第一篇:关于先进制造技术的再思考
关于先进制造技术的再思考
摘要:若干年来,对先进制造技术有了进一步深入的理解。先进制造技术是一项系统工程,也是一项现代制造工程。发展先进制造技术要突出两个重点,即超精密加工和精密成形技术;综合自动化和系统管理技术。自主开发和创新可能是与先进制造技术同等重要的另一个主题。
自20世纪80年代末期,美国根据本国制造业面临的挑战和机遇,为增强竞争力和促进国民经济增长,提出先进制造技术(AMT)的概念以来,通过制订一系列的政策和实施计划,经过10多年的发展,首先在汽车、电子产品提高质量和可靠性、降低成本等方面取得了很大效果,使整个制造业提升了国际竞争力,促进了国民经济的发展。
与此同时,我国机械工业在制订“九五”规划和长远发展纲要时,充分考虑了国际上关于先进制造技术的发展动向和可能带来的影响,通过软科学研究、学术研讨、安排科研开发项目等,对发展先进制造技术在认识上更加深化,在工作上愈益主动,也取得明显的效果。
我们曾以“关于先进制造技术的几点思考”为题目,探讨过若干问题。时隔多年,有必要做进一步思考,探讨未来。先进制造技术的发展
1.1 工程技术界以系统工程和工业工程的思想来审视先进制造技术的产生和发展
20世纪90年代初期,当先进制造技术的概念被引入以后,伴随而来的各种生产经营管理模式,JIT、MRP、MRPⅡ、并行工程(CE)、灵捷制造(AM)、精益生产方式(LP)等相继出现。专家们冷静面对这些新事物,明确提出:以提高制造业竞争力为目标的发展应用先进制造技术,必须在与之相匹配的制造模式内运作,才能充分发挥作用。先进制造模式的特点是以市场为导向,以系统观念、工业工程(IE)为指导,以电子计算机技术为依托,精心组织,合理管理,达到提高产品质量、降低生产成本、缩短交货期的目的。美国以先进制造技术装备汽车工业的同时,在综合日本丰田生产方式的基础上,推?quot;精益生产方式“,于汽车企业推广应用,很快达到了提升国际市场竞争力的目标。
专家们进一步分析认为,各种先进制造模式虽然以不同形式出现,但基本上可以分成两大类:一类是以制造技术发展为基础,从20世纪50年代的高速切削开始,之后的多刀半自动机床、数控机床(NC)、计算机数控机床(CNC)、加工中心(MC)、柔性制造单元(FMC)、柔性制造系统(FMS)、计算机集成制造系统(CIMS)等;另一类则以生产经营管理为中心,20世纪60年代出现的成组技术(GT),之后的JIT、MRP、MRPⅡ、灵捷制造(AM)、精益生产方式(LP)、企业资源计划(ERP)等。这就使我们在面对各种繁多的技术层面时,有一个比较清晰的认识。
1.2 对先进制造技术内涵有了更全面的认识
最早介绍先进制造技术的内涵时,一般包含三个技术群:①主体技术群,包括产品、工艺过程、工厂(车间)设计、加工技术、装配、测试等;②支撑技术群,包括信息技术、控制技术、标准化等;③技术基础设施,包括质量管理、人员培训、用户服务等。不难看出,先进制造技术的内涵具有以下几个特征:
第一,先进制造技术以”制造技术“亦即工艺过程技术(process technology)为主体,把制造过程的设计、生产流程(车间)设计、加工技术、装配、检测等作为第一位的主体技术群,与传统?quot;以工艺为基础”有着惊人的相似。
第二,先进制造技术的三个技术群是生产过程的整体,是一项系统工程,也可以说是一项现代制造工程。从产品设计、制造过程、信息管理、质量控制,到用户服务、人员培训,环环相扣。不难看出,忽视任何一个环节,都不能达到质量、成本、效率的整体目标。这种把市场、技术、经济、管理等融为一体的思想,开阔了我们的视野,与过去各管一段,各自强调自己的重要性,形成鲜明对比。
第三,先进制造技术是动态变化的。反映在不同时期,不同的国家和地区,先进制造技术有其本身重点发展的目标和内容。为确保生产和经济效益持续稳步的提高,按照实际情况,采用不同水准的先进制造技术及与之相适应的生产经营模式,以追求最佳的技术经济效益。
1.3 发展先进制造技术引起了各级管理部门和工程技术界的重视
1994年以来,先进制造技术的有关内容被列入“九五”、“十五”期间多项国家科技发展计划中。科技管理部门在制订研究开发立项计划时,把先进制造技术作为与信息、生物、新材料、新能源等并列的技术领域之一。《中共中央国务院关于加强技术创新、发展高科技、实现产业化的决定》明确提出要“开发和利用先进制造技术、工艺和装备,大幅度提高国产技术装备水平”,“加速传统产业的技术升级”,为发展先进制造技术进一步指明了方向。
有关领导指出:我国工业化任务还远未完成,而工业化是实现现代化和发展高新技术产业的基础。工程科技水平的落后,制约了中国制造业的发展,也制约了工业化的步伐。
值得注意的是,把企业管理或者叫做系统管理技术作为发展先进制造技术的重要环节正式纳入了各级规划、计划之中。例如,机械工业系统在制订“十五”发展思路、目标及重点时,高层专家提出,机械行业先进制造领域的高技术产业构成为:①现代设计技术与软件;②先进制造工艺与装备;③综合自动化技术装置与系统;④现代管理技术与软件;⑤机电信息一体化产品。其结构对现代管理技术的重视具有代表性。制造业面临的挑战与先进制造技术
进入21世纪,我国加入WTO,机械制造业面临重大挑战和机遇,先进制造技术作为机械制造业的一项重要技术领域,将面临各种新任务、新课题。
2.1 对市场的快速响应能力
瞬息万变的市场促使交货期成为竞争力诸因素中的首要因素。为适应市场需求,已有的并行工程、快速原型成形技术、客户化生产方式将得到广泛应用。随着国际互联网的发展与应用,电子商务技术与手段将在企业快速响应能力中进一步扩展。网上询价、网上签约、网上采购、网上交易将大大缩短经营周期和降低生产成本。随着电子商务的发展,与之相配套的第三方物流,将替代企业原有的许多仓库、储运系统,而为实现JIT(准时制)创造了更好的条件。对市场快速响应能力的大小,是企业国际市场竞争力的重要标志。
2.2 超精密加工技术
被加工零件的尺寸精度高于0.1μm、表面粗糙度Ra小于0.025μm以及所用机床定位精度的分辨率和重复性高于0.01μm,称为超精密加工,亦称之为亚微米级加工技术,并正在向纳米级加工发展。
超精密加工所能达到的精度、表面粗糙度和加工尺寸范围,是一个国家制造技术水平的重要标志之一。超精密加工广泛用于国防军事工业、航空航天工业、计算机芯片、磁板基片、光盘基片等。
现代机械制造中,提高产品的性能、质量、可靠性、自动化程序等均有赖于超精密加工。因此,超精密加工也是先进制造技术的基础和重要支柱之一。
2.3 先进成形与改性技术
成形与改性技术包含了铸造、塑性成形、连接、热处理、表面改性等,成形与改性技术是先进制造技术的一项重要内容。机械产品的零部件,通常都要通过成形与改性才能具有所需形状及实用功能。成形技术已从生产零件毛坯、接近零件形状,向直接制造零件的净成形方向发展。有专家预测,塑性成形与磨削加工相结合,将取代大部分中小零件的切削加工。
先进成形技术与节能、节材、绿色制造密切相关,是当今世界在发展先进制造技术中的关键课题之一。
2.4 环境适应性的挑战
我国机械制造业不仅要解决自身生产过程中的污染和资源浪费问题,更重要的是要为社会提供在全寿命周期内没有污染、节约资源的各类产品。为提高制造企业的环境适应性,有关部门提出了四个准则:不可再生资源应用降低到最低限度;能源消耗最少;对空气和水的污染最低;使工作和生产环境绿色化。绿色产品的设计和绿色制造在21世纪将提到重要议事日程。首先要研究绿色产品、绿色制造的设计理论和方法、产品的描述和建模技术,以及建立绿色产品数据库和绿色产品、绿色制造的评价系统。
2.5 虚拟制造技术和网络制造技术
虚拟制造技术是以计算机仿真技术为前提,在计算机上实现对产品设计、加工和装配、检验、使用全部生命周期的统一建模和仿真。缩短产品开发周期,降低生产成本,提高生产效率。
网络制造是虚拟制造的重要组成部分,针对某一市场需要,利用以网络为标志的国际互联网,把分散在不同地区的现有设备资源、智力资源和各种核心能力,按资源优势互补的原则,灵活而迅速地组合成一种超越空间约束、统一指挥的经营实体--网络联盟企业,以便快速出产品、出效益。网络制造将成为21世纪国际竞争的重要手段之一。
2.6 制造资源的柔性和可重构性
未来社会所需要的不再是目前实行的强制性标准化产品,而是前所未有的非标准化产品和服务。这将导致单一同类规格的大量消耗市场,裂变为一系列满足不同需求的细分市场,细分市场又进一步强化了产品的多样化。个性化需求和不确定的市场环境,要求克服设备资源沉淀造成成本升高的风险。先进制造工艺、智能化软件和柔性自动化设备、柔性发展战略,构成未来企业竞争的软、硬件资源。制造资源的柔性和可重构性是21世纪企业装备的显著特点。
2.7 综合自动化技术
综合自动化技术包含产品研究与过程开发自动化、生产过程和设备自动化、管理自动化等方面。综合自动化是提高劳动生产率的强大手段,是21世纪支持和推动以信息为特征的先进制造技术发展的核心技术。发展先进制造技术与综合自动化技术,实现我国制造业改造升级,已成为制造业界的共识。
21世纪的制造业综合自动化,将主要围绕以下四个方面有所创新和发展应用:①综合自动化总体与集成技术;②产品研究与过程开发自动化技术;③生产过程和设备自动化技术;④管理自动化技术。几点思考与建议
3.1 发展先进制造技术任重道远
50年来,特别是改革开放20年来,我国机械制造业已形成门类比较齐全的机械制造体系。我国基础工业部门80%以上的装备,农业部门绝大部分装备由国内提供,机械产品已成为我国对外出口的支柱之一。我们已经打下了工业化的初步基础,但从整体上,工业化的任务还远未完成,制造业的人均GDP和增加值还很低,而要进一步提高劳动生产率和人民的生活水平,实现工业化的历史使命,还有很长一段路要走。我国振兴机械制造业有待时日,发展先进制造技术任重道远。
3.2 突出两个重点
发展先进制造技术任务繁重,要从实际情况出发,突出重点。超精密加工和精密成形技术、综合自动化和系统管理技术是重中之重。因为两者与下列因素密切相关:
第一,增强核心竞争力。精密、超精密加工技术,是许多国防和民有高级产品的关键技术。所能达到的精度,标志国家的技术水平和竞争实力。
第二,环境适应性关系重大。精密成形技术,可大大减少环境污染,节能节材。
第三,提高劳动生产率。综合自动化技术和系统管理技术,体现现代信息技术改造传统产业的具体途径,提高产品质量和生产效率,提高劳动生产率。
第四,既重视具体技术,也重视管理技术。
3.3 重视教育与培训
据1998年统计,机械工业全部国有企业及销售收入在500万元以上的非国有企业达4.92万家,职工1408万人,其中工程技术人员约占7.5%,亦即100万人左右。职工技术水平和素质的提高直接影响企业的产品质量、生产效率和总体发展水平。而在已经加入WTO的今天,教育与培训更为重要与迫切。
教育与培训要引入市场机制。一方面要坚持持证上岗、竞争上岗;另一方面要建立市场机制,自觉接受新知识、新技术的培训,为择业、应聘创造条件。
国家有关部门要制订继续教育的法律法规,规范教育培训市场。重视教育与培训,规范教育与培训市场,是推进先进制造技术,振兴机械制造业,实现国家工业化的长远大计。
3.4 自主开发与创新是另一个重要主题
在机械制造业,产品自主开发与创新的重要性和迫切性早已被政府部门和工程技术界、企业领导人、教育界理解和关注。有两个情况值得我们进一步思考:一是科技管理部门发现,多年来新产品、新技术的创新点绝大部分来自早期科研项目或前期预研;二是先进制造技术以“制造技术”为主体,对产品开发设计,主要提供方法和手段,如CAD、CAPP、PDM等。因此,自主开发与创新在机械制造业可能是另一个主题。建议有关部门和学术团体对制造业自主开发与创新的内涵、机理、机制、方法、形式和经验等,做广泛深入的学术探讨与交流。从这一重要角度,与发展先进制造技术一起,共同推动制造业的发展。
姚福生:1932年4月生,中国机械工程学会特邀理事,机械设计分会主任委员,中国工程院院士。
第二篇:再制造技术
再制造技术
再制造是一种对废旧产品实施高技术修复和改造的产业,它针对的是损坏或将报废的零部件,在性能失效分析、寿命评估等分析的基础上,进行再制造工程设计,采用一系列相关的先进制造技术,使再制造产品质量达到或超过新品。就是通过一系列工业过程,将废旧产品中不能使用的零部件通过再制造技术修复,主要以先进的表面工程技术为修复手段(即在损伤的零件表面制备一薄层耐磨、耐蚀、抗疲劳的表面涂层),使得修复处理后的零部件的性能与寿命期望值达到或高于原零部件的性能与寿命。
再制造的内容有在产品设计阶段,要考虑产品的再制造性设计。在产品的服役至报废阶段,要考虑产品的全寿命周期信息跟踪。在产品的报废阶段,要考虑产品的非破坏性拆解、低排放式物理清洗。要进行零部件的失效分析及剩余寿命演变规律的探索;要完成零部件失效部位的具有高结合强度和良好摩擦学性能的表面涂层的设计、制备与加工,以及对表面涂层和零部件尺寸超差部位的机械平整加工及质量控制等。再制造的研究内容非常广泛,贯穿产品的全寿命周期,体现着深刻的基础性和科学性。主要以先进的表面工程技术为修复手段。表面工程技术又包括: 喷涂修复技术,电刷镀修复技术,激光修复技术,纳米表面工程技术。主要用于轴类及一些贵重零件修复技术。
需要独立解决的科学和技术问题:
1、加工对象更苛刻主要有:锻焊、热处理、铣磨件尺寸差、残余应力、内部裂纹、表面变形等缺陷;
2、前期处理更繁琐再制造的毛坯必须去除油污、水垢、锈蚀层及硬化层;
3、质量控制更困难再制造毛坯寿命预测和质量控制,因毛坯损伤的复杂性和特殊性而使其非常困难;
4、工艺标准更严格再制造过程中废旧零件的尺寸变形和表面损伤程度各不相同,必须采用更高技术标准的加工工艺。
表面工程技术:表面工程是一项系统工程:因为表面工程是以表面科学为理论基础,以表面和界面行为为研究对象,首先把互相依存、相互分工的零件基体与零件表面构成一个系统,同时又综合了失效分析、表面技术、涂覆层材料、预处理和后加工、表面检测技术、表面质量控制、使用寿命评估、表面施工管理、技术经济分析、三废处理和重大工程实践等多项内容。表面工程在不同领域的功能:机械类产品:提高零件表面的耐磨、耐蚀、耐热、抗疲劳等性能。电子电器元件:提高元器件表面的电、磁、声、光等特殊物理性能。生物医学材料:提高人造骨骼等人体植入物的耐磨性、耐蚀性及生物兼容性。工艺品:提高耐蚀性和美观性。
表面工程技术分为:表面改性,表面处理,表面涂覆,复合表面技术,纳米表面工程。
(一)、表面改性:表面改性是指通过改变基质表面的化学成份以达到改善表面结构和性能的目的。例如:化学热处理、离子注入、渗氮、渗碳处理等。表面改性技术有:
1、扩散渗入:非金属元素表面渗扩,金属元素表面渗扩,复合元素表面渗扩;
2、离子注入:非金属离子注入,金属离子注入,复合离子注入;
3、转化膜技术:电化学转换膜,化学转换膜,金属着色技术。
(二)、表面处理:
1、表面淬火处理:感应加热表面淬火,激光加热表面淬火,电子束加热表面淬火;
2、表面变形处理:喷丸,辊压,孔挤;
3、表面纳米加工技术。
(三)、表面涂覆,在基质材料表面制备涂覆层,即表面涂覆是在基质表面上形成一种膜层。涂覆层的化学成分、组织结构可以和基质材料完全不同,它以满足表面性能、涂覆层与基质材料的结合强度能满足工况、经济、环境好为准则。如化学气相沉积(CVD)、物理气相沉积(PVD)热喷涂、堆焊等、电镀、化学镀等。
(四)、复合表面工程技术,复合表面工程技术是对上述三类表面工程技术的综合运用。复合表面工程技术是在一种基质材料表面上采用了两种或多种表面工程技术,用以克服单一表面工程技术的局限性,发挥多种表面工程技术间的协同效应,从而使基质材料的表面性能、质量、经济性达到优化。
(五)、纳米表面工程技术,纳米表面工程技术是充分利用纳米材料、纳米结构的优异性能,将纳米材料、纳米技术与表面工程技术交叉、复合、综合,在基质材料表面制备出含纳米颗粒的复合涂层或具有纳米结构的表层。纳米表面工程技术能赋予表面新的服役性能,使零件设计时的选材发生重要变化,并为表面工程技术的复合开辟了新的途径。
在进行再制造时要对机械进行评估:
1、机械零件的检测和寿命评估技术:无损检测手段包括超声波检测、相控阵超声波检测、涡流检测、X射线检测、磁粉检测等。综合分析影响检测结果的各项技术参数,系统优化无损检测技术组合,保障零部件表面及内部的缺陷检出率和检测速度。
2、选择合适的理论和技术,建立寿命评估分析模型,评估零部件的剩余寿命。
常用的再制造技术有:激光修复技术,电刷镀修复技术,喷涂修复技术。
激光修复技术:
激光是由受激辐射引起的并通过谐振“放大”了的光。实用激光器有红宝石激光器、钕玻璃激光器、二氧化碳气体激光器。
产生原理:在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的「连锁反应」,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。
激光表面处理:采用激光表面处理可以解决某些其他表面处理方法难以实现的技术目标。例如细长钢管内壁表面硬化,成型精密刀具刃部超高硬化,模具合缝线强化,缸体和缸套内壁表面硬化等等。采用激光热处理的经济效益显著优于传统热处理,例如汽车转向器壳体激光淬火(相变硬化)和锯齿激光淬火等。激光表面处理技术在汽车行业应用极为广泛,在许多汽车关键件上,如:缸体、缸套、曲轴、凸轮轴、派启发、阀座、摇臂、铝活塞环槽等几乎都可以采用激光热处理。• 例如:美国通用汽车公司用十几台千瓦级CO2激光器,对换向器壳内壁局部硬化,日产3万套,提高工效四倍。• 我国采用大功率CO2激光器对汽车发动机进行缸孔强化处理,可延长发动机大修里程到15万公里以上,一台汽缸等于三台不经处理的汽缸。
激光修复技术分为:激光相变硬化(淬火)和退火,激光熔凝,激光熔覆和合金化,激光冲击硬化等。激光淬火/覆照相变硬化-原理:激光覆照相变硬化也叫激光表面淬火。它以高能密度的激光束快速照射材料表面,使其需要硬化的部位瞬间吸收光能并立即转化为热能,使激光作用区的温度急剧上升到相变温度以上,形成奥氏体。此时工件基体仍处于冷态并与加热区之间的温度梯度极高。因此,一旦停止激光照射,加热区因急冷而实现工件的自冷淬火。从而提高材料表面的硬度和耐磨性。表面淬火的优点自冷淬火,不需水或油等淬火介质,避免了环境污染。加工柔性高,对工件的许多特殊部位,例如槽壁、槽底、小孔、盲孔、深孔以及腔筒内壁等,只要能将激光照射到位,均可实现激光淬火。工艺过程容易实现生产自动化。激光表面合金化是在高能束激光的作用下,将一种或多种合金元素快速熔入基体表面,使母材与合金材料同时熔化,形成表面合金层,从而使基体表层具有特定 的合金成分的技术。换句话讲,它是一种利用激光改变金属或合金表面化学成分的技术。优点,可以节约大量具有战略价值贵重元素、形成具有特殊性能的非平衡相或非晶态、晶粒细化、提高合金元素的固熔度和改善铸造零件的成分偏析。激光熔覆- 原理:激光熔覆与激光合金化的原理一致,它是利用激光在基体表面覆盖一层具有特定性能的涂覆材料。这类涂覆材料可以是金属和合金,也可以是非金属,还可以是化合物及其混合物。在涂覆过程中,涂覆层与基体表面通过熔合结合在一起,激光熔覆的方式与激光合金化相似。获得的涂层可以提高材料表面的耐蚀、耐磨、耐热、减磨以及其他特性。激光冲击强化- 原理:工件表面涂上一层不透光材料(涂层),再覆盖一层透光材料(约束层),高功率密度短脉冲(纳秒级)强激光透过约束层照射金属材料表面。涂层在极短时间内产汽化电离成高温高压的等离子体;由于约束层存在,等离子体的膨胀受限,产生向金属内部传播的强冲击波,使金属材料表层发生塑性变形,形成激光冲击强化区;从而改善金属材料的机械性能。
电刷镀修复技术。
电镀修复技术是利用电解方法使电解液中的金属离子在零件表面上还原成金属原子并沉积在零件表面上形成具有一定结合力和厚度镀层的一种方法。电刷镀溶液制备是电刷镀的关键技术之一目前商品化的电刷镀液达130余种: 合金电刷镀液:
二元合金 Ni-P Ni-W Ni-Co Co-Mo Co-W 三元合金 Ni-W-Co Ni-W-P Ni-Fe-W Ni-Fe-Co 非晶态电刷镀液:
主要集中于Ni基含P、W、Co的镀层,其中的硬质性颗 粒具有弥散增强作用。
电刷镀原理:采用专用的直流电源设备,电源的正极接镀笔,负极接工件,镀笔通常采用高纯石墨块作阳极材料,外包棉花或涤棉套,基本变化过程金属离子在液相中传质,到达阴极表面边界层金属离子穿过阴极表面边界层完成表面转化与阴极的电子交换,金属原子被还原成吸附态金属原子后续表面转化,金属原子结晶。
电刷镀镀液的分类:预处理液:去除被镀金属表面油污、锈蚀、氧化层和各种杂质包括电净液、活化液。电沉积金属镀液:单金属镀液,合金镀液,退镀镀液从工件表面腐蚀去除金属或多余镀层的溶液。钝化和阳极化镀液:在工件表面生成致密氧化膜。特殊用途的镀液: 在工件表面获得各种特殊功能的表面层,如抛光、染色发黑、防变色等。
喷涂修复技术。
热喷涂及其分类:1)电弧喷涂、2)火焰喷涂、3)等离子喷涂和 4)特种喷涂。热喷涂: 利用热源将喷涂材料加热至熔融状态,并通过气流吹动使其雾化后高速喷射到零件表面,形成特定的涂层,以提高工件的性能的表面技术。热源:气体、液体燃料,电弧、等离子、激光等。材料:金属、合金、金属陶瓷、氧化物、碳化物、塑料等。性能:耐磨、耐热、耐蚀、抗氧化、隔热、导电、绝缘、密封等。涂层厚度:5 mm — 5 mm.。
热喷涂的一般原理实际上就是用一种热源,如电弧、离子弧或燃气燃烧的火焰等将粉状或丝状的固体材料加热熔融或软化,并用热源自身的动力或外加高速气流雾化,使喷涂材料的熔滴以一定的速度喷向经过预处理干净的工件表面。热喷涂过程中,喷涂材料大致经过以下过程:
1、表面净化。
2、表面预加工。
3、表面粗化。
4、预热。
5、喷涂底层。
6、喷涂工作层。
7、喷后处理。
电弧喷涂:以电弧为热源,将金属丝熔化并用高速气流雾化,使熔融粒子高速喷到工件表面形成涂层。电源:V = 40V,I = 100-400A的伏安特性。电弧喷涂枪,送丝装置,气体压缩机。电弧喷涂丝材主要有Al, Zn, Cu, Ni, Mo等及其合金,以及碳钢、不锈钢等。
火焰喷涂:以气体燃烧热为热源,将金属丝或粉末熔化并雾化而进行的喷涂。1.线材火焰喷涂。2.粉末火焰喷涂。
在理论基础方面,完善了涂层残余应力的计算方法,探索并初步建立了寿命预测评估模型。研究并初步提出了再制造零部件涂层中残余应力的计算方法;以废旧柴油机曲轴为对象,研究了非线性动力学分析模型,探讨了废旧零部件疲劳试验数据与模型分析数据的映射关系,初步建立了剩余寿命预测模型。
第三篇:先进制造技术
先进制造技术(AMT):是指在制造过程和制造系统中融合电子、信息和管理技术,以及新工艺、新材料等现代科学技术,使材料转换成产品的过程更有效、成本更低、更及时满足市场需求的先进的工程技术的总称。
广义制造:不仅包括具体的工艺过程,还包括市场分析、产品设计、质量控制、生产过程管理、营销、售 后服务直至产品报废处理等在内的整个产品寿命周期的全过程。
狭义制造:是指生产车间内与物流有关的加工和装配过程。
制造系统:是指由制造过程及其设计的硬件、软件和人员组成的一个具有特定功能的有机整体。制造业:是指以制造技术为主导技术进行产品制造的行业。
制造业的核心要素是质量、成本和生产率。
制造技术是制造业所使用的一切生产技术的总称,是将原材料和其他生产要素经济合理地转化为可直接使用的具有较高附加值的成品/半成品和技术服务的技术群。
制造技术的五个发展时期:工场式生产时期、工业化规模生产时期、刚性自动化发展时期、柔性自动化发展时期、综合自动化发展时期。
先进制造技术的发展趋势:数字化是发展的核心、精密化是关键、极端化是焦点、自动化是条件、集成化是方法、网络化是道路、智能化是前景、绿色化是必然
先进制造技术:是在传统制造技术基础上不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变市场的适应能力和竞争力的制造技术的总称。先进制造技术的三个层次:基础技术、新型单元技术、集成技术
先进制造技术的五个特征:系统性、广泛性、集成性、动态性、实用性
电火花成型加工原理:是基于电火花腐蚀原理,即在工具电极与零件互相靠近时,极间电压将在正负极间使电介质电介液电离而形成火花放电,并在火花通道中瞬时产生大量热能,足以使金属局部熔化甚至气化,而将金属腐蚀掉,从而形成所要求的形状。达到成型加工目的。电火花技工的5种放电状态:开路(空载脉冲)、火花放电(工作脉冲)、过度电弧放电(不稳定电弧放电)、电弧放电(稳定电弧放电)、短路(短路放电)。
电火花加工特点:
1、加工时,工具电极与工件材料不接触,两者之间宏观作用力极小。工具电极材料不需比工件材料硬,制造容易。
2、便于加工用普通机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不漏热处理影响,与工件的机械性能关系不大。
3、适于加工脆性材料或薄壁弱刚性的零件,以及普通切削刀具易发生干涉而难以进行加工的精密微细异型孔、深小孔、狭长缝隙、弯曲轴线的孔、型腔等。
4、脉冲放电持续时间极端,放电产生的热量传导扩散范围小,放电侵没在工作液中进行,因此对整个工件而言,在加工过程中几乎不受热的影响。
5、可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。
电火花加工的条件:
1、工具电极和工件之间必须维持合理的间隙。
2、两电极之间必须充入一定性能的工作介质。
3、输送到两电极间的脉冲能量密度应足够大。
4、放电必须是瞬时的脉冲放电。
5、脉冲放电需重复多次进行,并且多次脉冲放电在时间上和空间上是分散的。
6、脉冲放电后的电蚀产物能及时排放至放电间隙之外。
影响电火花加工的因素:
1、极性效应
2、覆盖效应
3、二次放电
4、加工速度
5、电火花放电通道
6、工具电极损耗
7、放电间隙
8、放电产物排出
极性效应:电火花加工时,即使加工相同材料,两电极的被腐蚀量也是不同的,其中一个电极比另一个电极的蚀出量大,这种现象叫极性效应。把工件与脉冲电源正极相接的加工叫正极性加工,反之为负极性加工。当采用短脉冲精加工是,应选用正极性加工,长脉冲粗加工是应选用负极性加工。精加工放电间隙一般只有0.01mm左右,粗加工时可达0.3-0.5mm。
电火花线切割:使用现状电极(钼丝或铜丝)靠火花放电对工件进行切割,故称为电火花线
电火花线切割机床通常分为两大类:一类是快走丝电火花线切割机床。这类机床的电极丝做高速往复运动,一般走丝速度为8-10m/s。是我国生产和主要使用的机种,也是独有的加工模式,另一种是慢走丝电火花切割机床,这类机床的电极丝低速单向运动,一般走丝速度低于0.2m/s。国外生产和主要使用。
线切割的特点:
1、缩短了生产准备时间,加工周期短
2、脉冲电源加工电流较小,脉冲宽度较窄,属中、精加工范畴,所以只采用正极性加工。
3、采用水或水基工作也,不会引燃起火,容易实现安全无人运转。
4、电极丝比较细,切缝较窄,可以加工微细异型孔、窄缝和复杂形状的工件,实际金属去除量很少,材料的利用率很高。
5、工具电极是运动的长金属丝,故可加工很小的窄缝或人工缺陷,电极丝的损耗对加工精度无影响,但自身尺寸精度对快慢走丝加工精度均有直接的影响。
电火花线切割加工设备主要由机床本体、脉冲电源、控制系统、工作液循环系统和机床附件等及部分组成。线切割加工的主要工艺指标有切割速度、加工精度及加工表面质量等。
线切割常见的装夹方式1悬臂式支撑 2两端式支撑 3桥式支撑 4板式支撑 5复式支撑
微机械:是指可以批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路,甚至外围接口、通信电路和电源等于一体的微型器件或系统,也称微型机电系统(MEMS)或微型系统。
微机械主要特点:1体积小,精度高,质量轻
2、性能稳定,可靠性高
3、能耗低,灵敏度和工作效率高
4、多功能和智能化
5、适用于大批量生产,制造成本低。
6、集约高技术成果,附加价值高。
光刻加工:使用照相复印的方法将光刻掩模上的图形印刷在涂有光致抗蚀剂的薄膜或基材表面,然后进行选择性腐蚀,刻蚀出规定的图形。光掩膜制造技术、曝光技术和刻蚀技术是组成光刻技术的关键技术。刻蚀技术是一类可以独立于光刻的微型机械关键的成型技术,刻蚀分为湿法刻蚀和干法刻蚀。
LIGA是一种使用X射线的深度光刻与电铸相结合,实现深宽比大的微细构造的成型方法。LIGA是德文的平版印刷术、电铸成型和注塑的缩写。
封接技术的目的是将分开制作的微机械部件在使用粘结剂的情况下连接在一起,封在壳中使其满足使用要求。他影响到整个微机械的功能和尺寸,是关键技术。
分子装配技术:利用其探针的尖端可以俘获和操纵分子和原子,并可以按照需要拼成一定的结构,进行分子和原子的装配制作微机械,这是一种纳米级微加工技术,是一种从物质的微观角度来构造、制作微机械的工艺方法。
超精密加工方法主要有超精密切削、超精密磨削、超精密研磨和超精密细加工。
超精密切削对刀具的要求:
1、极高的硬度、耐磨度和弹性模量,以保证刀具有很高的刀具耐用度。
2、刃口能磨得及其锋锐,刃口半径极小,能实现超薄的切削厚度
3、刃口应无缺陷
4、与工件材料的抗粘结性好,化学亲和性笑、摩擦因数低,能得到极好的加工表面完整性。
超精密磨削加工是指利用细粒度的磨粒或微粉磨料进行砂轮磨削、砂带磨削,以及研磨、珩磨和抛光等进行超精密加工的总称,是加工精度达到或高于0.1um,表面粗糙度小于Ra0.025um的一种亚微米级加工方法。
高速加工技术是指采用超硬材料的刀具和磨具,能可靠地实现高速运动的自动化制造设备,极大地提高材料切除率,并保证加工精度和加工质量的现代化制造加工技术。
高速与超高速切削的特点:
1、可减少工序,提高生产效率
2、切削力小、热变形小
3、加工精度高
4、加工能耗低、节省制造资源。
高速切削加工的关键技术包括高速主轴、快速进给系统、高性能CNC控制系统、先进的机床结构、高速加工刀具。高速主轴在结构上几乎全部采用主轴电机与主轴合二为一的结构形式,简称电主轴。
高速切削通常使用的刀具材料:硬质合金涂层刀具、陶瓷刀具、聚晶金刚石刀具、立方氮化硼刀具。
在实际应用中,磨削速度在100M/S以上即被称为高速磨削。高速磨削是提高磨削效率和降低工件表面粗糙度的有效措施。
逆向工程(RE)是相对于传统正向工程而言的,又称反求工程或反求设计,其实想最初是来自从油泥模型到产品实物的设计过程。逆向工程系统的组成:
1、产品实物几何外形数字化
2、CAD模型重建(1、CAD模型的校验与修正
2、CAD模型的分析与改进
3、CAD模型的校验与修正)
3、产品或模具制造
模型重建软件包括:
1、用于正向设计的CAD/CAM/CAE软件(Solidworks)
2、集成有逆向功能模块的正向CAD/CAM/CAE软件(Pro/E、UG)
3、专用的逆向工程软件(Imageware)逆向工程的关键技术:
1、数据采集与处理(数字化技术)
2、曲面构造(建模技术)数字化方法主要分为接触式测量和非接触式测量
快速原型制造技术(RPM):综合机械、电子、光学、材料等学科,能够自动、直接、快速、精确地将设计思想转化为具有一定功能的原型或直接制造零件/模具。原理:彻底摆脱传统的“去除”加工法,而基于“材料逐层堆积”的制造理念,将复杂的三维加工分解为简单的材料二维的组合,它能在CAD模型的直接驱动下,快速制造任意复杂形状的三维实体。
典型的RPM工艺方法:
1、光敏液相固化法SLA
2、叠层实体制造法LOM
3、选择性激光烧结法SLS
4、熔融沉积制造法FDM
激光加工技术:利用光能经过透镜聚焦后达到的很高的能量密度,依靠光热效应来加工各种材料。特性:
1、亮度强度高
2、单色性好
3、相干性好
4、方向性好 加工原理:激光加工是工件在光热效应下产生的高温熔融和冲击波的综合作用过程。特点:
1、非接触加工,加工速度快,热影响区小,无明显机械力,可加工易变形的薄板和弹性零件。
2、功率密度高,几乎能加工所有的材料,3、激光光点直径小,能进行非常微细的加工。
4、不需要加工工具无工具损耗,适宜自动化生产。
5、通用性好
6、影响因素多,加工时精度和表粗度需反复试验,寻找合理的加工参数达到要求。应用:
1、激光打孔
2、激光切割
3、激光焊接
4、激光表面处理
超声波加工原理:是利用工具端面作超生频振动,通过磨料悬浮液加工,使工件成型的一种方法。
水射流切割:是以水作为携带能量的载体,用告诉水射流对各类材料进行切割的一种工艺方法,是一种冷切割工艺。
计算机辅助设计CAD:是指工程技术人员以计算机为工具,用各自的专业知识,对产品进行设计、绘图、分析和编写技术文档等设计活动的总称。完整的CAD系统具有图形处理、几何建模、工程分析,仿真模拟以及工程数据库的管理与共享等功能。CAD系统的软件分为系统软件,支撑软件和应用软件三个层次。
计算机辅助工艺过程设计CAPP:工艺设计是机械制造生产过程的技术准备工作的一个重要内容,是产品设计与车间的实际生产的纽带,是经验性很强且随环境变化而多变的决策过程。CAPP是应用计算机快速处理信息功能和具有各种决策功能的软件来自动深沉工艺文件的过程。目前常用的CAPP系统可分为派生式、创成式和综合式三大类。
计算机辅助制造CAM:按计算机与物流系统是否有硬件接口联系可将CAM功能分为直接应用功能和简介应用功能。计算机数控系统:是指用数字化信号对设备运行及其加工过程进行控制的一种自动化技术,也是典型的机械、电子、自动控制、计算机和检测技术密切结合的机电一体化高新技术。
CNC机床数控系统由数控装置、可编程控制器(PLC)、进给伺服驱动装置、主轴伺服驱动装置、输入输出接口,以及机床控制面板和人机界面等部分组成。其中数控装置为机床数控系统的核心,其主要功能有运动轴控制和多轴联动控制功能。
数控加工编程的一般步骤:
1、工艺处理
2、数值计算
3、编制零件加工程序单
4、输入零件加工程序单
5、程序校验 CAD/CAM计算机辅助设计与计算机辅助制造,是一门基于计算机技术而发展起来的、与机械设计和制造技术相互渗透相互结合的、多学科综合性的技术。
CAM是指应用电子计算机来进行产品制造的统称。广义CAM是利用计算机进行零件的工艺规划、数控程序编制、加工过程仿真等。在CAM过程中主要包括计算机辅助工艺设计软件(CAPP)和数控变成软件(NCP)狭义CAM理解为数控加工,包括刀具路径规划,刀位文件生成,刀具轨迹仿真及M代码生成等。更为广义的CAM是指应用计算机辅助完成从原材料到产品的全部制造过程,包括直接制造过程和简介制造过程。CAD/CAM系统由硬件系统和软件系统组成。硬件系统包括计算机和外部设备,软件系统由系统软件、应用软件和专业软件组成。
制造自动化:狭义的含义是生产车间内产品的机械加工和装配检验过程的自动化,包括切削加工自动化、工件装卸自动化、工件储运自动化、零件与产品清洁及检验自动化、断屑与排屑自动化、装配自动化、机器故障诊断自动化。广义包含了产品设计自动化、企业管理自动化、加工过程自动化和质量控制自动化等产品制造全过程以及各个环节综合集成自动化,以使产品制造过程实现高效、优质、低耗、及时、洁净的目标。制造自动化发展历程分为刚性自动化、柔性自动化和综合自动化三个发展阶段。制造自动化的发展趋势可用敏捷化、网络化、虚拟化、智能化、全球化、绿色化六个方面来概括。工业机器人:工业机器人是一种可重复编程的多自由度的自动控制操作机,是涉及机械学、控制技术、传感技术、人工智能、计算机科学等多学科技术为一体的现代制造业的基础设备。
工业机器人一般由执行机构、控制系统、驱动系统以及位置检测机构等几个部分构成。
工业机器人的分类:按系统功能分:专用机器人、通用机器人、示教再现式机器人、智能机器人。按结构形式分直角坐标机器人、球坐标机器人、圆柱坐标机器人、关节机器人。按驱动方式分气动、液动、电气 机器人选用和设计应考虑的几个指标:
1、自由度是衡量机器人技术水平的主要指标。通用机器人有3-6个自由度。
2、工作空间是指机器人应用手抓进行工作的空间范围。
3、提取重力。
4、运动速度。通用机器人的最大直线运动速度大多在1000mm/s以下,最大回转速度一般不超过120°/s。
5、位置精度。典型的工业机器人定位精度一般在±0.02-±5范围。
工业机器人的控制系统分类:
1、按控制系统回路的不同,可分为开环系统和闭环系统。
2、按控制系统的硬件分,有机械控制、液压控制、射流控制、顺序控制和计算机控制。
3、按自动化控制程度分顺序控制系统、程序控制系统、自适应控制系统、人工智能系统
4、按编程方式分屋里设置编程控制系统、示教编程控制系统、高线编程控制系统。
5、按机器人末端运动控制轨迹分点位控制和连续轮廓控制。工业机器人的性能特征:通用性、柔性、灵活性、智能性
柔性制造系统(FMS):概念:是集数控技术、计算机技术、机器人技术以及现代管理技术为一体的现代制造技术。广义:柔性制造系统是由若干台数控加工设备、物料运储装置和计算机控制系统组成。更为直观的定义:柔性制造系统至少由两台机床、一套具有高度自动化的物料运储系统和一套计算机控制系统所组成的制造系统,通过简单改变软件程序便能制造出多种零件的任何一种零件。
FMS组成:
1、加工系统包括由两台以上的CNC机床、加工中心或柔性制造单元(FMC)以及其他的加工设备组成2、工件运储系统由工件装卸站、自动化仓库、自动化运输小车、机器人、托盘缓冲站、托盘交换装置等组成能对工件和原材料进行自动装卸、运输和存储。
3、刀具运储系统包括中央刀库、机床刀库、刀具预调站、刀具装卸站、刀具输送小车或机器人、换刀机械手等。
4、一套计算机控制系统能够实现对FMS进行计划调度、运行控制、物料管理、系统监控和网络通信等。除此之外还包含集中冷却润滑系统、切屑运输系统、自动化清洗装置、自动去毛刺设备等附属系统。FMS特点:
1、柔性高,适应多种中小批量生产
2、系统内的机床在工艺能力上是相互补充或互相代替的3、可混流加工不同的零件
4、系统局部调整或维修不中断整个系统的运作
5、递阶结构的计算机控制,可以与上层计算机联网通信
6、可进行三班无人值守生产
FMS关键技术:计算机辅助设计,模糊控制技术,人工智能、专家系统及智能传感器技术,人工神经网络技术。
虚拟制造技术VM:是指物质世界的数字化,也就是对真实世界的动态模拟和再现,即虚拟现实。虚拟制造是以信息技术、仿真技术、虚拟现实技术为支持..CIMS计算机集成制造系统:从系统的功能角度考虑,一般认为CIMS是在两个支撑分系统(网络系统和数据库系统)的基础上由4个分系统组成:经营管理信息系统、工程设计自动化系统化、制造自动化系统和质量保证信息系统。
CIMS三大特征为数据驱动、集成、柔性 五个层次 :工厂级、车间级、单元级、工作站级和设备级。
LP:精益生产 精益生产方式的资源配置原则,是以彻底消除无效劳动和消费为目标。
NC:数控技术 CNC:计算机数控 FMC柔性制造单元 FMS柔性制造系统 CAD/CAM计算机辅助设计与制造 CAPP计算机辅助工艺规划 CAE计算机辅助工程 CAT计算机辅助检测 ROBOT工业机器人 CIMS计算机集成制造系统 CE并行工程 LP精益生产 AM:敏捷制造 CM:绿色制造
第四篇:先进制造技术
先进制造技术论文
随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。先进制造技术是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、加工装配、检验测试、经营管理、售后服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。
先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。可基本归纳为以下四个方面:
a、现代设计技术 b、先进制造工艺技术 c、制造自动化技术 d、现代生产管理技术
一、现代设计技术
现代设计技术包括CAD、CAE、CAPP、CAT、优化设计、可靠性设计、价值工程创新设计、反求工程、并行工程等。它的特点是:
(1)系统性(2)动态性(3)创造性
(4)计算机化(5)并行化、最优化、虚拟化和自动化
在老师布置的课题中,我们小组做的是玩具手枪的外模,在这个过程中我们就是通过计算机UG做出来,正好体现了计算机化。
二、先进制造工艺技术
先进制造工艺技术主要包括了超精密加工技术、高速加工技术、快速成型制造技术、现代特种加工技术。
1、超精密加工技术已成为全球市场竞争取胜的关键技术,它包括了所有能使用的零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法。超精密加工所涉及的技术邻域包含以下几方面
(1)超精密加工机制 它包括超精密切削、超精密磨削和超精密特种加工等。
(2)超精密加工的刀具、磨具及其制备技术 包括金刚石刀具的制备和刃磨、超硬砂轮的整修等是超精密加工的重要关键技术。
(3)超精密机床设备 超精密加工对机床设备有高精度、高刚度、高的抗振性、高稳定性和高自动化的要求,具有微量进给机构
(4)精密测量及补偿技术 超精密加工必须有相应级别的测量技术和装置,具有在线测量和误差补偿。
(5)严格的工作环境 超精密加工必须在超稳定的工作环境中进行,加工环境的极微小的变化都可能影响加工精度。因此,超精密加工必须具备各种物理效应恒定的工作环境,如有恒温室、净化间、防振和隔振地基等。
2、高速加工技术是指采用超硬材料的刀具和磨具,能可靠地实现高速运动的自动化制造设备,极大地提高材料切除率,并保证加工精度和加工质量的现代制造加工技术。高速加工的特征:
(1)切削力低(2)热变形小
(3)材料切除率高(4)高精度
(5)减少工序
关键技术:
(1)高速主轴(2)快速进给系统
(3)高性能的CNC控制系统(4)先进的机床结构
(5)高速切削的刀具系统
3、快速成型制造技术是集CAD技术、数控技术、材料科学、机械工程、电子技术和激光技术等技术于一体的综合技术,是实现从零件设计到三维实体原型制造的一体化系统技术。典型的快速成型制造工艺的方法:
(1)光敏液相固化法(2)选区片层粘结法
(3)选区激光烧结法(4)熔丝沉积成形法
特点:
(1)高度柔性,可以制造任意复杂形状的三维实体
(2)CAD模型直接驱动,设计制造高度一体化
(3)原型过程无需专用夹具或工具
(4)无需人员干预或较少干预,是一种自动化的原型过程
(5)原型全过程的快速性,适合现代激烈的产品市场
4、现代特种加工技术是用非常规的切削加工手段,利用电、磁、声、光、热等物理及化学能量直接施加于被加工工件部位,达到去除、变形以及改变性嫩等目的的加工技术,包括是激光加工、超声波加工、水射流切割加工等。
(1)激光加工是利用光能经过透镜聚焦后达到很高的能量密度,依靠光热效应来加工材料。它经常被用于打孔、切割、焊接、表面处理等加工工艺。
(2)超声波加工时利用工具端面作超声频振动,通过磨料悬浮液加工脆性材料的一种成形加工方法。它经常用于型腔抛磨加工、超声清洗、超声波复合加工。在金属切削加工中引入超声振动可以大大降低切削力,改善加工表面粗糙度,延长刀具寿命,提高加工效率。
(3)水射流切割加工技术室以水作为携带能量的载体,用高速水射流对各类材料进行切割的一种工艺方法。水射流切割具有切口平整、无边毛、无火花、加工清洁等特点。
三、制造自动化技术
狭义:是生产车间内产品的机械加工和装配检验过程的自动化,包括切削加工自动化、工件装卸自动化、工件储运自动化、零件与产品清洁及检验自动化、断屑与排屑自动化、装配自动化、机器故障诊断自动化等。
广义:包含了产品设计自动化、企业管理自动化、加工过程自动化、质量控制自动化等产品制造全过程以及各个环节综合集成自动化,以使产品制造过程实现高效、优质、低耗、及时、洁净的目标。
发展趋势:
(1)制造敏捷化(2)制造网络化(3)制造虚拟化
(4)制造智能化(5)制造全球化(6)制造绿色化 计算机控制自动化技术
1、机床数控技术
数控技术是指用数字化信号对设备运行极其加工过程进行控制的一种 自动化技术,也是典型的机械、电子、自动控制、计算机和检测技术密切相结合的机电一体化高新技术。数控技术是实现制造过程自动化的基础,是自动化柔性系统的核心,是现代集成制造系统的重要组成部分。它把机械装备的功能、效率、可靠性和产品质量提高到一个新水平,使传统的制造业发生了深刻的变化。数控加工的主要特点是:加工的零件精度高;生产效率高;特别适合加工形状复杂的轮廓表面;有利于实现计算机辅助制造;对操作者(不含编程人员)技术水平的要求相对较低;初始投资大、加工成本高。此外,数控机床是技术密集型的机电一体化产品,数控加工技术的复杂性和综合性加大了维修工作的难度,需要配备素质较高的维修人员和维修设备。
2、工业机器人
工业机器人是一种可重复编程的多自由度的自动控制操作机,是涉及机械学、控制技术、传感技术、人工智能、计算机科学等多学科技术为一体的现代制造业的基础设备。工业机器人一般由执行机构、控制系统、驱动系统、位置检测机构等几部分组成。
工业机器人的分类
按系统功能分类: 专用机器人、通用机器人、示教再现式机器人、智能机器人。
按驱动方式分类: 气压传动机器人、液压传动机器人、电气传动机器人、按结构形式分类: 直角坐标机器人、圆柱坐标机器人、球坐标机器人、关节机器人
3柔性制造系统
柔性制造系统是集数控集数、计算机技术、机器人技术、现代管理技术为一体的现代制造技术。它是由若干台数控加工设备、物料运储装置和计算机控制系统组成,并能根据制造任务或生产品种的变化迅速的进行调整,以适应多品种、中小批量生产的自动化制造系统。
加工系统的要求
(1)工序集中(2)控制功能强、扩展性好
(3)高刚度、高精度、高速度(4)自保护和自维护性好
(5)使用经济性好(6)对环境的适应性与保护性好
四、现代生产管理技术
现代生产管理是指产品生产过程中的计划和管理,是机械制造企业中的一个重要的职能领域,主要包含生产计划的合理制定、成本的有效控制、设备的充分利用、库存的管理和控制、产品质量的保证、财务状况的及时分析等管理任务
特点:(1)以技术为中心向以人为中心的转变,充分重视人的作用,将人视为企业一切活动的主体,使技术的发展桁架的符合人类社会发展的需要。
(2)企业的生产组织,从递阶多层管理结构形式向扁平网络式结构转变,强调组织结构简化,减少结构层次,增强生产组织体系的灵敏性。
(3)由传统的顺序工作方向并行作业方式转变。
(4)企业从按功能计划部门的固定组织形式,向动态的,自主管理的群体工作小组形式转变。
(5)企业从单纯竞争走向既有竞争又有结盟之路。
(6)质量是企业尊严和品牌价值的起点,快速响应市场的竞争策略是制胜的法宝。(7)技术创新成为企业竞争的焦点。
总结:在本次的课程中,我们小组做的是玩具手枪的外模,本来是准备做花瓶的,但是想一想一个文艺范的东西用铁做出来有点不美观,于是我们决定做玩具枪。我们小组分工明确,有收集资料、UG制图、PPT制作和演讲,在制作玩具枪的过程中,我们小组用的是UG制图,在这个过程中遇到一些问题,UG不是很会用,最后通过自我摸索和老师的帮助下,基本完成了我们的作品,然后就是PPT制作,在此过程中,我们讨论了好久最后做出了我们想要的PPT。正是在主张的带领下,我们认真的完成了这次的课程,并且通过这次的实践让我收获了很多,学习到了很多,让我更加了解我的专业技能的重要性。
第五篇:先进制造技术
先进制造技术概论
先进制造技术(Advanced Manufacturing Technology,简称为AMT)是指微电子技术、自动化技术、信息技术等先进技术给传统制造技术带来的种种变化与新型系统。具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。AMT是制造业企业取得竞争优势的必要条件之一,但并非充分条件,其优势还有赖于能充分发挥技术威力的组织管理,有赖于技术、管理和人力资源的有机协调和融合。
什么是先进制造技术(AMT)
先进制造技术(Advanced Manufacturing Technology),人们往往用AMT来概括由于微电子技术、自动化技术、信息技术等给传统制造技术带来的种种变化与新型系统。具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。AMT是制造业企业取得竞争优势的必要条件之一,但并非充分条件,其优势还有赖于能充分发挥技术威力的组织管理,有赖于技术、管理和人力资源的有机协调和融合。
主体技术群:
它包括两个基本部分:有关产品设计技术和工艺技术。
⑴面向制造的设计技术群
面向制造的设计技术群系指用于生产准备(制造准备)的工具群和技术群。设计技术对新产品开发生产费用、产品质量以及新产品上市时间都有很大影响。产品和制造工艺的设计可以采用一系列工具,例如计算机辅助设计(CAD)以及工艺过程建模和仿真等,生产设施、装备和工具,甚至整个制造企业都可以采用先进技术更有效地进行设计。近几年发展起来的产品和工艺的并行设计具有双重目的,一是缩短新产品上市的周期,二是可以将生产过程中产生的废物减少到最低程度,使最终产品成为可回收、可再利用的,因此对实现面向保护环境的制造而言是必不可少的。
⑵制造工艺技术群(加工和装配技术群)
制造工艺技术群是指用于物质产品(物理实体产品)生产的过程及设备。例如,模塑成形、铸造、冲压、磨削等。随着高新技术的不断渗入,传统的制造工艺和装备正在产生质的变化。制造工艺技术群是有关加工和装配的技术,也是制造技术或称生产技术的传统领域。
先进制造技术(Advanced Manufacturing Technique,缩写AMT),AMT是中国1995年列入为提高工业质量及效益的重点开发推广项目,该技术广涉信息、机械、电子、材料、能源、管理等方面的知识。因此,该技术的发展对推动国民经济的发展有着重要的作用。就目前世界的经济发展来看,以美国、日本、西欧为代表的工业化国家在AMT上都有雄厚的实力。
AMT发展历程:
人类漫长的历史发展中,使用工具、制造工具进行产品制造是基本生产活动之一。直到18世纪中叶产业革命以前,制造都是手工作业和作坊式生产。
产业革命中诞生的能源机器(蒸汽机)、作业机器(纺织机)和工具机器(机床),为制造活动提供了能源和技术,并开拓了新的产品市场。
经过100多年的技术积累和市场开拓,到19世纪末制造业已初步形成。其
主要生产方式是机械化加电气化的批量生产。
20世纪上半叶,以机械技术和机电自动化技术为基础的制造业的生产空前
发展。以大批量生产为主的机械制造业成为制造活动的主体。
20世纪中叶(1946年)电子计算机问世。
在计算机诞生2年后,由于飞机制造(飞机蒙皮壁板、梁架)的需要,在美
国发明了数字控制(NC)机床。不久计算机又开始用于辅助编制NC机床的加工
程序,推出了自动编程工具APT语言(Automatically Programmed tools),此
后CNC、DNC、FMC、FMS、CAX、MIS、MRP、MRPⅡ、ERP、PDM、Web-M等数字化制
造技术相继问世和应用。
先进制造技术是一门综合性、交叉性前沿学科和技术,学科跨度大,内容广
泛,涉及制造业生产与技术、经营管理、设计、制造、市场各个方面。先进制造
技术就是在传统制造技术的基础上,利用计算机技术、网络技术、控制技术、传
感技术与机、光、电一体化技术等方面的最新进展,不断发展完善。
编辑本段支撑技术群支撑技术群是指支持设计和制造工艺两方面取得进步的基
础性的核心技术。基本的生产过程需要一系列的支撑技术,诸如:测试和检验、物料搬运、生产(作业)计划的控制以及包装等。它们也是用于保证和改善主体
技术的协调运行所需的技术,是工具、手段和系统集成的基础技术。支撑技术群包括:
⑴信息技术:接口和通信、数据库技术、集成框架、软件工程人工智能、专家系
统和神经网络、决策支持系统。
⑵标准和框架:数据标准、产品定义标准、工艺标准、检验标准、接口框架。
⑶机床和工具技术。
⑷传感器和控制技术:单机加工单元和过程的控制、执行机构、传感器和传感器
组合、生产作业计划。
⑸其它
制造技术基础设施制造技术基础设施是指为了管理好各种适当的技术群的开发并鼓励这些技术在整个国家工业(基地)内推广应用而采取的各种方案和机
制。由于技术只有应用适当地会产生效用,所以其技术基础设施的各要素和基本
技术本身同样重要。这些要素包括了车间工人、工程技术人员和管理人员在各种
先进生产技术和方案方面的培训和教育,这些技术和方案将提高企业的生产竞争
力。可以说,制造技术的基础设施是使制造技术适应具体企业应用环境充分发挥
其功能、取得最佳效益的一系列措施,是使先进的制造技术与企业组织管理体制
和使用技术的人员协调工作的系统工程,是先进制造技术生长和壮大的土壤,因
而是其不可分割的一个组成部分。先进制造技术是促进科技和经济发展的基础。编辑本段提出及背景1993年,美国政府批准了由联邦科学、工程与技术协调委
员会(FCCSET)主持实施的先进制造技术计划(Advanced Manufacturing
Technology-AMT)计划
先进制造技术计划(Advanced Manufacturing Technology-AMT)是美国根
据本国制造业面临的挑战和机遇,为增强制造业的竞争力和促进国家经济增长,首先提出了先进制造技术(Advanced Manufacturing Technology)的概念。此
后,欧洲各国、日本以及亚洲新兴工业化国家如韩国等也相继作出响应。先进制造技术特点:
⑴先进制造技术是制造技术的最新发展阶段,是面向21世纪的技术,制造业是社会物质文明的保证,是与人类社会一起动态发展的,因此,制造技术必然也将随着科技进步而不断更新。先进制造技术是制造技术的最新发展阶段,是由传统的制造技术发展而来,保持了过去制造技术中的有效要素;但随着高新技术的渗入和制造环境的变化,已经产生了质的变化,先进制造技术是制造技术与现代高新技术结合而产生的一个完整的技术群,是一类具有明确范畴的新的技术领域,是面向21世纪的技术。
⑵先进制造技术是面向工业应用的技术,先进制造技术应能适合于在工业企业推广并可取得很好的经济效益,先进制造技术的发展往往是针对某一具体的制造业(如汽车工业、电子工业)的需求而发展起来的适用的先进制造技术,有明显的需求导向的特征。先进制造技术不是以追求技术的高新度为目的,而是注重产生最好的实践效果,以提高企业的竞争力和促进国家经济增长和综合实力为目标。⑶先进制造技术是面向全球竞争的目前每一国家都处于全球化市场中。一个国家的先进制造技术是支持该国制造业在全球范围市场的竞争力。因此,先进制造技术的主体应具有世界水平。但是,每个国家的国情也将影响到从现有的制造技术水平向先进制造技术的过渡战略和措施。中国正在以前所未有的速度进入全球化的国际市场,开发和应用适合国情的先进制造技术势在必行。
先进制造技术发展中的关键技术:成组技术(GT)
成组技术(GT)揭示和利用事物间的相似性,按照一定的准则分类成组,同组事物采用同一方法进行处理,以便提高效益的技术,称为成组技术。在机械制造工程中,成组技术是计算机辅助制造的基础,将成组哲理用于设计、制造和管理等整个生产系统,改变多品种小批量生产方式,获得最大的经济效益。
成组技术的核心是成组工艺,它是将结构、材料、工艺相近似的零件组成一个零件族(组),按零件族制定工艺进行加工,扩大批量、减少品种、便于采用高效方法、提高劳动生产率。零件的相似性是广义的,在几何形状、尺寸、功能要素、精度、材料等方面的相似性为基本相似性,以基本相似性为基础,在制造、装配等生产、经营、管理等方面所导出的相似性,称为二次相似性或派生相似性。2 敏捷制造(AM)
敏捷制造(AM)是指企业实现敏捷生产经营的一种制造哲理和生产模式。敏捷制造包括产品制造机械系统的柔性、员工授权、制造商和供应商关系、总体品质管理及企业重构。敏捷制造是借助于计算机网络和信息集成基础结构,构造有多个企业参加的“VM”环境,以竞争合作的原则,在虚拟制造环境下动态选择合作伙伴,组成面向任务的虚拟公司,进行快速和最佳生产。并行工程(CE)
并行工程(CE)是对产品及其相关过程(包括制造过程和支持过程)进行并行、一体化设计的一种系统化的工作模式。在传统的串行开发过程中,设计中的问题或不足,要分别在加工、装配或售后服务中才能被发现,然后再修改设计,改进加工、装配或售后服务(包括维修服务)。而并行工程就是将设计、工艺和制造结合在一起,利用计算机互联网并行作业,大大缩短生产周期。快速成型技术(RPM)
快速成型技术(RPM)是集CAD/CAM技术、激光加工技术、数控技术和新材料等技术领域的最新成果于一体的零件原型制造技术。它不同于传统的用材料去除方式制造零件的方法,而是用材料一层一层积累的方式构造零件模型。它利用所要制造零件的三维CAD模型数据直接生成产品原型,并且可以方便地修改CAD模型后重新制造产品原型。由于该技术不像传统的零件制造方法需要制作木模、塑料模和陶瓷模等,可以把零件原型的制造时间减少为几天、几小时,大大缩短了产品开发周期,减少了开发成本。随着计算机技术的决速发展和三维CAD软件应用的不断推广,越来越多的产品基于三维CAD设计开发,使得快速成型技术的广泛应用成为可能。快速成形技术已广泛应用于宇航、航空、汽车、通讯、医疗、电子、家电、玩具、军事装备、工业造型(雕刻)、建筑模型、机械行业等领域。5 虚拟制造技术(VMT)
虚拟制造技术(VMT)以计算机支持的建模、仿真技术为前提,对设计、加工制造、装配等全过程进行统一建模,在产品设计阶段,实时并行模拟出产品未来制造全过程及其对产品设计的影响,预测出产品的性能、产品的制造技术、产品的可制造性与可装配性,从而更有效地、更经济地灵活组织生产,使工厂和车间的设计布局更合理、有效,以达到产品开发周期和成本最小化、产品设计质量的最优化、生产效率的最高化。虚拟制造技术填补了CAD/ CAM技术与生产全过程、企业管理之间的技术缺口,把产品的工艺设计、作业计划、生产调度、制造过程、库存管理、成本核算、零部件采购等企业生产经营活动在产品投入之前就在计算机上加以显示和评价,使设计人员和工程技术人员在产品真实制造之前,通过计算机虚拟产品来预见可能发生的问题和后果。虚拟制造系统的关键是建模,即将现实环境下的物理系统映射为计算机环境下的虚拟系统。虚拟制造系统生产的产品是虚拟产品,但具有真实产品所具有的一切特征。智能制造(IM)
智能制造(IM)是制造技术、自动化技术、系统工程与人工智能等学科互相渗透、互相交织而形成的一门综合技术。其具体表现为:智能设计、智能加工、机器人操作、智能控制、智能工艺规划、智能调度与管理、智能装配、智能测量与诊断等。它强调通过“智能设备”和“自治控制”来构造新一代的智能制造系统模式。
智能制造系统具有自律能力、自组织能力、自学习与自我优化能力、自修复能力,因而适应性极强,而且由于采用VR技术,人机界面更加友好。因此,智能制造技术的研究开发对于提高生产效率与产品品质、降低成本,提高制造业市场应变能力、国家经济实力和国民生活水准,具有重要意义。
制造技术的进步制造技术是制造业所使用的一切生产技术的总称,是将原材料和其他生产要素经济合理地转化为可直接使用的具有较高附加值的成品/半成品和技术服务的技术群。近两百年来.在市场需求不断变化的驱动下,制造业的生产规模沿着“小批量→少品种、大批量→多品种、变批量”的方向发展。在科学技术高速发展的推动下,制造业的资源配置沿着“劳动密集→设备密集→信息密集→知识密集”的方向发展。与之相适应,制造技术的生产方式沿着“手工→机械化→单机自动化。刚性流水自动化→柔性自动化→智能自动化”的方向发展。从而推动了制造业的不断发展,促进了制造业的不断进步。
先进制造技术论文 专业:机械制造及其自动化学号:
姓名:何伟伟 B11023417