1”,问学生:你能把涂色的部分用分数表示吗?这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

2.设疑激思,获取新知。

“疑是思之始,学之端”。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

(1)1/2、2/4、3/6、4/8这些分数有什么关系?

(学生会说这四个分数的大小相等。)

(2)你能说出与“1/2”大小相等的其他分数吗?你还能说出与“2/3”大小相等的分数吗?

(如果学生写错或写不出,待得出分数基本性质后再写)

(3)从“1/2=2/4=3/6=4/8”中,你发现了什么?

(让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

(4)你对上面这句话觉得有什么问题吗?

(学生可能会提出地“相同的数”中“0”必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

3.深化概念,及时反馈。

为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

1.下面各式对吗?为什么?(让学生用手势表示对错)

(1)3/4=6/8

(2)3/8=12/2(3)3/10=1/5

2.在里填上合适的数。

()/6=()/36=8/12=2/()=()/24

3.把2/3和10/24化成分线是12而大小不变的分数。

4.把下面大小相等的两个分数用线连接起来。

4/51/64/94/612/16

3/42/320/256/368/18

五年级数学《分数基本性质》说课稿9

我今天说课的内容人教课标版教材五年级下册第四单元的内容《分数的基本性质》。

本节内容属于“数与代数”知识领域。在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。

本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进学生掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。

以上我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。

根据以上分析。我认为本节课的教学目标有以下几点:

1、经历探索分数的基本性质的过程,理解分数的基本性质。

2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。

3、培养学生在合作中逐步形成评价与反思的意识。

4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

我认为本节课的教学重点:理解、掌握分数的基本性质。

难点:发现和归纳分数的基本性质,以及应用它解决相应的问题。

下面说说我的教学过程:

我将本课的教学设计以下几个环节,

一、设疑激趣,引入新课

教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。

首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

二、自主探索,学习新知

新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?

学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)

3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的? (教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

师:谁能用一句话把这个变化规律叙述出来呢?

生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。

师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。

6. 教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。 学生自己小结方法。

教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

三、分层练习,巩固深化

只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

1、涂一涂练习14,第1、7题。

因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

2、说一说完成练习14,第8题

我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

3、想一想:第5、9、10题(选择一题做为作业)

在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

四、畅谈收获,小结全课

让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

第三篇:青岛版五年级下册数学分数的意义和基本性质练习题

分数的意义和基本性质练习题2015.4 班级_________姓名__________等级_________

一、填空: ⒈ 表示把()平均分成()份,表示这样的()份。8它的分数单位是(),有()个这样的分数单位,减去()个这样的分数单位它是最小的自然数。加上()这样的分数单位它是最小的质数。

⒉ 把4米长的电线平均分成4份,表示这样的一份就是这根电线的()。表示这样的3份就是这根电线的()。其中2份长()米。

5⒊ 一个苹果重千克。它表示的意思是()

81818()()()36==45=⒋=

303020()20()541072⒌ 在,,中,与相等的分数是()。

69151236.写出分子是2的假分数。()

⒎ 以最小的合数为分母的最小分数是()。⒏ 以13做分子的最大真分数是(),最小假分数是()。⒐ 用分数表示涂色部分。

()()

()()

()()

()()⒑ 在○里填上“>”、“<”或“=”。5877656○

2○

○ 1111893653()米表示1米的,又表示把3米平均分成()份,取其中4()的()。

2()⒓ 1千克的和2千克的相等。

5()()⒔ 把2吨平均分成8份,每份是总数的,是()吨。

()114.一个数由6个一,9个组成,这个数写成分数是()。

二、选择(将正确答案的序号填在括号里)。

aa⒈ 要使是假分数,是真分数,a应是()。

① 10

③3⒉ 的分子加上6,要使分数的大小不变,分母应()。① 加上6

② 乘以6

乘以3 ⒊ 把3米长的绳子对折3次,每段绳子是全长的()。

311①

8864.小红6分钟写了54个毛笔字,平均每分钟写毛笔字总数的(),5分钟写毛笔总数的()。

1156

65654183和这两个分数比较()5.。24

4① 意义相同

② 分数单位相同

③ 大小相同

16.下列分数比小的是()。

25811①

131521⒒

三、判断,(正确的在括号里画“√”,错误的画“×”)

14⒈ 4米的和1米的一样长。

()

55⒉ 分母是7的假分数有无数个,分子是7的假分数也有无数()

55⒊ 3的分数单位是。

()

88⒋ 真分数的分子一定比分母小。

()39,所以这两个分数的分数单位也相同。

()515⒍ 一个分数如果分子不变,分母增加1,则这个分数变小。()

1441⒎ 变成,因为分子和分母都同时乘以4,所以是的4倍。()

312123⒏ 分数的分子和分母同时乘以相同的数,分数的大小不变。()

2⒐ 一节课的时间是小时。表示把一节课平均分成3份,占其中的2份。

31⒑ 12分=时

()

5四、画一画,比一比,想一想。

13⒈ 画3厘米的,和1厘米的。

5⒉小红有8块糖,小明的糖是小红的。(小红的糖用“○”表示,小明的糖

4用 “□”。)

○ ○ ○ ○ ○ ○ ○ ○

五、解决问题。

⒈ 小丽有9个苹果,小花有15个苹果,小花的苹果是小丽的几倍?小丽的苹果是小花的几分之几?

⒉ 据德州市气象台统计,2012年2月份,德城区阴天有6天,雪天有3天,阴天和雪天各占这个月天数的几分之几?

⒊ 医院药剂师将11千克盐,放入89千克纯净水中,做成生理盐水。盐的质量是水的几分之几?盐的质量是生理盐水的几分之几?

⒋ 学校食堂买来一袋重50千克的面粉,一星期吃完,平均每天吃多少千克面粉?3天吃了这袋面粉的几分之几?

⒌ 王大夫1月份工作了23天,他这个月工作的天数占这个月总天数的几分之几?休息的天数占这个月总天数的几分之几?

5⒍ 一个分数,分子比分母小16,它与相等。这个分数是多少?

7⒎ 王奶奶家住在5楼,她每次从一楼走到家中大概需要3分钟。王奶奶平均走一层楼用的时间是她从一楼到家中时间的几分之几?王奶奶平均走一层楼用多少分钟? ⒌ 因为

第四篇:苏教版数学五年级下册教案 分数的基本性质

苏教版数学五年级下册教案 分数的基本性质

教学目标

1、理解和掌握分数的基本性质。

2、能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

3、培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点和难点

1、理解和掌握分数的基本性质。

2、归纳分数的基本性质,运用性质转化分数。教学用具

教具:课件,三张相同的长方形纸。学具:每位同学准备三张相同的长方形纸片。教学过程设计(一)复习准备 1.口答:

根据 120÷30=4,不用计算直接说出结果:

(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。2.说一说依据什么可以不用计算直接得出商的? 3.说出商不变的性质。

教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

(二)学习新课 1.分数基本性质。

(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书: 教师:请比较这三个分数的大小? 你根据什么说这三个分数相等?

学生口答后老师用等号连结上面三个分数。

(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

请同学观察,思考和讨论。出示思考题: 结果如何变?

那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)的变化规律是什么?(学生小组讨论后汇报)教师板书: 教师:试说一说这时分子、分母的变化规律?

学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。学生口述分数基本性质的内容,老师把板书补充完整。

教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。请学生打开书读两遍。

教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)用学生自己的例题说明后,用投影片再说明: 口答填空:

2.把一个分数化成大小相等,而分子或分母是指定数的分数。(1)分子应怎样变化?谁随着谁变? 化?谁随着谁变?

教师:上面两个分数的变化依据是什么?(2)口答练习:(学生口答,老师板书。)教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。(三)巩固反馈 1.口答:

2.在括号里填上“=”或“≠”。3.在()里填上适当的数。4.判断正误,并说明理由。(四)课堂总结与课后作业 1.分数基本性质。

2.把分数化成大小相同而分子或分母是指定数的分数的方法。3.作业:课本108页练习二十三,1,2,4,5。课堂教学设计说明

分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面加深学生对分数基本性质的理解。

在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

新课教学分为两部分。

第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

第五篇:五年级数学下册《分数的基本性质》教学设计

五年级数学下册《分数的基本性质》教学设计

塔洋镇中心小学吴清富

教学内容人教课标实验教材五年级下册 P75 分数的基本性质 教学目标

1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点使学生理解分数的基本性质。

教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程

一、故事情景引入

同学们,你们知道现在热播的动画片叫什么名字吗?对了,就是《熊出没》。今天,熊大、熊二与光头强又为一件事情发生了争执。老鄂为了缓解熊大、熊二与光头强之间的关系,就想把他们三个分开居住,对他们三个说:“我现在有三片一样大的森林,熊大,第一片

森林的1/2归你管了,熊二,第二片森林的2/4就归你了,光头强,你就来管理第三片森林的4/8吧。”老鄂的话刚讲完,熊大就嘟着嘴叫了起来:“老鄂你不公平!分给光头强的多,分给我的少!”熊二也连忙叫着:“老鄂不公平,老鄂偏心!”只有光头强在偷着乐。

同学们,你们觉得老鄂公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,光头强分得多。”

生乙:“我觉得熊大分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底老鄂的分法公不公平,上完这一节课同学们就会明白了。”

二、新授

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(正方形纸片)有几张?(三张)” 请你们把这三张正方形纸片叠起来,比一比大小,看看怎么样?生:“三张正方形纸片一样大。”

1.师: “ 下面我们就用三张一样大的正方形纸片代替森林,象老鄂一样来分森林了。”

首先,请在第一张正方形纸片上表示出它的1/2;

再在第二张正方形纸片上表示出它的2/4;

然后在第三张正方形纸片上表示出它的4/8。

好了,大家动手分一分。(教师巡视指导)

2.师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的正方形纸片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个正方形纸片平均分成2份,取其中的一份,就是它的二分之一。”

生:“把第二个正方形纸片平均分成4份,取其中的两份,就是它的四分之二。”

师:“那八分之四又是怎么得到的呢?大家一起说。”

生:“把这块正方形纸片平均分成8份,取其中的四份,就是它的八分之四。”

(学生说的同时,教师操作,分完后把正方形纸片贴在黑板上。)

3.师:“同学们,观察这些正方形纸片的阴影部分,你有什么发现?”

小结:原来三个正方形纸片的阴影部分是同样大的。

师:“ 现在再来评判一下,老鄂分森林公平吗?为什么?”(请几名学生回答)

生:“老鄂分森林是公平的,因为他们三个分得的面积一样多。” 师:“现在我们的意见都统一了,老鄂是非常公平的,他们三个人分的森林一样多。那你觉得1/

2、2/

4、4/8这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4.研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?” 生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?” 生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了二倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)

分数的基本性质。

5.深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到75页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除

外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

三、应用

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

四.总结

这节课大家有什么收获?

下载五年级数学下册青岛版《分数的基本性质》拔高练习word格式文档
下载五年级数学下册青岛版《分数的基本性质》拔高练习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    五年级下册《分数的基本性质》说课稿

    五年级下册《分数的基本性质》说课稿 五年级下册《分数的基本性质》说课稿1 大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从......

    五年级数学下册_分数的基本性质教案人教版(5篇)

    (人教版)五年级数学下册教案 分数的基本性质 教学内容: 教科书第57页例1、例2及相应的习题。 教学目标: 1.使学生经历探索分数基本性质的过程,初步理解分数的基本性质。 2.让学生......

    五年级数学下册《分数的基本性质》说课稿(5篇模版)

    说课分为,说教材,说教法,说教学形式,说教学过程,总结。下面查字典高中数学网小编为大家带来五年级数学下册《分数的基本性质》说课稿,仅供大家参考。 一、教材分析 分数的基本......

    五年级数学下册《分数的基本性质》教学反思(精选)

    五年级下册《分数的基本性质》教学反思 五年三班 顾金凤 教材分析:《分数的基本性质》是人教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作......

    人教版五年级下册分数的基本性质说课稿

    《分数的基本性质》说课稿 各位评委老师,您们好! 我今天说课的题目是义务教育课程标准教科书小学数学五年级下册第四单元第三课时《分数的基本性质》。 下面我将从教学内容、......

    五年级数学《分数的基本性质》教学反思

    《分数的基本性质》教学反思 1、在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让......

    北师大版五年级数学《分数基本性质》说课稿

    《分数基本性质》说课稿 尊敬的各位评委、老师: 大家好! 我说课的内容是北师版教材,小学数学五年级上册第三单元第四节《分数基本性质》。下面我将从说教材、说教法、说学法、......

    苏教版五年级数学分数的基本性质5篇

    备课时间: 上课时间: 教学内容:第68页练习十二的第9~11题。 教学目标: 1、进一步理解掌握分数基本性质在通分中的运用。 2、能熟练而灵活地运用通分的方法进行分数的大小比较。......