AVQC电压无功自动调节系统技术说明

时间:2019-05-15 02:14:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《AVQC电压无功自动调节系统技术说明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《AVQC电压无功自动调节系统技术说明》。

第一篇:AVQC电压无功自动调节系统技术说明

AVQC电压无功自动调节系统技术说明

1.意义

电压的稳定对于保证国民经济的生产,延长生产设备的使用寿命有着重要的意义,而减少无 功在线路上的流动,降低网损经济供电又是每一供电部门的目标,因此变电站随着负荷的波动对 其电压与无功调节需求往往很频繁,如果由人进行调节干预,则一方面增加值班员的负担,另一 方面靠人去判断操作很难做到调节的合理性。

随着变电站的综合自动化能力的提高,系统的采样精度与信号响应速度均有很大的改善,各 种方式接入的信号范围较以往系统有很大的扩展,因此在现有的当地监控系统中,用软件模块的 控制来实现电压与无功的自动调节理论上所需的条件已具备。

2.适用范围

本系统主要应用于电力系统各种电压等级的变电站,尤其能适应复杂接线的变电站,最大可同时监管多个各种不同电压等级的变电站,每个变电站最大可控制 多台主变、多个电容器、多个电抗器。

作为一个功能模块可与各种当地监控系统或集控中心系统、小型调度系统集成。PGC-EX2000 后台监控系统的VQC模块作为系统的一个功能组件存在。

3.调节原理

对于变电站来讲,为了使电压与无功达到所需的值,通常采用改变主变分接头档位和投切电容器或电抗器来改变系统的电压和无功。分接头的变化不仅对电压有影响,而且对无功也有一定的影响,同样电容器或电抗器的投切对无功影响的同时也对电压起着一定的影响。

3.1 一般调节

分节头调节与电容器、电抗器投切对电压、无功的影响 在很多地方供电系统中,不是考虑无功而是考虑功率因数作为调节依据。实际上,可以根据当时的有功功率换算出无功的控制范围,在处理上目标是一致的,只不过无功的上下限范围是始终是动态变化的范围在实际应用中,主变分节头调节主要用于电压的调节,调节方式分以下几种: 1.只调电压 2.只调无功

3.电压优先(当电压与无功不能同时满足要求时,优先保证电压正常)4.无功优先(当电压与无功不能同时满足要求时,优先保证无功正常)5.智能(当电压与无功不能同时满足要求时,保持现状)对于只调电压和只调无功的系统,调节方式较为简单。

3.2 特殊调节

本系统还支持一些其它调节方案,以满足某些特定地区的要求。增加了 500kV 单电压和 500kV双电压的自动电压调节(AVC)方案。

3.3定值定义方式

定值给定有两种方式:根据时间段给定值和根据时间点给定值。根据时间点给定值方式中,定值点与定值点是按折线连接,即不同时间,定值不同。有时某些地区要求当主变负荷大时,要调整电压的上限值或主变负荷小时调整电压的上限值,此时需要设置相应的参。

3.4越限判定 越限判定有两种方式: A.取平均值

系统在设定的时间内计算 U 与 Q 的平均值,以平均值来判定 U 与 Q 的当前运行区域,当调 节对策无法实现时(有时可能无电容器可用或分节头档位已调到极限位置等闭锁情况),启用备用方案。B.智能方式

系统在设定的时间内,计算分接头或电容器的累积动作值,若动作值达到给定的限值,则VQC 动作。在计算动作值时,考虑到了加权处理,即正常越限相应的动作值加10,当运行值超出限值很多时,则相应的动作值增加量应超过10,同样,当运行值离越限值差很多则累计的动作值相应减少一点,当运行值向相反方向越限时,则累计权值为0。(具体的增加量和减少量,视各个变电所情况而定,参数可人为设定)。

4.功能管理

在 PGC-EX2000 后台监控系统中,电压与无功自动调节是作为一个相对独立的软件功能 模块而存在,它的启动有两级控制,第一个是由远方调度下发Y K命令来启动,第二个是由后台人为启动,两级控制缺一不可。

在实际应用中,一个变电站往往有两台甚至三台主变,每台主变有可能是两卷变或三卷变,而一台主变一侧对应的母线有可能不止一条,因此在本系统的实现中,考虑了以下几个原则:

4.1调节对象管理

1.以一台主变为单元来考虑电压与无功的自动调节一个系统若有多台主变则有多个电压与无功的自动调节子模块。

2.多台主变并联运行时,若要调节主变分节头,应同时调节多台主变分节头,尽量保持多台主 变分节头的档位一致。

3.一台主变同时带多段母线运行时,连在多段母线的电容器都可以用来投切。4.主变分接头开关操作过程中,要进行滑档判断及处理。5.电容器、电抗器根据容量大小,按指定次序

6.调节过程中若有多个容抗器可用来调节,则优先使用最久未曾动过的容抗器。即根据最近动作时间循环投切。

7.对于并列运行的主变,其母线上投入的电容器或电抗器数按均匀原则分布投切。

4.2 闭锁管理

1.两段母线并列运行时,应检查两段母线的电压测量误差应在允许范围。2.在监控系统中提供一个“VQC”YX 接点和一个“VQC”启动遥控号。3.U 与 Q 有一个上下限闭锁值,超出闭锁范围停止调节。

4.在调节过程中,分节头与电容器开关两次拒动则闭锁对该设备的操作。拒动该信号闭锁必须人为解除,不能自动解除。

5.分节头与电容器开关一天动作次数有限制,超过次数则闭锁对该设备的操作,每天零点动作次数归零,闭锁自动解除。

6.主变分接头开关与电容器开关动作后,有一定的闭锁时间,防止短时间内频繁操作设备。

7.主变分接头开关操作时,有闭锁电流设置,当通过主变的负荷太大或太小时,均可以闭锁 对主变分接头开关操作。

8.能单独设置 VQC 调节设备如分接头、电容器、电抗器停止或参与 VQC 调节。

4.3 限值管理

1.考虑U与Q在一天不同时段、一周不同星期和每月固定日、一年不同日的上下限值的不同。提供按日、周、月和指定日下定值。2.提供根据功率因数下定值。

3.根据负荷的变化,相应的调整主要是放宽电压的上、下限范围。

4.4 统计与操作管理

1.提供 VQC 当前运行状态的画面以及投退 VQC 设备、人工解除闭锁、不同时期的定值取舍操 作界面。

2.提供闭环控制与开环控制两种模式,及可根据需要可让VQC 程序只发信号不操作。即参数中的“仅监视不调节”。

3.提供电压、无功或功率因数合格率统计,提供容抗器、分接头的调节次数包括高峰低谷等时段的调节次数统计,提供容抗器高峰低谷等时段的投入时间等。4.VQC定值修改有权限设置和修改操作记录。5.有完善的登录信息,便于事后分析和统计。

6.对于无人值班站VQC的当前运行状况能够反映到远方调度。

5.技术指标 调节闭锁判断延迟

≤1 秒(不包括监控系统的信号延迟)调节方案产生的最小时间 30 秒(不包括特殊调节方案)调节结果监视的最小时间 30 秒 遥控操作出口时间

由监控系统决定

本身系统最大延迟<200ms 每组(一天)定值时间段 48 个(时间精确到分钟)星期定值组数

每月固定时期定值组数

个 指定时期定值组数

第二篇:变电站内电压无功自动调节和控制

变电站内电压无功自动调节和控制

变电站内电压无功自动调节和控制,是通过站内智能设备实时采集电网各类模拟量和状态量参数,采用计算机自动控制技术、通信技术和数字信号处理技术,对电力系统电压、潮流状态的实时监测和估算预测实现自动调节主变压器分接头开关和投切补偿电容器,使变电站的母线电压和无功补偿满足电力系统安全运行和经济运行的需要。提高变电站电压合格率并降低网损,减轻值班人员劳动强度。基本原理

1.1 变电站运行方式的变化对电压无功控制策略的影响 1.1.1 变电站运行方式的识别

(1)完全分列运行。变电站高、中、低压侧母线均分开运行。

(2)分列运行。变电站高、中、低压侧任一侧母线并列运行,其他母线分开运行。

(3)并列运行。变电站高、中、低压侧任两侧母线并列运行。信息请登陆:输配电设备网

1.1.2 不同运行方式下的电压无功控制策略

(1)完全分列运行。各台变压器分接头可以在不同档位运行。各低压母线段电容器组分别进行循环投切。此时控制电压及无功定值各自分别选定,有功、无功功率为各自主变压器高压侧的有功、无功功率。

(2)分列运行。各台变压器分接头可以在不同档位运行。变电站的有功、无功功率为各主变压器高压侧的有功、无功功率之和,所有电容器组应统一考虑进行循环投切,但需考虑每段母线电容器组的均衡投切。变压器分接头调节可以根据各变压器的电压目标进行分别控制。

(3)并列运行。各台变压器分接头必须在相同档位运行。变电站的有功、无功功率为各主变压器高压侧的有功、无功功率之和,所有电容器组应统一考虑进行循环投切,但需考虑每段母线电容器组的均衡投切。并列运行时,并列母线的电压应选定一个电压值作为控制电压,并列主变压器的调整方式为联动调整,处于越限状态的主变压器作为主调,另一台主变压器作为从调,主调主变压器分接头成功动作后,再控制从调主变压器;若主调主变压器分接头动作未成功,将自动闭锁对从调主变压器的调节,并将主调主变压器分接头回调。

1.1.3 电压无功控制策略的优化

(1)要考虑电容器组投切对变电站高压母线电压的影响,投入电容器组使母线电压升高,切除电容器组使母线电压降低。尽可能多利用电容器组投切控制,少进行变压器分接头调节来达到较好的控制效果。信息来自:输配电设备网

(2)电压无功控制策略的选择应避免进入循环振荡调节,即在不同区域由于采取不适合的调节控制策略而导致在两个不合格区域内振荡调节,对系统产生较大的影响同时对变电站内有载调压分接头和电容器组的频繁升降和投切造成设备损坏。

1.2 变电站电压无功控制的闭锁条件及要求

所谓电压无功控制的闭锁,是指VQC装臵在变电站或系统异常情况下,能及时停止自动调节。如果没有完善的闭锁或闭锁响应时间达不到运行要求,将会对变电站的安全运行带来严重威胁。

1.2.1 VQC闭锁条件

闭锁条件和要求要全面,VQC闭锁需考虑以下几个方面:①继电保护动作(包括主变压器保护及电容器保护动作);②系统电压异常(过高或过低);③变压器过载;④电压断线;⑤电容器开关或主变压器分接头开关拒动;⑥电容器开关或主变压器分接头开关动作次数达到最大限值;⑦主变压器并列运行时的错档;⑧主变压器分接头开关的滑档;⑨主变压器、电容器检修或冷备用时的闭锁;⑩外部开关量闭锁分接头调节或电容器组投切。

1.2.2 闭锁响应时间的要求

对于VQC闭锁的要求,各个不同的闭锁量响应时间要求不一样,如保护动作、主变压器开关滑档、TV断线、外部开关量闭锁、系统电压异常等闭锁要求快速响应。针对某些VQC的实现方式需要考虑VQC闭锁的实时性问题,远方调节控制必须实现就地闭锁才能保证变电站电压无功控制的安全性。信息请登陆:输配电设备网

1.3 系统对变电站电压无功控制的约束条件

(1)系统在事故情况下或运行方式发生大的改变时应可靠闭锁变电站的电压无功控制功能。

(2)变压器高压侧电压越限超过闭锁定值时应可靠闭锁变电站的电压无功控制功能。

(3)变压器高压侧电压越限但未超过闭锁定值时,应调整VQC控制策略以免使系统运行状况进一步恶化。电压无功控制的实现方法

目前电力系统内变电站常用的电压无功控制的实现方法有3种:独立的VQC装臵,基于站内通信实现的软件控制模式,基于调度系统和集控站的区域控制模式。

2.1 独立的VQC装臵

变电站内装设独立的VQC装臵目前是电力系统中实现电压无功控制的一种主要方式,它采用自身的交流采样和输入输出控制系统,多CPU分布式模块化的体系结构(见图1),对应于变电站内的主变压器和相应的电容器组设有独立的控制单元,另外还有一个主控单元负责管理主变压器控制单元的运行与通信。收集其采集的信息(电气参数和开关量状态),根据运行方式的变化及系统电压无功的要求选择控制策略,向主变压器控制单元发出控制命令。主控单元还负责数据统计、事件生成和打印、与上位计算机通信等工作,同时主变压器控制单元应具有瞬时反应系统各类电气参数开关量状态变化的能力,就地判别是否闭锁主控单元下达的控制命令,并实时监视和记录系统电压合格率和谐波状况。

图1 独立VQC装臵多CPU分布模块化结构原理图

2.2 基于站内通信的软件控制模式

基于站内通信的软件控制模式的结构原理见图2,其功能实现是在变电站的智能RTU模块或后台监控系统中嵌入VQC控制软件。通过站内通信网采集各类电气参数和开关量的状态,由控制软件模块进行综合判别,选择合适的控制策略,由站内通信网下达遥控命令至监控系统中的各单元测控装臵实现对主变压器有载调压分接开关的升降和电容器组的投切控制。

图2 软件控制模块式的结构原理图

表1 3种电压无功控制实现方式的比较 信息请登陆:输配电设备网

2.3 基于调度系统或集控站的区域控制模式

基于调度系统或集控站的区域电压无功控制模式在一些省市电力网中得到了应用,其功能实现是在调度系统或集控站的SCADA系统或EMS系统软件中设臵一个电压无功控制的高级应用软件。根据系统高级应用软件的潮流计算和状态估计得出各个变电站节点的电压和无功范围,将系统收集的各变电站的实际电气参数和开关量状态与系统安全经济运行要求的电压无功范围进行比较,给出每个变电站的控制策略,通过远动通道下达控制分接头升降及电容器投切命令。该模式由于考虑了全网的运行方式和潮流变化,并可以做到分层分级对电压无功进行优化控制,即先调节控制枢纽的节点变电站的电压无功,再调节未端变电站的电压无功,从根本上可以改变由于各个局部变电站的独立电压无功控制影响全网电压无功的优化。电压无功控制的发展方向

电力系统是一个复杂的动态关联系统,其潮流是动态变化并相互关联的。变电站内变压器分接开关在某个范围内的调整将影响无功功率的交换,进而影响电网无功潮流的分布和节点电压的变化。因此,如果某一地区因为节点电压低依靠变压器分接头向同一方向调整,将引起无功功率在该地区的大转移,造成系统无功波动,对系统电压也会造成严重影响。这也是单个变电站独立实行电压无功控制达到局部优化但影响全局的弊端。

要解决上述弊端,必须考虑全局的优化,将各个变电站点采集的电压无功数据和控制结果送至调度中心或集控站的主机,依据实时的潮流进行状态估计,确定各个变电站节点电压和无功要求,对全网的电压无功进行分层分级综合调整。

基于调度系统或集控站的区域集中控制模式是维护系统电压正常,实现无功优化综合控制,提高系统运行可靠性和经济性的最佳方案,应要求调度中心必须具有符合实际的电压和无功实时优化控制软件,各变电站有可靠的通道和智能控制执行单元。另外一个地区调度系统有几百甚至上千个变电站的运行方式、运行参数、分接头当前位臵、电容器状态以及各变电站低压侧母线的电压水平、负载情况等诸多信息均输入调度中心计算机,必然会造成电压无功控制软件复杂化和控制的实时性变得很差,因此实现分层分级和分散就地的关联控制是全网电压无功控制的发展方向。

全网电压无功控制有2层意义:①为了电网的安全稳定运行必须确保系统内各发电厂和枢纽变电站的电压稳定性。②为了电网的经济运行、降低网损,必须实现全网的无功优化和就地平衡。应该认识到电压无功控制是正常稳定运行状态下的调节控制,在事故状态下这样的调节控制反而会恶化系统的稳定,必须要闭锁。同时电压无功控制是一个全网关联的控制问题,应在考虑全网优化的前提下实现区域或变电站的局部优化。因此全网的电压无功控制是一个分层分级、分散就地的网络关联控制系统,见图3。图3 分层分级电压无功控制结构图

所谓分层分级是指全网根据调度要求进行分区分片控制,省级调度应站在全网安全稳定和经济运行的高度,调度各发电厂和枢纽变电站的电压和无功输出水平,并要求各地区调度合理调度实现就地无功平衡,控制与系统电网的无功交换。地区调度负责对区域高压变电站和集控站的控制,集控站和县级调度负责对低一级电压等级变电站的控制。系统在发生大的运行方式和潮流改变时应闭锁各级电压无功控制功能,由调度主站先控制各发电厂和高压枢纽变电站的电压无功状态,再由地区调度、县级调度或集控站控制下一级变电站或直供变电站的电压无功状态。

所谓分层分级和分散就地的关联控制是指在电力系统正常运行时,由分散安装在各个变电站的电压无功控制装臵或控制软件根据系统调度端下达的电压无功范围进行自动调控,调节控制范围和定值是从电网的安全稳定和经济运行要求出发,事先由调度中心的电压无功优化程序计算好下达给各变电站。在系统运行方式或潮流发生较大改变以及事故情况时,调度中心给各变电站发出闭锁自动控制的命令,由调度中心直接控制枢纽变电站的电压无功,待高压电网运行稳定后,由调度中心修改各下层变电站的电压无功定值范围下达至变电站,满足系统运行方式变化后的新要求。

分层分级和分散就地的关联控制优点在于:在系统正常运行时,可以由分散在各变电站的电压无功控制装臵或软件自动化执行对各受控变电站的电压无功调控,实现功能分散、责任分散、危险分散;在紧急情况下调度中心执行应急程序,闭锁下级调度或集控站以及各变电站的自动调控功能,由调度中心直接控制或下达电压无功系统参数至枢纽变电站,可以从根本上保证全网系统运行的安全性和经济性。为达到分层分级和分散就地的关联控制的目的,要求各变电站需装设执行分散就地控制任务的装臵或软件(VQC装臵或软件),并且应具有对受控变电站状态的分析、判别和控制功能,以及较强的通信能力和手段。正常运行情况下,VQC装臵或软件向调度报告控制结果和各类参数。同时接受上级调度下达的命令和参数,自动修改或调整定值或停止执行自动调控,成为接收调度下达调控命令的智能执行装臵。由于此类分散就地控制装臵或软件(VQC装臵或软件)能够根据变电站不同的运行方式和工况选择最优的局部调控策略,可以自动判别运行方式和计算投切电容器及调节分接头可能发生的变化的配合问题。因此分层分级和分散就地的关联控制兼顾了全局优化和局部优化问题。结论

经过以上分析,笔者认为在当前变电站综合自动化系统中应用独立的VQC装臵或软件已取得了一定的经验,在区域电压无功优化理论和实践发展进一步成熟后,通过调度中心控制软件及变电站独立的VQC装臵和软件实现分层分级和分散就地的关联控制是一种可行的解决方案。

第三篇:AVC系统电压无功控制策略资料

第四部分 AVC电压控制

概述:

电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。

区域电压控制:

区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

单个变电站电压校正类似于VQC设备的控制原理。通过调节主变分头和投切电容器来调节低压侧母线电压,使得母线电压稳定在合理范围之内。在调节分头和投切电容器两种调节手段取舍上我们的做法是有限投入电容器来调节电压。

综上所述,两种电压控制手段不是孤立的,两者之间有先后轻重之分。通常做法是载入电网模型之后,首先进入区域电压调整程序。分别判断每个区域的整体电压水平,对需要调节的区域启动区域电压调整程序,只有当区域电压水平达到一个合理水平时,再依次对每个变电站进行电压校正,最后达到母线电压全部合格的目的。

两种手段结合可以避免单一的调节区域低压侧母线带来的弊端,例如220Kv变电站110Kv侧电压越限导致下级110Kv变电站10Kv侧越限无调节手段。另外在抑制设备控制震荡方面也有很好的效果,例如220Kv变电站和下级110Kv变电站同时越限同时调节,调节之后导致下级110Kv变电站低压侧母线相反方向越限再次调节。

四、就地电压控制

就地控制主要策略如下:

1、10kV电压低,且220kV电压偏高,则优先上调主变档位,然后投入电容器; 2、10kV电压低,且220kV电压正常,则优先投入电容器,然后上调主变档位; 3、10kV电压高,且220kV电压高,则优先切除电容器,然后下调主变档位; 4、10kV电压高,且该时段处于负荷下坡段,则优先切除电容器,然后下调主变档位; 5、10kV电压高,且220kV电压正常、负荷处于平稳阶段,则优先下调主变档位,然后切除电容器;

6、投入电容器时进行预判,如果下列条件成立则不投入电容器,上述电容器优先投入动作被过滤;

 投入电容器时主变无功倒流;  投入电容器时关口倒送;  该时段电容器动作次数越限;  该电容器已投入;

 该电容器被切除后时间小于5分钟(可设);

 该电容器退出自动控制(在闭环模式下有效,开环模式下无效)

7、调整主变档位时也进行预判,如果下列条件成立则不进行档位调节,上述主变档位优先动作被过滤:

 主变并列运行档位相差大;  主变档位动作次数越限;

 主变处于极限档位(最高档/最低档);  主变上次调整时间小于2分钟;

 该主变退出自动控制在闭环模式下有效,开环模式下无效)

8、并列电容器投切考虑如下策略:

 如果不允许并列投切,则该母线上当某电容器投入时,其余电容器自动禁止再投入;

 动作次数少的电容器优先动作;

9、并列主变调节时考虑如下策略:  根据拓扑判断是否并列运行;

 档位调整时交替调节,调整过程中减少档位不一致时间;

 对于7档、17档并列运行主变,人工设置并列运行档位,调节时自动对齐使变比一致

控制结构: bus_control否220kV电压高?是10/35kV母线电压低?10/35kV母线电压低?220母线电压高否否220kV电压低或正常?10/35kV母线电压高?regul_bsxf(上调主变档位),成功?否regul_bscp(投电容),成功?是regul_bscp(投电容),成功?否220kv正常?regul_bscp(切电容),成功?否regul_bsxf(下调主变),成功?regul_bsxf(上调主变档位),成功?是是退出regul_bsxf(下调主变),成功?是regul_bscp(切电容),成功?退出退出退出

第五部分 AVC无功控制

一.概述

1.控制目标

地区电网AVC的无功控制以尽可能满足无功就地平衡,减少无功长距离输送,从而降低系统网损为目标。

2.控制对象

地区电网AVC的无功控制对象可以有:有载调压变压器分接头、容抗器、地方电厂发电机的可调无功出力以及其它柔性输电的无功调整装置等。其中,有载调压主变和容抗器是最常用和最普遍的无功调节手段,前者用来改变无功分布,后者可补偿或吸收无功。

3.约束条件

地区电网AVC以保持电网安全稳定即保证电压水平合格为首要目标,因此无功控制始终以各等级母线电压为约束条件,无功调整时不得导致母线电压越限。

另外,无功控制时还要考虑设备动作次数和动作时间间隔等约束条件。

二.实现方案

地区电网中,无功负荷分布广泛且随着有功负荷的持续增减而连续变化,而作为无功来源的无功补偿装置则相对集中,且补偿容量具有一定的离散性,因此在实际工程中,难以做到真正的无功就地平衡和无功优化,可行且易于实现的是无功的次优化分布,即在尽可能小的范围内实现无功按分区平衡。

1.分区

在110kV及以下电压等级电网解环运行后,220kV等级以下配网呈树状分布(如图1所示)。在这种情况下,可对地区电网以220kV母线为根结点进行区域划分,从而形成多个分别包含一个220kV变电站及其下属一个或几个110kV变电站的分区,各分区之间的联络点为位于分区关口的220kV母线,彼此耦合性大大降低,从而为无功分区平衡创造了便利条件。

图1.典型地区电网接线图

2.无功控制

如图2所示,在分区形成后,可得到若干区域,每个区域包含一个220kV变电站及若干110kV变电站的大区域A及以单个110kV站为单位的B、C等区域。对于A区域,其控制点为关口220KV母线,控制对象为其区域内的所有容抗器;对于B、C区域,其控制点为本站的110kV母线,控制对象为各自站内的容抗器。

区域A线路B区域B线路C区域CA站C站B站

图2

地区电网分区结构图

分区形成后,即可分别按区域进行无功控制。但在实际电网中,由于负荷变化的连续性及波动性,将各区域关口母线的注入或流出无功值始终控制为零也是不现实的。一种工程上成熟、可靠的方法是将该值尽量控制为一较小值,即将关口母线的功率因数控制在一较高水平上。另外,由于各区域内无功储备容量存在差异,而且B、C等区域内容抗器需同时参与A区域与本区域的无功调节,实际中很难使 A、B、C等区域同时达到无功分区就地平衡,区域B、C的控制目标与位于其上级的区域A关口存在一定的矛盾。因此,A、B、C各区域存在控制顺序上的先后关系,A区域优先级高于B、C区域,B、C等区域地位等同。

第四篇:风电并网技术 无功电压控制将是发展动向

风力发电作为目前世界上可再生能源开发利用中技术最成熟、最具规模开发和商业化发展前景的发电方式之一,由于其在减轻环境污染、调整能源结构、解决偏远地区居民用电问题等方面的突出作用,越来越受到世界各国的重视并得到了广泛的开发和利用。

根据我国风电发展规划,我国将在甘肃、内蒙古、新疆、河北、吉林和江苏建立七个千万千瓦级风电基地,预计到2015年要建成5808万千瓦,2020年要建成9017万千瓦,占全国风电装机总容量的78%。由于我国陆上风能资源主要集中于“三北”地区,因此对于位于电网末端的风电基地,除了具有常规风力发电的共性问题以外,还存在许多特殊的个性问题,包括系统稳定、输送能力、调频调峰和电量消纳等,其中无功电压问题是风电场并网运行关注的主要问题之一,需要采取措施对风电场无功电压进行有效调节。

发展现状

早期的风电机组主要采用异步发电机,它们不具备维持和调节机端电压水平的能力,在运行时还要从系统吸收无功功率,相应地,风电场需要装设固定进行补偿,随着电力电子技术的发展,出现了SVC和STATCOM等动态无功,风电场就采取固定电容+动态无功补偿装置的方式对无功进行控制。

近年来,针对风电场的电压稳定而进行的无功补偿问题一直是电力企业和相关研究机构关心的热点。在此背景下,国内逐渐开展了对风电场无功控制技术的研究,包括风电机组无功控制技术研究、风电场无功补偿装置研究、FACTS装置协调控制等方面。

(1)风电机组无功控制技术研究现状

随着风电技术的发展,风电机组从原来的不具有无功控制能力发展到能够输出一定的无功。目前,双馈式异步风力发电机组和永磁直驱风力发电机组是主流的机型,双馈式异步风力发电机组通过控制实现有功/无功的解耦,具备一定的动态调节无功输出的能力;而永磁直驱风力发电机组由于通过全容量与电网连接,则能够灵活地对无功进行控制。这两种风力发电机组都具备以恒电压模式工作的能力,可以在一定程度上实现对无功和电压的控制。

(2)风电场无功补偿装置研究现状

为适应不同场合的需要,适用风电场的无功补偿装置已发展出多种类型,它们的所需成本不尽相同,对电网电压的暂态特性影响也不一样。

①并联电容器

并联电容补偿可用断路器连接至电力系统的某些节点上,并联电容器只能向系统供给容性的无功功率。并联电容具有投资省,运行经济、结构简单、维护方便、容量可任意选择、实用性强;缺点是:(1)并联电容器补偿是通过电容器的投切实现的,因调节不平滑呈阶梯性调节,在系统运行中无法实现最佳补偿状态。采用电容器分组投切方式时,无功补偿效果受电容器组分组数和每组电容器容量的制约。(2)电容器的投切主要采用真空断路器实现,其投切响应慢,不宜频繁操作,因而不能进行无功负荷的快速跟踪补偿。如果使用晶闸管投切电容器组来代替用真空开关投切电容器组,解决了开关投切响应慢和合闸时冲击电流大的问题,但不能解决无功调节不平滑以及电容器组分组的矛盾,同时由于采用了大功率的电力电子器件,也大大提高了系统的造价。(3)由于开关投切电容器是分级补偿,不可避免出现过补偿和欠补偿状态。根据无功与电压关系,过补偿时会引起电压升高,欠补偿时感性负荷引起电压降低。(4)电压下降时急剧下降,不利于电压稳定,投入时会产生尖峰电压脉冲。电容器发出的无功功率与电压的平方成正比,在低电压时输出的无功功率减少,而这时显然需要更多的无功,如果不能及时供给无功,将导致系统的电压水平下降。

②有载调压变压器

有载调压变压器(OLTC)不仅可以在有载情况下更改分接头,而且调节范围也较大,通常可有UN±3×2.5%或UN±4×2.0%,既有7个至9个分接头可供选择。因而有载调压器OLTC是电力系统中重要的电压调压手段,在系统运行中可以

自动改变分接头,调节其变比,以维持负荷区域内的电压水平。但变压器不能作为无功电源,相反消耗电网中的无功功率,属于无功负荷之一;变压器分接头(抽头)的调整不但改变了变压器各侧的电压状况,同时也对变压器各侧的无功功率的分布产生影响。有文献指出在某些情况下,OLTC按其升降逻辑改变分接头时,非但没有改善电压条件,反而会使之更加恶化,甚至认为是引起电压崩溃的重要原因之一。因此,在风电场并网运行时需慎重考虑该设备的使用。③静止无功补偿器

静止无功补偿器(Static Var Compensator,SVC)通常是由并联电容器组(或滤波器)和一个可调节电感量的电感元件所组成。SVC与一般的并联电容器补偿装置的区别是能够跟踪电网或负荷的无功波动,进行无功的实时补偿,从而维持电压的稳定。SVC是完全静止的,但它的补偿是动态的,即根据无功的需求或电压的变化自动跟踪补偿。静止无功补偿系统都是无功部件(电容器和电抗器)产生无功功率,并且根据需要调节容性或感性电流。静止补偿器可以提高电压稳定极限值,而装设在系统中部节点上的SVC有很好的作用,在技术经济比较中往往成为优选方案。有文献将柔性交流输电系统(FACTS)设备运用到风电场以提高其运行的电压稳定性,说明了SVC在风电场无功补偿方面的优良性能。

④静止同步补偿器(STATCOM)

静止同步补偿器(STATCOM)也称为静止无功发生器(Static Var Generator,SVG),其基本电路分为电压型桥式电路和电流型桥式电路两种类型。电压型桥式电路,其直流侧采用电容作为储能元件,而交流侧通过串联电抗器并入电网:电流型桥式电路,直流侧采用电感作为储能元件,而交流侧并联电容器后接入电网。实际上,由于运行效率的原因,迄今投入使用的STATCOM大都采用电压型桥式电路。STATCOM的基本工作原理是将桥式变流电路直接并联或通过电抗器并联在电网上,适当调节桥式变流电路交流侧输出电压的相位和幅值或直接控制其交流侧电流,使该电路吸收或者发出满足要求的无功电流,从而实现动态无功补偿的目的。与SVC相比,STATCOM具有5个优点:调节速度快、运行范围宽、调节范围广、元件容量小、谐波含量小。

最新进展

随着风电技术、电力电子技术和控制技术的发展,未来风电场无功控制技术将以“闭环”控制为主,通过风电机组、无功补偿装置以及电网的协调优化运行,实现对风电场无功的有效控制。

在产品应用方面,GE风能已经研发出一种闭环风电场电压控制,称之为“动态无功控制”(WindVAR)。动态无功控制可以向电网提供无功并稳定电压。带有动态无功控制的风机,电压的控制和调节都是通过安装于风机上的电力电子装置来实现进行的。

欧洲相关电力公司和技术机构、美国风能协会(AWEA)等都制定了相关风力发电导则和IEEE-1547(分布式电源与电力系统接入标准),包括了电压稳定控制/无功补偿方面的内容,要求确保风电场母线电压稳定在一定范围内,并保证电能质量合格。

目前国内即将出台的风电并网新国标中,不仅要求风电机组具有无功电压调节能力,也要求具备低电压穿越能力。新国标的颁布将促进风电相关产业技术向更加电网友好型方向发展,实现对风电更大规模的平稳消纳。

第五篇:19 高速公路自动收费系统取得重大技术突破

高速公路自动收费系统取得重大技术突破

《中国交通报》志霞2008年12月15日

日前,由西安公路研究所和江苏省京沪高速公路有限公司共同承担的“基于开源的高可靠收费系统实现”科研项目通过了江苏省交通厅组织的科研鉴定。使用单位以及专家一致认为,该成果具有创新性,提高了高速公路收费系统的可靠性和安全性,具有良好的推广应用前景;在公路收费领域达到国内领先水平,是我国高速公路收费系统的一项革命。

长期以来,我国高速公路收费系统大部分是运行在国外品牌以及受控知识产权的视窗平台之上,基于目前高速公路收费系统应用存在的诸多问题:高资源消耗及安全漏洞、版本更新频繁支持周期短、操作系统购置费用庞大、系统故障修复时间长等。为了解决上述问题,西安公路研究所等单位“实施自主知识产权战略、大力提升自主创新能力”,为期三年的“基于开源的高可靠收费系统实现”研究取得了重大成功。

这个完全自主创新的成果采用Linux作为操作系统内核,Mysql作为数据库平台,TOMCAT作为Web消息中间件,电子盘作为存储介质,集成了各类硬件驱动程序及入侵检测等安全防护功能,实现了基于网络引导的快速恢复,并能全面兼容现有收费系统,可满足高速公路联网收费应用需求。提高了收费系统的可靠性、稳定性和安全性,降低了系统应用成本,提升了高速公路管理和服务水平。节约建设成本,节约运营维护成本,保证了收费网络的安全性。

该成果已在江苏京沪高速公路的3个收费站进行了近一年的实际运行以及功能测试,可靠的运行表明系统易于使用,运行稳定可靠。每年仅建设资金就可节约近亿元。

rfid技术在高速公路自动收费系统的成功应用

http:///trader/traffic/apply_detail.asp?id=27037

2008-2-11 10:20:00 来源:中国自动化网

高速公路自动收费系统是RFID技术最成功的应用之一。目前中国的高速公路发展非常快,地区经济发展的先决条件就是有便利的交通条件,而高速公路收费却存在一些问题,一是交通堵塞,收费站口,许多车辆要停车排队,成为交通瓶颈问题;二是少数不法的收费员贪污路费、使国家损失了相当的财政收入。RFID技术应用在高速公路自动收费上能够充分体现它非接触识别的优势。让车辆高速通过收费站的同时自动完成收费。同时可以解决收费员贪污路费及交通拥堵的问题。

一般来说对于公路收费系统、车辆的大小和形状不同、需要大约4米的读写距离和很快的读写速度、也就要求系统的频率应该在900M Hz和2500MHz。射频卡一般在车的挡风玻璃后面。现在最现实的方案是将多车道的收费口分两个部分:自动收费口、入工收费口。天线架设在道路的上方。在距收费口约50-100米处,当车辆经过天线时,车上的射频卡被头顶上的天线接收到,判别车辆是否带有有效的射频卡。读写器指示灯指示车辆进人不同车道,人工收费口仍维持现有的操作方式,进入自动收费口的车辆,养路费款被自动从用户帐户上扣除,且用指示灯及蜂鸣器告诉司机收费是否完成,不用停车就可通过,挡车器将拦下恶意闯入的车辆。

1996年、佛山市政府安装了RFID系统用于自动收取路桥费以提高车辆通过率,缓解公路瓶颈。车辆可以在250公里的时速下用少于0.5毫秒的时间被识别,并且正确率达99.95%。上海也安装了基于RFID的自动收聚养路费系统。另外两个安装在广州的与上海和佛山的工程不同,广州的工程尝试在开放的高速公路上对正在高速行驶的车辆进行自动收费,通道采用RFID系统。中国有把握改善其公路基础设施,而现在最大的问题是应用于高速公路收取养路费的RFID技术没有统-的标准。各个厂家使用自己的专用标准、使得建立全国高速公路自动收费系统时, 情况变得很混乱。

在城市交通方面,交通的状况日趋拥挤,解决交通问题不能只依赖于修路、加强交通的指挥、控制、疏导,提高道路的利用率,深挖现有交通潜能也是非常重要的。而基于RFID技术的实时交通督导和最佳路线电子地图很快将成为现实。用RFID技术实时跟踪车辆,通过交通控制中心的网络在各个路段向司机报告交通状况,指挥车辆绕开堵塞路段,并用电子地图实时显示交通状况。能够使得交通流向均匀,大大提高道路利用率。还可用于车辆特权控制,在信号灯处给警车、应急车辆、公共汽车等行驶特权;自动查处违章车辆,记录违章情况。另外、公共汽车站实时跟踪指示公共汽车到站时间及自动显示乘客信息,给乘客很大的方便。用RFID技术能使交通的指挥自动化、法制化,有助于改善交通状况。

高速公路收费站车牌自动识别系统技术解决方案

车牌识别技术应用公路收费站系统

下载AVQC电压无功自动调节系统技术说明word格式文档
下载AVQC电压无功自动调节系统技术说明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    个人所得税全员管理系统技术维护说明

    个人所得税全员管理系统技术维护说明 系统的安装与设置: 一、 软件的下载 进入浙江地税网上申报网站http://etax.zjds.gov.cn ,进入个税管理界面,点击个税软件(全员管理扣缴单位......

    全国技术合同网上登记系统录入说明

    全国技术合同网上登记系统录入说明 按照长春市技术市场办公室的要求,从2010年开始,凡是需要到长春市技术市场办公室办理登记的技术合同(包括签订在吉林大学账户的技术开发类合......

    二三维一体化CAD系统中工程图纸自动生成技术的研究和实现

    二三维一体化CAD系统中工程图纸自动生成技术的研究和实现 摘要:本文结合具体实例对二三维一体化CAD系统中,工程图纸的自动生成技术进行了深入的探讨,给出了剖切视图和复杂视图......