黄爱华《分数的基本性质》及评点

时间:2019-05-15 10:51:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《黄爱华《分数的基本性质》及评点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《黄爱华《分数的基本性质》及评点》。

第一篇:黄爱华《分数的基本性质》及评点

黄爱华《分数的基本性质》及评点

[教学内容] 九年义务教育六年制小学数学教科书第十册第107~108页例

1、例2。

[教材简析]分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

一、故事引人,揭示课题。1.教师讲故事。

猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

讨论:哪只猴子分得的多?教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得一样多。

引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?学习了“分数的基本性质”就清楚了。[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

2.组织讨论。

(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出: 3/4=6/8=9/12。

(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出: 1/2=2/4=20/40。

3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书: 分数的分子和分母变化了,分数的大小不变。

它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

二、比较归纳,揭示规律。1.出示思考题。比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?

(2)从右往左看,又是按照什么规律变化的?

让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

2.集体讨论,归纳性质。

(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。

板书: 3/4=3×2/4×2=6/8

(2)=3/4是怎样变化成9/12的呢? 3/4=3○□/4○□=9/12怎么填?学生回答后填空。

(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(板书:都乘以相同的数)(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。(板书: 都乘以)

(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?再对照教科书中的分数基本性质,少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?(板书: 零除外)

(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

[ 新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。

思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?

4.讨论:猴王运用什么规律分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢? [ 得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]

5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

[ 有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]

四、多层练习,巩固深化。

1.口答。你怎样想的?(共4题)2.判断对错,并说明理由。

⑴2/9=2×4/9×4=8/36(共计6题)

说明与分数的基本性质中哪几个字不相符。3.在下面()内填上合适的数。1/3=()/6 10/16=5/()9/21=()/7 12/24=()12/24=()/()采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

4.连续写出多个相等的分数。比一比,在1分钟内看谁写得多。5.1/a=7/b(a、b是自然数),当a=1,2,3,4……时,b分别等于几?

讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

6.把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

7.圈分数游戏:圈出与1/

2、1/3相等的分数。

让学生拿出写有若干个分数的练习纸,圈出与1/

2、1/3相等的分数。然后,教师在投影仪上,用叠片框出学生圈出的数,•影幕显示出“星星火炬”的图案,表扬学生为“星星火炬”增添了新的光彩。

[ 练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。揭示1/a=7/b(a、b自然数)中a与b的倍数关系,巩固了新知,通过举例,还渗透了函数思想。]

五、课堂小结。

六、课堂作业。教科书练习二十三第4、5题。

七、动脑筋出会场。

让学生拿出课前发的分数纸,要求学生看清手中的分数。与1/2相等的,报出自已的分数后先离场,与2/3相等的再离场,与3/4相等的最后离场。

[这是黄老师参加全国计划单列城市小学数学课堂教学观摩会的一节获奖课,这节课的成功可以用“设计巧,效率高,气氛活”九个字来概括。作为借班上课的教师,把教材中普普通通的一节课,上的有声有色,课堂气氛活跃,感染性强,在上千人的会场中,使师生之间、上课与听课教师之间产生强烈的情感共鸣,这是很难得的。

先说巧和活,教材中讲分数的基本性质是从比较3/

4、6/

8、9/12的大小引入,教师巧妙地改为“猴王分饼”,分给猴1一块1/4,猴2要两块2/8,猴3要三块3/12,使分剩的饼分别成为3/

4、6/

8、9/12;并结合上课学生数的实际,求第一、二组学生的总人数占全班学生人数的几分之几,使一道例题变为三道例题。在教师的引导启发下,学生通过观察、分析、比较找规律,逐步抽象概括出分数的基本性质,既不多占时间,又比只举一例就归纳更有说服力。又如,下课的动脑筋出会场,既巩固了知识,又检查了效果,还进行了纠正错误和个别指导,一举多得,灵活巧妙。

再说效率高,高就高在教师在教学设计中努力体现“趣”、“实”、“活”三个字。课上得有趣、有吸引力,课堂气氛活跃,学生学习的积极性强,学习效率必然高;课上扎实,重点突出,讲求实效,更是教学效率高的关键和核心问题。例如,教师引导学生比较归纳,揭示规律,从分数的分子和分母变化了,分数的大小不变,它们是按照什么规律变化的?到都乘以相同的数,都除以的相同的数。“都”字用得好,怎么改?把第二个“都”字换成“或者”为什么好?再到零除外,重点突出,步步深入。又如,沟通分数基本性质与商不变性质的联系,练习有层次、有坡度,从乘以或除以具体的数到用字母表示的数,从唯一答案到有多个答案,逐步深化。既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,使学生学起来有味道。听课的教师听起来更有味道,上课结束时,上千名教师自发地热烈鼓掌,就是大家时这节课的评价。

美中不足的,一是把聪明的猴王“骗”贪吃的小猴子,改成本文中“既满足小猴子的要求,又分得公平”更符合思想品德教育的目的;二是练习的内容多了,晚下课多用5分钟。]

(李润泉教授点评)

第二篇:黄爱华__分数的基本性质

黄爱华《分数的基本性质》教学实录

一、故事引人,揭示课题。1.教师讲故事。

猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。] 2.组织讨论。

(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出: 3/4=6/8=9/12。

(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出: 1/2=2/4=20/40。

3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书: 分数的分子和分母变化了,分数的大小不变。

它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

二、比较归纳,揭示规律。1.出示思考题。

比较每组分数的分子和分母:

(1)从左往右看,是按照什么规律变化的?(2)从右往左看,又是按照什么规律变化的? 让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

2.集体讨论,归纳性质。

(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。

板书: 3/4=3×2/4×2=6/8(2)=3/4是怎样变化成9/12的呢? 3/4=3○□/4○□=9/12怎么填?学生回答后填空。(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。

(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书:都乘以相同的数)

(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。

(板书: 都乘以)

(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨

:为什么性质中要规定“零除外”?(板书: 零除外)

(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

[ 新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。] 3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。

思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?

4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

[ 得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。] 5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12 [ 有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]

四、多层练习,巩固深化。1.口答。(共4题)

学生口答后,要求说出是怎样想的? 2.判断对错,并说明理由。⑴2/9=2×4/9×4=8/36(共计6题)

运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。3.在下面()内填上合适的数。1/3=()/6 10/16=5/()9/21=()/7 12/24=()12/24=()/()采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

4.连续写出多个相等的分数。比一比,在1分钟内看谁写得多。让写出相等分数最多的学生报出来,师生予以表扬鼓励。

5.1/a=7/b(a、b是自然数),当a=1,2,3,4……时,b分别等于几? 讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么? 6.把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

7.圈分数游戏:圈出与1/

2、1/3相等的分数。

让学生拿出写有若干个分数的练习纸,圈出与1/

2、1/3相等的分数。然后,教师在投影仪上,用叠片框出学生圈出的数,•影幕显示出“星星火炬”的图案,表扬学生为“星星火炬”增添了新的光彩。

[ 练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。揭示1/a=7/b(a、b自然数)中a与b的倍数关系,巩固了新知,通过举例,还渗透了函数思想。]

五、课堂小结。

六、课堂作业。 教科书练习二十三第4、5题。

七、动脑筋出会场。

让学生拿出课前发的分数纸,要求学生看清手中的分数。与1/2相等的,报出自已的分数后先离场,与2/3相等的再离场,与3/4相等的最后离场。

[这是黄老师参加全国计划单列城市小学数学课堂教学观摩会的一节获奖课,这节课的成功可以用“设计巧,效率高,气氛活”九个字来概括。作为借班上课的教师,把教材中普普通通的一节课,上的有声有色,课堂气氛活跃,感染性强,在上千人的会场中,使师生之间、上课与听课教师之间产生强烈的情感共鸣,这是很难得的。

先说巧和活,教材中讲分数的基本性质是从比较3/

4、6/

8、9/12的大小引入,教师巧妙地改为“猴王分饼”,分给猴1一块1/4,猴2要两块2/8,猴3要三块3/12,使分剩的饼分别成为3/

4、6/

8、9/12;并结合上课学生数的实际,求第一、二组学生的总人数占全班学生人数的几分之几,使一道例题变为三道例题。在教师的引导启发下,学生通过观察、分析、比较找规律,逐步抽象概括出分数的基本性质,既不多占时间,又比只举一例就归纳更有说服力。又如,下课的动脑筋出会场,既巩固了知识,又检查了效果,还进行了纠正错误和个别指导,一举多得,灵活巧妙。

再说效率高,高就高在教师在教学设计中努力体现“趣”、“实”、“活”三个字。课上得有趣、有吸引力,课堂气氛活跃,学生学习的积极性强,学习效率必然高;课上扎实,重点突出,讲求实效,更是教学效率高的关键和核心问题。例如,教师引导学生比较归纳,揭示规律,从分数的分子和分母变化了,分数的大小不变,它们是按照什么规律变化的?到都乘以相同的数,都除以的相同的数。“都”字用得好,怎么改?把第二个“都”字换成“或者”为什么好?再到零除外,重点突出,步步深入。又如,沟通分数基本性质与商不变性质的联系,练习有层次、有坡度,从乘以或除以具体的数到用字母表示的数,从唯一答案到有多个答案,逐步深化。既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,使学生学起来有味道。听课的教师听起来更有味道,上课结束时,上千名教师自发地热烈鼓掌,就是大家时这节课的评价。

第三篇:分数基本性质

《分数基本性质》教学设计

教学内容

人教版新课标教科书小学数学第十册第75~77页例

1、例2。教案背景

本课题是人教版五年级数学下册第四单元的内容,分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。

教学目标

1、知识与技能目标:

(1)经历探索分数的基本性质的过程,理解分数的基本性质。(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

2、过程与方法目标:

(1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力

(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3、情感态度与价值观目标:

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

(2)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质

教材分析

本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例

1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。考虑到分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。这是分数与整数的区别。因此,教材在例1中,先让学生通过折纸、涂色,感悟1/

2、2/

4、4/8三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着引导学生探究三个分数的分子和分母是按照什么规律变化的。先从左往右看,再反过来从右往左看,引导学生发现三个分数的分子和分母是怎样变化的。然后,要求学生自己进一步举例验证,并根据这些例子归纳出变化的规律。在此基础上,教材给出了分数的基本性质。由于分数和整数除法有着内在联系,分数的分子相当于除法中的被除数,分母相当于除数,分数值相当于除法中的商,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。充分利用这一联系,有利于促进学习的迁移。因此,教材在导出分数的基本性质之后,又提出了一个问题,让学生根据分数与除法的关系以及整数除法中商不变的性质,来说明分数的基本性质。为了帮助学生在运用的过程中巩固和加深对分数基本性质的理解,教材安排了例2,引导学生运用分数的基本性质,按指定的分母把两个分数都化成分母相同而大小不变的分数。这样不仅可以帮助学生掌握分数的基本性质,而且也能为后面学习约分、通分做好准备。练习中适当减少了单纯依靠计算解决的练习题,增加了联系现实生活,可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进学生掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。教学重点

探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点

自主探究、归纳概括分数的基本性质。

教法

引拨法,多媒体教学法,实验法,归纳法,谈话法等。学法

猜想验证实验法,讨论法,小组合作法等。学生分析

五年级学生对于抽象的数学学习会感觉枯燥无味,所以要使学生对于本

节课有很好的收获,就必须得给本节课的学习加以趣味性,并且让学生经历知识的形成过程,以帮助学生巩固所学知识。

教学过程:

一、故事引人,揭示课题: 师:同学们,你们喜欢看《喜羊羊与灰太狼》的故事吗? 生:喜欢。

师:老师这里有一个慢羊羊村长分饼的故事。羊村的小羊最喜欢吃村长

做的饼。有一天,村长做了三块大小一样的饼分给小羊们吃,它先把第一块饼的1/2分给懒羊羊。再把第二块饼的2/4分给喜羊羊。最后把第三块饼的4/8分给美羊羊。懒羊羊不高兴地说:“村长不公平,他们的多,我的少。”

师:孩子们,村长公平吗?小朋友们,你知道哪只羊分得多? 生1:不公平,美羊羊分得多。

生2:公平,因为他们分得一样多。

二、探究新知,解决问题

(一)验证猜想

师:到底谁的猜想是正确地呢?让我们一起来验证一下。

1、折一折,画一画,剪一剪,比一比(1)折

请同学们拿出三张同样大小的正方形纸,把每张纸都看作单位“1”。用

手分别平均折成2份、4份、8份。

(2)画

在折好的正方形纸上,分别把其中的2份、4份、8份画上阴影。(3)剪 把正方中的阴影部分剪下来。

(4)比 把剪下的阴影部分重叠,比一比结果怎样。要求:

1)三人为一小组,小组中每人选择一个不同的分数,先折一折,再画一

画,剪一剪的方法把它表现出来。

2)三人做好之后,将三副图进行比较,看看能发现什么? 3)学生汇报。

请这一小组同学谈谈发现:通过比较,三副图阴影部分面积一样,因而

三个分数一样大。

4)教师课件出示1/

2、2/

4、4/8相等的过程。

2、师:三只小羊分得的饼同样多,仔细观察这三个分数什么变了?什么没变?

小组合作,学生仔细观察,讨论,学生汇报小结:它们的分子和分母变化了,但分数的大小没变。

(二)初步概括分数基本性质 算一算:

1、师: 这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请三人为一组,讨论这个问题。

2、学生小组合作,观察,讨论。

自学提示:

A、从左到右观察,想一下,这三个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢。

B、从右到左观察,想一下,这三个分数的分子、分母怎样变化才能得

到下一个分数,且分数的大小不变呢。

3、小组汇报 生:我发现了1/2的分子与分母同时乘以2得到了2/4,1/2的分子和分

母同时乘以4得到了4/8。

请二名同学重复。

师:你们想得一样吗?我把1/2的分子分母同时乘2得到了2/4,1/2的

分子和分母同时乘4又得到了4/8。在这个分数中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5,分数的大小变吗?同时乘以6.8呢?那你们能不能根据这个式子来总结一个规律呢?(课件同时出示变化过程)

生回答:一个分数的分子分母同时乘相同的数,分数的大小不变。请一至二名同学回答。

师板书:分数的分子分母同时乘 相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几? 师: 这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?(点击课件出示)请一同学回答,生:我们发现了4/8的分子与分母同时除以2得了2/4,4/8的分子与分母同时除以4得到了1/2。课件点击出示同时变化过程。师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以5大小会变吗?同时除以8.6呢?能不能根据这个式子再总结出一句话呢?

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)师板书:或者除以

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

4、(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)

43=4433=169(强调“相同的数”)5 4 52252(强调“同时”)

学生回答,并说明理由。

(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。(课件出示式子: ?0 40 343)

师:这个式子成立吗? 生:不成立,师:为什么 生:因为0不能作除数,师:0不能作除数,所以这个式子是错误的。

师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?(课件 出示:4 3 除以0。)

生:不成立,因为在分数当中分母相当于除数,除数不能为0。师:对,因为分数的分子、分母都乘0,则分数成为 0 0,在分数里分母不能为0,所以分数的分子、分母不能同时乘0,又因为在除法里零不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)

师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢? 生:同时和相同的数

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)

师:我相信懒羊羊学会了分数的基本性质,那就不会生气了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.三、运用规律、自学例题

1、例2:把2/3 和10/24化成分母是12而大小不变的分数。(课件出示)请一同学读题。

2、分组讨论

问:分子分母应怎样变化?变化的依据是什么?

3、让生独立完成,完成后和同位的同学说一说你是怎样想的。

每题请二名同学回答,(课件点击出示答案)

4、分数的基本性质与商不变性质

师:能否用商不变性质来说明分数的基本性质? 生:因为 被除数÷除数= 除数 被除数

(除数不能为0)

所以被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同

时扩大或缩小相同的倍数(0除外)。因此,商不变就相当于分数的大小不变。

四、课堂运用(课件出示)

1、判断。(手势表示,并说明理由。)

(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。()(2)把 25 15 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()

(3)4 3 的分子乘以3,分母除以3,分数的大小不变。()

(4)()

3、找朋友游戏:

拿出课前发的分数纸,并看清手中的分数。与 2 1 相等的,举起自已的分数后请到右边,与 32 相等的到左边,与 4 3 相等的到讲台。

五、拾捡硕果,拓展延伸

1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

2、拓展延伸:

村长运用什么规律来分饼的?如果沸羊羊要四块,村长怎么分才公平呢?如果要五块呢

教学反思

我讲的这节课内容是人教版五年级教材《分数的基本性质》,本节课的主要目标是:使学生理解分数基本性质,并会用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。在课堂中,我充分利用学生的生活经验,设计生动有趣的故事《羊村村长分饼》,激发学生的学习兴趣,展开课堂教学。

1、教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

2、在推导规律的过程中,抓住分数的分子、分母按怎样的规律变化而分数大小不变这一点,通过动手操作、实践, 引导学生自己去发现、证实并归纳:分数的分子分母同时乘以或除以一个相同的数(零除外),分数的大小不变。在这关键处,教师又进一步发动全班讨论,把问题引向纵深,这种教学模式既重视学生自主参与,相互合作的发挥,又有利于学生展现自己知识的建构过程,不仅知其结果,而且更了解自己得出结果的过程和先决条件,促进知识与能力的同步发展。

3、教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息

技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

第四篇:分数的意义课堂实录黄爱华

分数的意义黄爱华

一、感知1/4

1、回忆旧知(课件出示1/4)师:这是什么数? 生:这是个分数,1/4。

师:你已经知道了分数的哪些知识?

(学生回答知道了分数的读写法、各部分的名称、分数的产生以及1/4表示什么)师:你们能不能利用桌上的材料表示1/4?

2、学生独立操作,尽量想出不同的方法,并用彩笔画出阴影表示1/4,教师巡视 学生可能出现的表示形式。

3、展示汇报

师:谁愿意上台来展示一下你的成果?

生1:我把一张长方形纸对折再对折,其中的一份就是这个长方形的1/4; 生2:我把一个圆平均分成4份,其中的一份就是它的1/4; 生3:我把一条线段平均分成4份,每一份都是它的1/4;

生4:我把4个苹果看作一个整体,平均分成4份,每份是它的1/4; 师:(指 生4 的图,作疑惑的神情问)这样能用1/4来表示吗?(学生先思考,再小组讨论,自由发表意见)

生1:我认为不能。把4个苹果平均分成4份,每份是1一苹果,所以每份不是1/4;

生2;我认为能。因为在这里把4个苹果看作一个整体;

生3:我认为能。因为把4个苹果看作一个整体平均分成4份,每份就是这个整体的1/4。

师:刚才几位同学的发言都强调了要把4个苹果看作一个整体,平均分成4份,每份就是这个整体的一部分,也就是几分之几?(1/4)是几个苹果?(1个)师:请接着往下看,谁来用一句话说说下面这副图的意思?(课件动态演示把1个苹果平均分成4份)

生:把1个苹果平均分成4粉,每份是这1个苹果的1/4。(教师引导学生观察比较先后呈现的两副图)师:你是怎样理解这两副图的?

生1:一种是把1个苹果平均分,一种是把4个苹果平均分; 生2;两种都是平均分,每一份都能用分数1/4表示。

(二)理解2/3

1、组织学生操作体会2/3的意义

师:请看老师又给大家带来了一个什么分数?(出示2/3)2/3表示什么呢?这个问题我想请同学们一起来解决。要求每两人一组,选择桌上的材料表示2/3,然后组内交流。

2、学生自由组合,利用桌上的材料操作交流,教师巡视

3、反馈

师:哪两位同学愿意把你们的表示形式向全班同学展示一下?

生1:把3条金鱼看作一个整体,平均分成3份,其中的1份是这个整体的1/3,2份是这个整体的2/3;

生2:把6支可乐看作一个整体,平均分成3份,其中的2份是这6支可乐的2/3。师:你真了不起!想出了与众不同的方法。2/3在这里表示几支可乐? 生2:4支。

生3:把9朵花看作一个整体,平均分成3份,其中的2份是这个整体的2/3。师:有创意!请问,剩下的1份是这个整体的几分之几? 生3:1/3。

生4:把一张纸平均分成3份,阴影部分是它的2/3。(图略)师:想一想,阴影部分还可以用什么分数来表示?

生4:4/6。也可以看作把它平均分成6份,其中的4份就是它的4/6。师;真聪明!2/3就等于4/6!还有谁想展示一下你是怎样表示1/3的?(学生各抒己见,教师及时针对有创新的展示汇报给予肯定与鼓励)

(三)深化1/□

1、组织学生利用花朵图探究它的1/□

师:你们还想研究别的分数吗?(课件出示1/□)这是个分数吗?它好特别!特别在哪儿?(分母没有分数)它读作什么?每个小组都有一些这样的图(课件演示12朵花),请你们涂上颜色来表示这些花的几分之一。大家先思考,再小组分工合作,看看可以有多少中不同的方法来表示。

2、学生分小组思考、操作交流,教师巡视,引导学生用不同的方式表示

3、反馈

师:请每组推荐一名同学上台以接力赛的形式汇报,其他同学注意倾听别人的意见,已经说过的方法就不再展示。

(学生一边展示,一边叙述是怎样表示几分之一的)

生1:我们把12朵花平均分成2份,涂红色的部分是这个整体的1/2; 生2:我们把12朵花平均分成3份,黄色部分是这12朵花的1/3;

生3:我们把12朵花平均分成4份,不涂色的(涂了9朵花)是这个整体的1/4; 生4:我们把12朵花平均分成6份,涂橙色部分是这个整体的1/6; 生4:我们把12朵花平均分成12份,紫色部分是这个整体的1/12; 教师把学生汇报的情况汇总在一起。(课件演示)

观察这组图形和分数,你发现了什么? 生1:我发现了都是把12朵花平均分成几份;

生2:我发现了分子都是“1”,也就是都只取其中的一份; 生3:我发现了分母越大,每份所表示的花的朵数就越少; 生4:我发现了分母都是12的约数。师:同学们真了不起,发现了这么多的知识!

(四)理解□/□

1、组织学生探讨□/□的意义

师:(课件出示□/□)猜一猜,老师想让你干什么? 生:填分数,理解它表示什么? 师:很好!请大家先看要求。

(课件演示如下,学生默读操作要求)(1)小组内先确定一个分数;

(2)分一分------选择材料表示这个分数;

(3)画一画------用简单的图形表示这个分数;(4)说一说------组内互相说说这个分数。

2、学生采用小组活动的形式,分一分、画一画、说一说分数的意义,教师巡视指导

3、汇报展示

学生在实物投影仪上展示出操作材料,并口述此分数表示什么。生1:我们把一张纸平均分成32分,其中的5份是这张纸的5/32;

生2:我们把8只螃蟹平均分成4份,拿走的3份是这个整体的3/4,剩下的两只是这个整体的1/4;

生3:我们把10个橙平均分给5个同学,两个同学共分得10个橙的2/5,其余同学分得这些橙的3/5;

生4;我们买了7包薯条,吃了1包,吃了它的1/7,还剩6/7。„„

4、学生讨论、概括分数的意义

师:像这样,一个物体、一个计量单位、一些物体都通称为单位“1”或整体“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这也是分数的意义。而表示其中的一份的数叫分数单位。(板书)刚才我们认识了哪些分数单位?2/3的分数单位是什么?它里面有几个1/3?

师:生活中人们常用分数来进行表述。谁能联系生活实际说一个分数? 生1:妈妈买回一个西瓜,平均分成10份,吃了其中的3份,吃了这个西瓜的3/10。

生2:银行存款利率要用到分数。

师;对,那是一种特殊的分数------百分数。如;中国人民银行规定定期存款一年的年利率是1.98%。

生3:全国耕地面积约占海洋面积的1/6。„„

(五)小结与质疑

师:你已经知道了什么?还有什么不明白的地方?有什么问题想问吗?

生1:我知道了分数对于我们的生活很有用处。生2:我知道分数不是表示一个完整的数。师:为什么这样认为呢?

生2:它表示一个整体与它的一部分的关系。师:说得真好!你真正理解了分数的意义。生3:我想知道分数还能表示一个整数吗? 师;问得好!谁能帮他解决这个问题?

生4:能1比如把一张长方形纸平均分成4份,其中的4份就是这个整体的4/4,也可以用1来表示。

生5;我还想知道分数能不能像整数那样进行四则运算/ 师;分数也能像整数那样进行四则运算,这在我们今后的学习中即将学到。师;(课件演示,图略)从图中你可以了解到哪些信息? 生1:红色部分的面积是最大长方形的1/2; 生2:蓝色部分是最大长方形的1/4; 生3:蓝色部分又是红色部分的1/2; 生4:绿色部分和黄色部分面积相等;

生5:绿色、黄色部分都是这个最大长方形的1/8,是红色部分的1/4,是蓝色部分的1/2;

生6:最大长方形是红色部分的2倍,是蓝色部分的4倍,是绿色部分的8倍。

第五篇:黄爱华比例的意义和基本性质教学实录

黄爱华比例的意义和基本性质教学实录

第1页

【教学内容】

九年义务教育六年制小学数学教科书(人教版)第十二册第9-10页。

【教材简析】

比例的意义和基本性质,主要是为讲解正、反比例做准备的。例题的教学,要使学生认识比例的意义和各部分的名称,掌握两个比组成比例的条件,并知道比是表示两个数相除,有两项,而比例是一个等式,表示两个比相等,有四个项。同时,通过对比例式的观察和分析,归纳出比例的基本性质。

[教学过程]

一、导入新课

同学们,我们已经学习了“比”,(板书:比)你们知道在我们人体上有许多有趣的比吗?例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与双臂平伸长度的比大约也是1:1,身高与胸围长度的比大约是2:1,脚长与身高长度的比大约是1:7……。

知道这些有趣的比有什么用处呢?比如:你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿;你如果是一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材的大约高度……。

这里,实际上是用这些比去组成一个个有趣的比例去计算的。你想知道什么叫做比例吗?今天我们一起来研究“比例的意义和性质”。(板书课题:比例的意义和性质)

[用学生感兴趣的身体上的许多有趣的比和实际生活中的一些问题联系起来组成比例,用形象直观的例子激发学生的求知欲望,渗透学习目的教育。这样引出课题,让学生在跃跃欲试的情绪下进入新课的学习,可以激起学生学习本课的兴趣,使学生带着问题主动地参与本课新知识的学习。]

二、进行新课

(一)以旧引新

1.口答:什么叫做比?什么叫做比值?比的基本性质是什么? 2.求下面各比的比值,指出哪些比的比值相等。

12:16 3/4:9/8 4.5:2.7

5:1/2 10:6

指名学生板演后,引导学生观察:哪两个比的比值相等?

学生回答后,教师小结:在上面的这些比中,有整数比、小数比和分数比,也有整数与分数比,但只要两个比的比值相等,就可以说这两个比相等,用等号连接起来。

板书:4.5:2.7=10:6

3.教师写出一个比16:4,要求学生说出一个比值和它相等的比。

16:4=_:_

[引导学生发现比值相等的比,并用等号连接,让学生初步感知到比例与比有关,渗透知识间的内在联系,为理解比例的意义做好铺垫。]

(二)教学比例的意义

1.出示例1。

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(小时)2 5

路程(千米)80 200

2.组织讨论。

(1)这辆汽车。

第一次行驶的路程和时间的比是________。

第二次行驶的路程和时间的比是________。

(2)这两个比的比值各是多少?它们有什么关系?

这两个比的比值相等,说明这两个比也相等,我们就可以把这两个比用等号连接。写作:80:2=200:5或80/2=200/5。

3.教师小结:像80:2=200:5,4.5:2.7=10:6,16:4=8:2这样的式子都叫做比例。

4.提问:什么叫做比例呢?你能归纳出比例的意义吗?

学生回答后,教师板书:表示两个比相等的式子叫做比例。

5.组织小组讨论。

(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判别两个比能不能组成比例,关键要看什么?

6.做一做。

(1)下面哪一组中的两个比可以组成比例?把组成的比例写出来。

(1)6:10和9:15

(2)20:5和1:4

(3)1/2:1/3和6:4

(4)0.60:0.2和3/4:1/4

(2)写出两个比值是5的比,并组成比例。

[教师运用黑板上已板书的三个比例式,告诉学生像这样的式子就叫做比例。然后通过学生观察比较,引导学生发现它们之间的共同特点,抽象概括出比例的意义,培养了学生的思维能力。教学比例的意义后,及时组织练习,使学生在思考、讨论中进一步加深对意义的理解。]

(三)教学比例的基本性质

1.认识比例各部分名称。

(1)指导学生阅读教科书:组成比例的四个数叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:80:2 = 200:5

-内项-

--外项--

(2)想一想:比有几项?

(3)说出下列比例中各项的名称。

6:10=9:15

0.6:0.2=3/4:1/4

2.通过“补项”游戏,揭示比例的基本性质。

(1)先请学生想好一个比例,如:6:3=8:4,让学生告诉老师其中三项,老师迅速“补”出另一项。如,当一位学生报出6:3=8:x时,教师补上x=4。

开始学生感到奇怪,经过一番讨论,学生发现:在比例里,两个外项的积等于两个内项的积。

教师揭示:在比例里,两个外项的积等于两个内项的积。这就是比例的基本的性质。

[引导学生在游戏中,发现规律,总结概括性质。]

3.做一做:

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

(1)6:3和8:4

(2)0.2:2.5和4:50

(3)1/2:1/3和18:12

当学生判断感到有困难时,教师引导学生这样做:把比例写成分数形式,将等号两端的分子、分母分别交叉相乘,如果积相等,就能组成比例,积不相等,就不能组成比例。如:

0.2/0.5=4/50

因为0.2×50=2.5×4,所以0.2:2.5=4:50。

三、巩固练习

1.说说比和比例有什么区别。

2.小华第一次用0.36元买了3本练习本,第二次用0.5元买了5本练习本。分别写出每次买练习本用的钱数和本数的比,求出比值,看这两个比能不能组成比例。

3.分别应用比例的意义和比例的基本性质,判断下面哪一组中的两个比可以组成比例。

(1)6:9和9:12

(2)1:4和7:10

(3)0.5:0.2和5/8:1/4

(4)3/4:1/10和7.5:1

4.把9×4=18×2写成一个比例。

5.猜数游戏。

(1)4:3=8:()

(2)15/18=()/6

教师小结:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。

[练习设计有层次、有坡度,能够使学生更好地掌握本节课内容。猜数游戏,使学生初步认识比例的基本性质的作用,为下节课学习解比例做了渗透。]

四、课堂作业

教科书练习五第3题。

五、课堂小结

下载黄爱华《分数的基本性质》及评点word格式文档
下载黄爱华《分数的基本性质》及评点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分数的基本性质

    《分数的基本性质》教学设计商南县城关小学 刘丽 【教材依据】 苏教版《义务教育课程标准实验教科书·数学》五年级下册第六单元分数的意义和性质P75-76例1、例2及“做一做......

    分数的基本性质

    《分数的基本性质》说课稿 尊敬的各位评委老师,大家好!我是号考生, 我今天说课的课题是《分数的基本性质》,下面我将从教材分析、教学目标,教学重难点,教法学法、教学过程等几方......

    分数基本性质练习题

    分数基本性质练习题 一、判断 1、分数的分子和分母同时乘或除以相同的数,分数的大小不变。2、分数的分子和分母同时加上或减去同一个数,分数的大小不变。( ) 3、 的分子加上4,分......

    分数的基本性质

    分数的基本性质教学设计 发布者:邱灵芳发布日期:2011-04-01 20:55:12.0 “分数的基本性质”教学设计 教学内容:苏教版小学数学第十册第95页至97页。教学目标: 知识目标:通过教......

    分数的基本性质

    分数的基本性质(2) 教学目标 1、通过教学,使学生巩固对分数的基本性质的理解和掌握分数的基本性质的运用。 2、培养学生应用所学数学知识解决问题的能力。 3、培养学生认真审题......

    分数的基本性质

    《分数的基本性质》教学设计 教学内容: 人教版五年级下册第四单元第三节分数的基本性质第一课时,教材75-76页例1。 一.教学目标 1.通过教学,使学生归纳概括出分数的基本性质,并......

    分数基本性质.说课稿

    《分数基本性质》说课稿 一、教学内容的说明 《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知......

    分数基本性质教案及教学反思

    《分数基本性质》教案 教学目标: 1、经历探索分数的基本性质的过程,理解分数的基本性质。 2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。 3、经历......