第一篇:物联网简介及国内状况(老师要求的8000字小论文)
新的技术革命-物联网
------------08信管2班 蔡成建
【摘要】目前,物联网是全球研究的热点,物联网不是科技狂想,而是又一场科技革命,使物品和服务功能都发生了质的飞跃,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。物联网的发展,以移动技术为代表发展的结果,带动的不仅仅是技术进步,而是通过应用创新进一步带动经济社会形态、创新形态的变革,塑造了知识社会的流体特性,推动面向知识社会的下一代创新。开放创新、共同创新、大众创新、用户创新成为知识社会环境下的创新新特征,技术更加展现其以人为本的一面,以人为本的创新随着物联网技术的发展成为现实。
【关键词】物联网
RFID 物联网标准
传感器 安全隐私
智能化
挑战
移动通信
什么是物联网
物联网的定义:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的概念是在1999年提出的。当时基于互联网、RFID技术、EPC标准,在计算机互联网的基础上,利用射频识别技术、无线数据通信技术等,构造了一个实现全球物品信息实时共享的实物互联网“Internet of things”(简称物联网),这也是在2003年掀起第一轮华夏物联网热潮的基础。
传感网是基于感知技术建立起来的网络。中科院早在1999年就启动了传感网的研究,并已取得了一些科研成果,建立了一些适用的传感网。1999年,在美国召开的移动计算和网络国际会议提出了,“传感网是下一个世纪人类面临的又一个发展机遇”。2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首。
2005年11月17日,在突尼斯举行的信息社会世界峰会(WSIS)上,国际电信联盟(ITU)发布了《ITU互联网报告2005:物联网》,引用了“物联网”的概念。报告指出,无所不在的“物联网”通信时代即将来临,世界上所有的物体从轮胎到牙刷、从房屋到纸巾都可以通过因特网主动进行交换。射频识别技术(RFID)、传感器技术、纳米技术、智能嵌入技术将到更加广泛的应用。
根据ITU的描述,在物联网时代,通过在各种各样的日常用品上嵌入一种短距离的移动收发器,人类在信息与通信世界里将获得一个新的沟通维度,从任何时间任何地点的人与人之间的沟通连接扩展到人与物和物与物之间的沟通连接。物联网概念的兴起,很大程度上得益于国际电信联盟(ITU)2005年以物联网为标题的年度互联网报告。然而,ITU的报告对物联网仍缺乏一个清晰的定义。
物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“Internet of Things”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。
物联网中非常重要的技术是射频识别(RFID)技术。RFID是射频识别(Radio Frequency Identification)技术英文缩写,是20世纪90年代开始兴起的一种自动识别技术,是目前比较先进的一种非接触识别技术。以简单RFID系统为基础,结合已有的网络技术、数据库技术、中间件技术等,构筑一个由大量联网的阅读器和无数移动的标签组成的,比Internet更为庞大的物联网成为RFID技术发展的趋势。
而 RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放性的计算机网络实现信息交换和共享,实现对物品的“透明”管理。
任何事物和该事物在人们头脑中形成的概念的关系都是相互依存的关系。该事物的概念是该事物在人们头脑中的本质属性的反映。物联网也是一种事物。因此,物联网和物联网概念的关系也是相互依存的关系。离开了物联网,物联网概念就是无本之木,无源之水;有物联网必然在人们头脑中形成与之相对应的物联网概念,不会有:只有物联网,而没有物联网概念的情况出现。这就是物联网和物联网概念的辨证关系。当然,在科学实践活动中,在人们头脑中形成的科学概念,与前科学思维时期,人们认识周围事物最初所形成的日常生活概念有所不同,科学概念也可以作为表现某一认识阶段上科学知识和科学研究的结果、总结而存在。物联网概念也是一种科学概念。因此,它也可以作为某一认识阶段上科学知识和科学研究的结果、总结而存在。正如前面定义所述,物联网概念是在互联网概念的基础上,将其用户端延伸和扩展到任何物品与任何物品之间,进行信息交换和通信的一种网络概念。它也是互联网知识和研究的结果和总结
物联网的现状及应用
物联网的应用其实不仅仅是一个概念而已,它已经在很多领域有运用,只是并没有形成大规模运用。常见的运用案例有:
一:物联网传感器产品已率先在上海浦东国际机场防入侵系统中得到应用。机场防入侵系统铺设了3万多个传感节点,覆盖了地面、栅栏和低空探测,可以防止人员的翻越、偷渡、恐怖袭击等攻击性入侵。而就在不久之前,上海世博会也与无锡传感网中心签下订单,购买防入侵微纳传感网1500万元产品。
二:ZigBee路灯控制系统点亮济南园博园。ZigBee无线路灯照明节能环保技术的应用是此次园博园中的一大亮点。园区所有的功能性照明都采用了ZigBee无线技术达成的无线路灯控制。
三:智能交通系统(ITS)是利用现代信息技术为核心,利用先进的通讯、计算机、自动控制、传感器技术,实现对交通的实时控制与指挥管理。交通信息采集被认为是ITS的关键子系统,是发展ITS的基础,成为交通智能化的前提。无论是交通控制还是交通违章管理系统,都涉及交通动态信息的采集,交通动态信息采集也就成为交通智能化的首要任务。
可以说,从日常家庭到工业自动化、交通物流、电网、公共管理等各个应用领域,物联网有着巨大的需求市场,而这些需求应用必将翻过来进一步促进物联网的进一步发展,物联网的应用随着物联网技术的进步、成本的降低必将势不可挡,在未来进入我们的工作甚至日常生活学习,成为我们生活中不可或缺的一部分。现在已经有了很多很多应用物联网技术建立产生的产品,如智能家居、智能医疗、智能城市、智能农业,智能环保等等。
智能家居产品融合自动化控制系统、计算机网络系统和网络通讯技术于一体,将各种家庭设备(如音视频设备、照明系统、窗帘控制、空调控制、安防系统、数字影院系统、网络家电等)通过智能家庭网络联网实现自动化,通过中国电信的宽带、固话和3G无线网络,可以实现对家庭设备的远程操控。与普通家居相比,智能家居不仅提供舒适宜人且高品位的家庭生活空间,实现更智能的家庭安防系统;还将家居环境由原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交互功能。
智能医疗系统借助简易实用的家庭医疗传感设备,对家中病人或老人的生理指标进行自测,并将生成的生理指标数据通过中国电信的固定网络或3G无线网络传送到护理人或有关医疗单位。根据客户需求,中国电信还提供相关增值业务,如紧急呼叫救助服务、专家咨询服务、终生健康档案管理服务等。智能医疗系统真正解决了现代社会子女们因工作忙碌无暇照顾家中老人的无奈,可以随时表达孝子情怀。
智能城市产品包括对城市的数字化管理和城市安全的统一监控。前者利用“数字城市”理论,基于3S(地理信息系统GIS、全球定位系统GPS、遥感系统RS)等关键技术,深入开发和应用空间信息资源,建设服务于城市规划、城市建设和管理,服务于政府、企业、公众,服务于人口、资源环境、经济社会的可持续发展的信息基础设施和信息系统。后者基于宽带互联网的实时远程监控、传输、存储、管理的业务,利用中国电信无处不达的宽带和3G网络,将分散、独立的图像采集点进行联网,实现对城市安全的统一监控、统一存储和统一管理、为城市管理和建设者提供一种全新、直观、视听觉范围延伸的管理工具。
智能环保产品通过对实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。太湖环境监控项目,通过安装在环太湖地区的各个监控的环保和监控传感器,将太湖的水文、水质等环境状态提供给环保部门,实时监控太湖流域水质等情况,并通过互联网将监测点的数据报送至相关管理部门。
智能交通系统包括公交行业无线视频监控平台、智能公交站台、电子票务、车管专家和公交手机一卡通五种业务。公交行业无线视频监控平台利用车载设备的无线视频监控和GPS定位功能,对公交运行状态进行实时监控。
智能农业产品通过实时采集温室内温度、湿度信号以及光照、土壤温度、CO?浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为设施农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依据。通过模块采集温度传感器等信号,经由无线信号收发模块传输数据,实现对大棚温湿度的远程控制。智能农业产品还包括智能粮库系统,该系统通过将粮库内温湿度变化的感知与计算机或手机的连接进行实时观察,记录现场情况以保证量粮库内的温湿度平衡。
还可以实现智能物流打造了集信息展现、电子商务、物流配载、仓储管理、金融质押、园区安保、海关保税等功能为一体的物流园区综合信息服务平台。信息服务平台以功能集成、效能综合为主要开发理念,以电子商务、网上交易为主要交易形式,建设了高标准、高品位的综合信息服务平台。,并为金融质押、园区安保、海关保税等功能预留了接口,可以为园区客户及管理人员提供一站式综合信息服务。
这些应用案例充分体现了物联网的特点:(1)全面感知(2)可靠传递(3)智能处理
国内物联网面临的挑战
物联网技术发展前景广大,但也面临着严峻的挑战,对比于目前的互联网,有两点明显的不足:
1、统一标准
物联网其实就是利用物体上的传感器和嵌入式芯片,将物质的信息传递出去或接收进来,通过传感网络实现本地处理,并联入到互联网中去。由于涉及到不同的传感网络之间的信息解读,所以必需有一套统一的技术协议与标准,而且主要是集中在互联上,而不是传感器本身的技术协议。现在很多所谓的物联网标准,实际上还是将物联网作为一种独立的工业网络来看待的具体技术标准,而应对互联需要的技术协议,才是真正实现物联网的关键。
2、安全、隐私
在物联网中所有“事物”都连接到全球网络,彼此间相互通信,这也带来了新的安全和隐私问题,例如可信度,认证,以及事物所感知或交换到的数据的融合。人和事物的隐私应该得到有效保障,以防止未授权的识别和攻击。安全与隐私这个问题,是人类社会的问题,不论是物联网还是其他技术,都是面临这两个问题。因此,不仅要从物联网内部的技术上做出一定的控制,而且要从外部的法规环境上作出一定的司法解释和制度完善。
国内物联网也早已上升到国家战略的角度。2010年1月,中国物联网研究发展中心在无锡挂牌成立,同月,无锡物联网基地毫无争议地出现在由工信部发布的《工业和信息化部正式批准第一批“国家新型工业化产业示范基地”》名单中。2009年8月7日,温家宝总理视察无锡并指示,要迅速在无锡建立中国的“感知中国”中心,同年底,国务院正式批复,在无锡建设国家传感网创新示范区(国家传感信息中心)方案。财政部日前印发《物联网发展专项资金管理暂行办法》,鼓励和支持企业以产业联盟组织形式开展物联网研发及应用活动。资金支持范围包括物联网的技术研发与产业化、标准研究与制订、应用示范与推广、公共服务平台等方面的项目,采用无偿资助或贷款贴息两种支持方式。
要加快物联网发展,需要解决新技术应用、高成本供给与小规模需求对接等问题。然而,这样的规模并非政府简单扶持就能一蹴而就。业内人士明白,就目前国内的物联网产业基础而言,芯片、传感器、云服务等关键环节大都需要 “从头开始”,系统集成等环节并非产业关键,培育真正具有竞争力的大型企业并非易事。而且与聚光灯下的无锡不同,在更多地方,物联网依然是一块需要争抢的“香饽饽”,比如在上海这个一度被一些业内人士戏称为“起了个大早,赶了个晚集”的城市。在温家宝总理视察无锡后,国内科研机构、企业、风投资金扎堆无锡,上海只能旁观。在上海,物联网并未被排入最优先序列,但在无锡等长三角的二线城市,它却早已成为地方投资下重注、被视作赶超希望的“一号工程”。通过物联网,跨国巨头们已给中国带来越来越强大的威胁,传统的经济和安全边界正被悄然颠覆。IBM力推的“智慧地球”在中国形势大好,无论地方政府、机构还是企业,都从去年的观望转向“砸钱”实施。对于“智慧地球”在中国的火热,业界普遍认为,在芯片、传感器、云计算等物联网产业链的关键环节,中国还远远落后,部分领域甚至未实现“零的突破”。而且,直到现在,物联网仍不成熟,缺少商业模式,安全机制更屡被业内人士质疑,如果现在就规模化物联网,占便宜的还是外资巨头。美国正试图用其信息网络技术,控制各国的经济,所以必须警惕“智慧地球”。中国要大力发展物联网等新兴产业,以抢占主动权。必须发展物联网以应对国际威胁,但如果在不成熟的现阶段贸然推广,也可能将整个产业乃至整个经济拖入深渊。这必然需要合理规划,在两者之间找到平衡。目前,物联网的基础工业还不在中国,国内发展越快,最后越容易给外国人准备一个大市场。
在业内人士看来,“智慧地球”核心是基于传感的物联网络和云计算,通过在基础设施和制造业上大量设立传感器,捕捉运行过程中的各种信息,然后通过传感网,进入互联网,通过计算机分析处理发 出智慧指令,再反馈到基础设施和制造环节,从而提高生产效率。在中国,无线传感领域的研究,早在上世纪90年代就已经开始,2004年开始在军民两个领域展开标准 化研究工作,2009年以来开始积极推进产业化。2009年8月7日,国务院总理温家宝视察中科院无锡微纳传感网工程技术研发中心,指示要迅速在无锡建立中国的“感知中国”中心。3个月之后,在“让科技引领中国持续发展”讲话中,温家宝再次明确,物联网为五大重点扶持的新型科技领域之一。自此,物联网产业化迅速升温。三大运营商、广电、国家电网乃至产业链多家企业,及上海、无锡、苏州、嘉兴、重庆等地纷纷出台各自的规划或战略,甚至以物联网为概念的上市公司股票也在资本市场上一路高涨。然而,物联网的基础工业还不在中国,发展越快,最后越容易给外国人准备一个大市场。虽然目前国内已经做了很多应用,但其中的芯片、传感器等基础硬件基本上都是进口国外厂商产品,真正自己核心知识产权的东西并不多,做集成的多,原创的少。在传感器领域,基本上都是国外巨头垄断,国内少数几家厂商,也大多是在国外的芯片基础上加工,在操作系统、中间件、云存储、云计算等各个环节,中国厂商都居下风,现在的应用很多都是用外资的产品。我们不得不深刻认识到国内物联网技术面临严峻的挑战,在物联网领域我们无锡只是集聚地,还非领头羊,而且国内基础落后,于国外最少差距5年,目前的国内物联网技术标准缺乏,内部空虚,相应的商业模式待突破。这些差距并非短期内可以弥补。物联网虽然是一个新的概念,但它并不是凭空出现,而是传统IT 业各个领域的延伸和集成。在国外已发展数十年的传感器等领域,中国近乎空白,因此,物联网热潮甚至放大了中国传统IT业与国际领先厂商的差距。
面对严峻挑战,我们应该本着可持续发展的观念,统一、规范物联网标准,抓住机遇,加快相关标准的研究和制定。对于在顶级层面,要在国际上积极参与物联网的概念设计、框架规划、标准制定工作,掌握物联网的顶层话语权。要组建专业研究中心,重点对物联网高度跟踪,对社会需求进行探索,并对中国以及国际物联网的对接进行前瞻性研究。对于地方政府的考核应慎重采用类似于“形象工程”的标准,严防少数地方政府,在缺乏科学、有效的规划下,务虚冒进,最后由于缺乏核心技术提供持续动力而不了了之,造成资源浪费,误国误民。同时,还需在基础层面进行切入,重点抓对商业模式的创新,着重利用规模效应带来的成本下降作用,求真务实,探索游刃有余地调配各种性质资本投资之路,建立新的服务业态。
对于具体措施而言,首先,通过政府引导,全社会参与,鼓励民营资本进入,造就一大批科技型中小企业群。
其次,结合我国低成本信息化的特点,选取若干与可持续发展、资源、安全、新媒体等相关行业为切入点。围绕需求,开展核心技术公关和技术集成研发,进行技术示范、探索发展途径,注重人才培养与储备。
再次,结合节能、降耗、绿色、低碳、低成本、智能的发展战略和地方需求,利用物联网络技术实现传统产业升级换代,政府支持开展感知、控制、网络、系统技术研究,选取特色行业规模示范。
最后,通过示范、政府采购和新产业发展拉动内需,扶持本土企业,避免买进一个无内生能力的信息化。注重强化企业做大做强的长远意识,强调创新。鼓励企业积极拓展广大农村市场,提升产品的适用面,深入挖掘内需市场,研制合符民生切实需求的应用,促进国家整体进步。
物联网的未来
我们深刻的认识到,物联网不是科技狂想,而是又一场科技革命。
物联网使物品和服务功能都发生了质的飞跃,这些新的功能将给使用者带来进一步的效率、便利和安全,由此形成基于这些功能的新兴产业。物联网需要信息高速公路的建立,移动互联网的高速发展以及固话宽带的普及是物联网海量信息传输交互的基础。依靠网络技术,物联网将生产要素和供应链进行深度重组,成为信息化带动工业化的现实载体
物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。目前,加拿大、英国、德国、芬兰、意大利、日本、韩国等都在投入巨资深入研究探索物联网。同时,有专家认为,物联网架构建立需要明确产业链的利益关系,建立新的商业模式,而在新的产业链推动矩阵中,核心则是明确电信运营商的龙头地位。
物联网的发展,也是以移动技术为代表的普适计算和泛在网络发展的结果,带动的不仅仅是技术进步,而是通过应用创新进一步带动经济社会形态、创新形态的变革,塑造了知识社会的流体特性,推动面向知识社会的下一代创新。移动及无线技术、物联网的发展,使得创新更加关注用户体验,用户体验成为下一代创新的核心。开放创新、共同创新、大众创新、用户创新成为知识社会环境下的创新新特征,技术更加展现其以人为本的一面,以人为本的创新随着物联网技术的发展成为现实。正面临经济衰退、全球竞争、气候变化、人口老龄化等诸多方面的挑战,物联网不会是万能灵药,但我们坚信,未来哇联网将会是这些方面以及其他方面解决方案的一部分甚至是主要部分。报告谈及的未来物联网的四个特征:未来互联网基础设施将需要不同的架构,依靠物联网的新Web服务经济将会融合数字和物理世界从而带来产生价值的新途径,未来互联网将会包括物品,技术空间和监管空间将会分离。涉及物联网的就有两项。
物联网将给我们未来的生活、工作带来翻天覆地的变化,带我们走向一个智能化的社会。我们的当务之急是:摆脱现有技术的束缚,价值化频谱,信任和安全至关重要,用户驱动创新带来社会变化,鼓励新的商业模式。
参考文献:
1.田美花.基于RFID技术的生产执行系统关键技术研究 2.百度百科:http://baike.baidu.com/view/1136308.htm 3.比特网:《中国物联网深度剖析》
4.肖慧彬.物联网中企业信息交互中间件技术开发研究.5物联中国:http://www.xiexiebang.com/
第二篇:物联网在农业上的应用小论文
班级:测控技术与仪器03 姓名:董涛 学号:1204010305 物联网在农业中的应用论文
通过对物联网技术与第三次信息革命这门课的学习,了解了一些关于物联网的最基本的认识以下是参观一些资料和课上所学的一些小小的体悟
物联网的概念是在1999年提出的。1999年,在美国召开的移动计算和网络国际会议就提出,“传感网是下一个世纪人类面临的又一个发展机遇”。2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首。
物联网产业链可以细分为标识、感知、处理和信息传送四个环节,每个环节的关键技术分别为RFID、传感器、智能芯片和电信运营商的无线传输网络。EPOSS在《Internet of Things in 2020》报告中分析预测,未来物联网的发展将经历四个阶段,2010年之前RFID被广泛应用于物流、零售和制药领域,2010~2015年物体互联,2015~2020年物体进入半智能化,2020年之后物体进入全智能化。
作为物联网发展的排头兵,RFID成为了市场最为关注的技术。数据显示,2008年全球RFID市场规模已从2007年的49.3亿美元上升到52.9亿美元,这个数字覆盖了RFID市场的方方面面,包括标签、阅读器、其他基础设施、软件和服务等。RFID卡和卡相关基础设施将占市场的57.3%,达30.3亿美元。来自金融、安防行业的应用将推动RFID卡类市场的增长。易观国际预测,2009年中国RFID市场规模将达到50亿元,年复合增长率为33%,其中电子标签超过38亿元、读写器接近7亿元、软件和服务达到5亿元的市场格局。MEMS是微机电系统的缩写,MEMS技术是建立在微米/纳米基础之上的,市场前景广阔。MEMS传感器的主要优势在于体积小、大规模量产后成本下降快,目前主要应用在汽车和消费电子两大领域。根据最新报告,预计在2007年至2012年间,全球基于MEMS的半导体传感器和制动器的销售额将达到19%的年均复合增长率(CAGR),与2007年的41亿美元相比,五年后将实现97亿美元的年销售额。
由此可见物联网具有广阔的市场前景很潜在的价值,为我们提供了很多就业机会我们应该牢牢把握这次机遇找好自己的就业方向,让自己的就业目标向着社会需求过渡。
下面我们来看下物联网在农业方面中的应用。
射频识别(RFID)RFID是一种非接触式的自动识别技术,具有数据储存量大、可读写、穿透力强、读写距离远、读取速率快、使用寿命长、环境适应性好等特点,是唯一可以实现多目标识别的自动识别技术,可工作于各种恶劣的环境
现在RFID 在农畜产品安全生产监控、动物识别与跟踪、农畜精细生产系统、畜产品精细养殖数字化系统、农产品物流与包装等方面已正式应用。例如,日本的田间伺服器(field server)和美国伯克利大学MOTE 和JPL 研发的SW(Sensor Web),能够使用RFID 等无线技术的田间管理监测设备自动记录田间影像与土壤酸碱度、温湿度、日照量甚至风速、雨量等微气象,详细记录农产品的生产成长记录。
物联网在农业和农村信息化领域中得到广泛应用,如:精准农业、智能化专家管理系统、远程监测和遥感系统、生物信息和诊断系统、食品安全追溯系统等。在精准农业方面,中国已取得较高水平的成果,并进入实践阶段。
目前,数字农业重大专项已在中国新疆、黑龙江、吉林、北京、上海、河北、江苏等地建立起26 个设施农业数字化技术、大田作物数字化技术和数字农业继承技术综合应用示范基地。中国研制的具有自主知识产权的谷物联合收割机智能测产系统在2000 年11月画出了中国第1 张“精准农业”产量图,2005 年引进美国CASE 公司精准农业机械设备,建立了黑龙江八五二农场和宝泉岭农场精准农业试验示范基地,2006年底,黑龙江垦区已装备成大约160 个现代农机装备区,使精准农业技术在垦区有了新的发展和推广应用。在国家精准农业研究示范基地也进行了一系列农业定量遥感试验。示范区内大田作物产量提高15%~20%,经济效益提高10%,设施农业成本降低10%,生产率提高20%,养殖业提高经济效益18%。同等产量下,采用先进的农业技术进行生产,总成本降低了15%~20%,化肥、农药和灌溉用水量减少了20%~30%。
国家农业信息化工程技术研究中心在北京市小汤山的试点应用食品安全溯源系统的项目。条码生成与打印以国际通用的EAN/UCC 系统为编码基础,用户只需填入相关产品、地块等信息,即可自动生成条码并按标准化条码格式打印出来,系统支持不同打印机和不同的码制。例如:2006 年中国水产业推出了鱼类产品智能防伪卡——千岛湖“淳牌”有机鱼身份证,实现了从水体到餐桌的全程质量跟踪管理;2009 年10月,江苏大闸蟹成功利用RFID 二维码溯源系统追踪其品质。
农业具有对象多样,地域广阔,偏僻分散,远离都市社区,通信条件落后等特点,因此在多数情况下,农业数据信息的获取非常困难,随着电子技术,无线网络催生了物联网技术的发展,把物联网关键技术应用搭建在一个农业物联网智能化监控系统具有广阔的应用前景
上图描绘了本项目实施的总体方案,项目将以物联网为平台,以云计算为核心,采用模块化的思想,搭建成一个完整的农业物联网系统。系统将基于无线传感器网络技术采集农业生产现场数据,基于RFID标识与编码构建生产—加工—运输—销售全流程溯源管理,基于无线3G网络和以太网等构成广义泛在的物联网,中心数据处理和融合采用先进的云计算平台,以服务下载的方式植入用户手机这一云终端中。
应用案例一:用户登录进入农业物联网信息平台,然后通过手机下载农业专家指导服务组件,首先相关农业生产现场参数上送到云计算中心,中心经过处理后,筛选出相应专家指导数据,在发送到用户手机终端,实现专家远程在线知道。
应用案例二:用户登录进入农业物联网信息平台后,可选择安装农业天气预警组件,当用户的农业生产对象数据经过网络传送到云计算中心后,云计算中心自动分析这一农业生产对象的最适宜温湿度条件,最适宜的天气因素,然后设置对应的天气预警阀值,通过对气象部门数据的分析和筛选,自动识别天气,温度等参数,实现自动预警功能。
应用案例三:针对农业生产过程中,农产品生产者和市场的信息不对称问题,在农业物联网系统中可以得到很好的解决,农业物联网平台内,农业生产,加工,运输到销售等环节实现全流程数据共享与透明管理,并将云计算服务平台整合的各地销售点的价格信息融合到产输信息指导服务组件中,可为政府宏观调控提供决策依据,为政府打击农产品囤积提供精确目标,为消费者和分销商提供最佳货源信息,为农业生产者提供批销定价的决策信息。
美国《商业周刊》认为物联网是全球未来四大技术产业之一,是21世纪世界最具有影响力的21项技术之一。农业物联网技术的应用是现代农业发展的需要,也是未来农业发展水平的一个重要标志,它将是未来农业发展的方向。它必将提高全球农业产品的数量和质量,提高农民的收入,增强食品安全,实现农业自动化、智能化,使人类从繁重的劳动中解脱出来,从而彻底解放生产者,形成以人为本的生产方式,提高全人类的生活质量。2009 年10 月24 日中国的第1 颗物联网的中国芯“唐芯一号”芯片研制成功,在一定程度上表明了中国已经攻克了物联网的部分核心技术。正是由于这些关键技术的蓬勃发展,才使得物联网应用于现代农业得以实现。中国有坚实的技术和知识基础,农业生产设备数学化、自动化和智能化程度也越来越高。尽管物联网在农业中的应用还面临着巨大的挑战,相信随着各种技术的不断发展,农业智能生产时代也会距离人们越来越近。
第三篇:物联网简介及基于ZigBee的无线传感器网络
物联网简介及基于ZigBee的无线传感器网络
摘 要
物联网,是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是一个全新的技术领域,给IT和通信带来了广阔的新市场。积极发展物联网技术,尽快扩展其应用领域,尽快使其投入到生产、生活中去,将具有重要意义。
ZigBee无线通信技术是一种新兴的短距离无线通信技术,具有低功耗、低速率、低时延等特性,具有强大的组网能力与超大的网络容量,可以广泛应用在消费电子品、家居与楼宇自动化、工业控制、医疗设备等领域。由于其独有的特性,ZigBee无线技术也是无线传感器网络的首选技术,具有广阔的发展前景。ZigBee协议标准采用开放系统接口(051)分层结构,其中物理层和媒体接入层由IEEE802.15.4工作小组制定,而网络层,安全层和应用框架层由ZigBee联盟制定。
本文首先从概念、技术架构、关键技术和应用领域介绍了物联网的相关知识,然后着重介绍了基于ZigBee的无线传感器网络,其中包括无线传感网简介、ZigBee技术概述和基于ZigBee的无线组网技术。
关键词:物联网;ZigBee;无线传感器网络
物联网简介
物联网概念
“物联网概念”是在“互联网概念”的基础上,将其用户端延伸和扩展到任何物品与物品之间,进行信息交换和通信的一种网络概念。其定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念。
最简洁明了的定义:物联网(Internet of Things)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。
技术架构
从技术架构上来看,物联网一般可分为三层:感知层、网络层和应用层。感知层是物联网的皮肤和五官-用于识别物体,采集信息。感知层包括二维码标签和识读器、RFID标签和读写器、摄像头、GPS、传感器、M2M终端、传感器网关等,主要功能是识别物体、采集信息,与人体结构中皮肤和五官的作用类似。感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。
网络层是物联网的神经中枢和大脑-用于传递信息和处理信息。网络层包括通信网与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。网络层解决的是传输和预处理感知层所获得数据的问题。这些数据可以通过移动通信网、互联网、企业内部网、各类专网、小型局域网等进行传输。特别是在三网融合后,有线电视网也能承担物联网网络层的功能,有利于物联网的加快推进。网络层所需要的关键技术包括长距离有线和无线通信技术、网络技术等。应用层是物联网的“社会分工”-结合行业需求,实现广泛智能化。应用层是物联网与行业专业技术的深度融合,结合行业需求实现行业智能化,这类似于人的社会分工。
应用层解决的是信息处理和人机交互的问题。网络层传输而来的数据在这一层进入各类信息系统进行处理,并通过各种设备与人进行交互。这一层也可按形态直观地划分为两个子层。一个是应用程序层,进行数据处理,它涵盖了国民经济和社会的每一领域,包括电力、医疗、银行、交通、环保、物流、工业、农业、城市管理、家居生活等,其功能可包括支付、监控、安保、定位、盘点、预测等,可用于政府、企业、社会组织、家庭、个人等。这正是物联网作为深度信息化的重要体现。另一个是终端设备层,提供人机接口。物联网虽然是“物物相连的网”,但最终是要以人为本的,还是需要人的操作与控制,不过这里的人机界面已远远超出现时人与计算机交互的概念,而是泛指与应用程序相连的各种设备与人的交互。图1为物联网网络构架。
图1 物联网网络构架
关键技术
一、感知层
传感器技术:感知物资信息 RFID技术:智能识别
微机电系统(MEMS):采集信息 GPS/GIS技术:全球定位/地理信息系统
二、网络层
无线传感器网络(WSN)技术
Wi-Fi(Wireless Fidelity,无线保真技术)
通信网、互联网、3G网络、IPV6(让世界的第一粒都拥有一个IP地址)
GPRS网络(基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接)
三、应用层
企业资源计划(ERP:Enterprise Resource Planning)专家系统(Expert System)
云计算(Cloud Computing)系统集成(System Integrate)行业应用(Industry Application)资源打包(Resource Package)
广电网络、NGB(下一代广播电视网)
应用领域
1.城市市政管理应用 2.农业园林 3.医疗保健 4.智能楼宇 5.交通运输
图2为物联网网络架构及物联网应用领域。
图2 物联网网络架构及物联网应用领域
基于ZigBee的无线传感器网络
物联网组网采用分层的通信系统架构,包括感知延伸系统、传输系统、业务运营管理系统和各种应用,在不同的层次上支持不同的通信协议。
无线传传感器网络简介
电系统(MEMS)、片上系统(SOC)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。
无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。
无线传感器网络(wireless sensor networks,WSN)是当前在国际上备受关注的、涉及多学科高度交叉、知识高度集成的前沿热点研究领域。它综合了传感器、嵌入式计算、现代网络及无线通信和分布式信息处理等技术,能够通过各类集成化的微型传感器协同完成对各种环境或监测对象的信息的实时监测、感知和采集,这些信息通过无线方式被发送,并以自组多跳的网络方式传送到用户终端,从而实现物理世界、计算世界以及人类社会这三元世界的连通。
所谓无线传感器网络由大量部署在目标区域内的,具备感知、无线通信与计算能力的微小传感器节点所构成的分布式网络系统。传感器网络节点的组成和功能包括如下四个基本单元:传感单元(由传感器和模数转换功能模块组成)、处理单元(由嵌入式系统构成,包括CPU、存储器、嵌入式操作系统以及节点应用程序等组成)、通信单元(由无线通信模块组成)、以及供电单元(电池、太阳能或其他方式)。传感器网络可以根据当时的情况通过自组织方式构成动态的网络拓扑结构。传感器网络节点间一般采用多跳的无线通信方式进行通信。传感器网络可以在独立的环境下运行,也可以通过网关连接到互联网,使用户可以远程访问。
无线网络技术按照传输范围来划分,可以分为无线广域网(WWAN),无线城域网(WMAN),无线局域网(WLAN)和无线个人域网(WPAN)。其中的无线个人域网就是所谓的短距离无线网络,各种短距离无线传输技术层出不穷:蓝牙(Bluetooth)、ZigBee、Wi-Fi、无线USB,无载波通信技术(UWB)等, 其中蓝牙(Bluetooth)、UWB和ZigBee是最受产业界关注的三种标准。Bluetooth虽然成本低,成熟度高,具有多种规范,但是其传输距离有限,仅为10米,只能组成最多8个节点的星状网,电池也仅能维持数周。UWB虽然可以实现高达几百Mbps的传输速率,但是其覆盖距离仅为10米,这决定了它主要被用作消费产品中的视频和高速数据解决方案,目前UWB没有网状网络能力。Wi-Fi虽然传输速度可以达到11Mbps,传输距离达到100米,但是其价格相对教昂贵,且功耗大,组网能力差。ZigBee技术专注于低成本,低功耗和低速率的无线通信市场,因此非常适合应用于物联网无线传感器网络中来。
ZigBee技术概述
ZigBee技术是一种短距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE 802.15.4无线标准研制开发的有关组网、安全和应用软件方面的通信技术。ZigBee协议规范使用了IEEE 802.15.4定义的物理层(PHY)和媒体介质访问层(MAC),并在此基础上定义了网络层(NWK)和应用层(APL)架构。
基于ZigBee技术的无线传感器网络应用在ZigBee联盟和IEEE 802.15.4组织的推动下,结合其他无线技术可以实现无所不在的网络。它不仅在工业、农业、军事、环境、医疗等传统领域具有极高的应用价值,而且在未来其应用更将扩展到涉及人类日常生活和社会生产活动的所有领域。IEEE 802.15.4标准 1.物理层(PHY)规范
物理层定义了物理无线信道和与 MAC 层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务是从无线物理信道上收发数据,物理层管理服务维护一个由物理层相关数据组成的数据库。物理层功能相对简单,主要是在硬件驱动程序的基础上,实现数据传输和物理信道的管理。数据传输包括数据的发送和接收;管理服务包括信道能量监测(energy detect,ED),链接质量指示(Link quality indication,LQI)和空闲信道评估(clear channel assessment,CCA)等。2.媒体介质访问层(MAC)规范
MAC 层提供两种服务:MAC层数据服务和 MAC 层管理服务。前者保证 MAC 协议数据单元在物理层数据服务中的正确收发,而后者从事 MAC层的管理活动,并维护一个信息数据库。
MAC 层的主要功能包括如下7个方面:
1.网络协调者产生并发送信标帧(beacon);
2.设备与信标同步;
3.支持RAN 网络的关联(association)和取消关联(disassociation)操作 4.为设备的安全性提供支持;
5.信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制;
6.处理和维护保护时隙(GTS)机制;
7.在两个对等的 MAC 实体之间提供一个可靠的通信链路。ZigBee技术简介
ZigBee 协议标准采用分层结构,每一层为上层提供一系列特殊的服务:数据实体提供数据传输服务;管理实体则提供所有其他的服务。所有的服务实体都通过服务接人点 SAP 为上层提供接口,每个 SAP 都支持一定数量的服务原语来实现所需的功能。ZigBee 标准的分层架构是在OSI 七层模型的基础上根据市场和应用的实际需要定义的。其中 IEEE 802.15.4—2003 标准定义了底层协议:物理层(physical layer,PHY)和媒体访问控制层(medium access control sub—layer,MAC)。ZigBee 联盟在此基础上定义了网络层(network layer,NWK),应用层(application layer,APL)架构。在应用层内提供了应用支持子层(application support sub—layer,APS)和 ZigBee 设备对象(ZigBee device object,ZDO)。应用框架中则加入了用户自定义的应用对象。ZigBee 协议的体系结构如图3所示。
图3 ZigBee 协议体系结构
ZigBee 的网络层采用基于 Ad Hoc 的路由协议,除了具有通用的网络层功能外,还应该与底层的 IEEE 802.15.4标准一样功耗小,同时要实现网络的自组织和自维护,以最大限度方便消费者使用,降低网络的维护成本。应用支持子层把不同的应用映射到 ZigBee网络上,主要包括安全属性设置、业务发现、设备发现和多个业务数据流的汇聚等功能。1.网络层(NWK)规范
网络层负责拓扑结构的建立和维护网络连接,主要功能包括设备连接和断开网络时所采用的机制,以及在帧信息传输过程中所采用的安全性机制。此外,还包括设备的路由发现和路由维护和转交。并且,网络层完成对一跳(one—hop)邻居设备的发现和相关结点信息的存储。一个ZigBee协调器创建一个新网络,为新加入的设备分配短地址等。并且,网络层还提供一些必要的函数,确保ZigBee的 MAC 层正常工作,并且为应用层提供合适的服务接口。2.应用层(APL)规范
在ZigBee协议中应用层是由应用支持子层、ZigBee 设备配置层和用户应用程序来组成的。应用层提供高级协议栈管理功能,用户应用程序由各制造商自己来规定,它使用应用层来管理协议栈。3.应用支持子层(APS)APS 子层通过 ZigBee 设备对象(ZD0)和制造商定义的应用对象所用到的一系列服务来为网络层和应用层提供接口。APS 子层所提供的服务由数据服务实体(APSDE)和管理服务实体(APSME)来实现。APSDE通过数据服务实体访问点(APSDE—SAP)来提供数据传输服务。APSME 通过管理服务实体访问点(APSME—SAP)来提供管理服务,它还负责对 APS 信息数据库(AIB)的维护工作。
基于ZigBee的无线组网技术
ZigBee网络体系
ZigBee网络中存在两种功能类型的设备,三种节点类型,三种拓扑结构及两种工作模式。
● 功能类型
ZigBee网络含全功能设备FFD(Full Function Device)和精简功能设备RFD(Reduced Function Device)两种功能类型的设备。全功能器件拥有完整的协议功能,在网络中可以作为协调器(Coordinator)、路由器(Router)和普通节点(Device)而存在。而精简功能器件旨在实现最简单的协议功能而设计,只能作为普通节点存在于网络中。全功能器件可以与精简功能器件或其他的全功能器件通信,而精简功能器件只能与全功能器件通信,精简功能器件之间不能直接通信。ZigBee网络要求至少有一个全功能设备作为网络协调器。
● 节点类型
ZigBee网络包含三种类型的节点,即协调器ZC(ZigBee Coordinator)、路由器ZR(ZigBee Router)和终端设备ZE(ZigBee EndDevice),其中协调器和路由器均为全功能设备(FFD),而终端设备选用精简功能设备(RFD)。
协调器:一个ZigBee网络PAN(Personal Area Network)有且仅有一个协调器,该设备负责启动网络,配置网络成员地址,维护网络,维护节点的绑定关系表等,需要最多的存储空间和计算能力。
路由器:主要实现扩展网络及路由消息的功能。扩展网络,即作为网络中的潜在父节点,允许更多的设备接入网络。路由节点只有在树状网络和网状网络中存在。
终端设备:不具备成为父节点或路由器的能力,一般作为网络的边缘设备,负责与实际的监控对象相连,这种设备只与自己的父节点主动通讯,具体的信息路由则全部交由其父节点及网络中具有路由功能的协调器和路由器完成。
● 拓扑结构
ZigBee网络支持星状网(Star Network),树状网(Cluster tree Network)和网状网(Mesh Network)三种网络拓扑结构如图2-1所示,依次是星状网络,树状网络和网状网络,在图4中的C表示PAN协调器,F表示全功能设备,R表示精简功能设备。
图4 星状网、树状网和网状网三种拓扑结构
星形网(Star)是由一个ZigBee协调器和一个或多个ZigBee终端节点组成的。ZigBee协调器必须是FFD,它位于网络的中心,负责发起建立和维护整个网络,其它的节点(终端节点)一般为RFD,也可以为FFD,它们分布在ZigBee协调器的覆盖范围内,直接与ZigBee协调器进行通信。星形网的控制和同步都比较简单,通常用于节点数量较少的场合。星型网络拓扑的最大优点是结构简单,无需其他路由信息,一切数据包均通过ZigBee协调器。其缺点是限制了无线网络的覆盖范围,很难实现高密度地扩展,最多支持两跳网络,适用于小型网络。目前为止,星形拓扑是最常见的网络配置结构,被大量应用在远程监测和控制终端设备的通信。
网络协调器要为网络选择一个唯一的标识符,所有该星型网络中的设备都是用这个标识符来规定自己的属主关系。不同星型网络之间的设备通过设置专门的网关完成相互通信。选择一个标识符后,网络协调器就允许其他设备加入自己的网络,并为这些设备转发数据分组。星型网络中的两个设备如果需要互相通信,都是先把各自的数据包发送给网络协调器,然后由网络协调器转发给对方。
树状网络(Cluster tree Network)由一个协调器和一个或多个星状结构连接而成,枝干末端的叶子节点一般为RFD,设备除了能与自己的父节点或子节点进行点对点直接通讯外,其他只能通过树状路由完成数据和控制信息的传输。ZigBee 协调器比网络中的其它路由器具有更强人的处理能力和存储空间。树状网络的一个显著优点就是它的网络覆盖范围较大,但随着覆盖范围的增加,信息的传输时延也会增大。
在建立树状网络时,ZigBee协调器建立网络后,先选择网络标识符,将自己的短地址设置为0,然后向它邻近的设备发送信标,接受其他设备的连接,形成树的第一级,此时ZigBee协调器与这些设备之间形成父子关系。与ZigBee协调器建立连接的设备都分配了一个16位的网络短地址。如果以终端设备的身份与网络连接,则ZigBee协调器分配一个唯一的16位网络地址;如果以路由器的身份与网络连接,则协调器会为它分配一个地址块(包含有若干16位短地址)。路由器根据它接收到的协调器信标的信息,配置并发送它自己的信标,允许其他的设备与自己建立连接,成为其子设备。由此可见,路由器转发消息时通过计算与目标设备的关系,从而决定向自己的父节点转发还是某个子节点转发。
网状网络(Mesh Network)一般是由若干个FFD连接在一起组成骨干网,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信,即允许网络中所有具有路由功能的节点直接互连。但它们中也有一个会被推荐为ZigBee协调器。网状网络是树状网络基础上实现的,与树状网络不同的是,它是由路由器中的路由表配合来实现数据的网状路由的。Mesh网是一种高可靠性网络,具有“自恢复”能力,它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择,但正是由于两个节点之间存在多条路径,它也是一种“高冗余”的网络。该拓扑的优点是减少了消息延时、增强了可靠性,缺点是需要更多的存储空间开销。
● 工作模式
ZigBee网络的工作模式可以分为信标模式和非信标模式两种。信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗,而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态。
在信标模式下,ZC负责以一定的间隔时间(一般在15ms-4mins之间)向网络广播信标帧,两个信标帧发送间隔之间有16个相同的时槽,这些时槽分为网络休眠区和网络活动区两个部分,消息只能在网络活动区的各个时槽内发送。
非信标模式下,ZigBee标准采用父节点为ZE子节点缓存数据,ZE主动向其父节点提取数据的机制,实现ZE的周期性(周期可设置)休眠。网络中所有的父节点需要为自己的ZE子节点缓存数据帧,所有ZE子节点的大多数时间都处于休眠状态,周期性的醒来与父节点握手以确认自己仍处于网络中,并向父节点提取数据,其从休眠模式转入数据传输模式一般只需要15ms。
简单的概括为:两种设备,三种节点类型,三种拓扑结构及两种工作模式。1.全功能设备FFD,精简功能设备RFD 2.协调器,路由器,终端设备
3.星状网,树状网,网状网
4.信标模式 ,非信标模式(信标模式可以实现网络中所有设备的同步工作和同步休眠,以达到最大限度地节省功耗;而非信标模式只允许ZE进行周期性休眠,ZC和所有ZR设备长期处于工作状态)。
图5为基于ZigBee的无线传感器网络在物联网中的应用。
图5 基于ZigBee的无线传感器网络在物联网中的应用
第四篇:物联网专业学生就业应具备要求[小编推荐]
物联网专业学生就业应具备哪些要求
随着物联网技术的不断成熟,物联网在各行各业中的实际应用也越来越多。真正的物联网人才却极其缺乏。不少高校也开始开设物联网专业工程。然而物联网工程专业毕竟是新兴专业,该专业学生需要具备一些硬性要求才会容易找工作。智能视觉物联网联盟指出,物联网专业毕业生就业需要具备工作技能、专业证书、团队合作能力等。
1.关于工作技能的硬性要求
首先,虽然物联网的范围很广,但是,没有哪一家公司会要求应聘者什么都懂,而是应该在大体了解的基础上,具备有某一方面的突出优秀能力,比如在软件开发方面,会要求精通C,C++,java,.NET等各种常用编程语言及数据库知识,而在硬件研发方面,则会对嵌入式系统开发,常用电路设计,各种接口技术有较高的要求。还有网络领域的工作人员,也应该熟悉各种网络协议及通信协议,如TCP/IP,zigbee,蓝牙,wifi等。
这些知识都是从事计算机,互联网相关行业应该了解的,在此基础之上,如果要从事物联网的核心工作,比如物联网架构工程师,物联网研发工程师以及云计算工程师等职位,则需要在RFID射频识别技术,云计算及大数据,M2M领域有一定的研究,对于刚毕业的本科学生而言,要达到这种水平是不容易的,可是这可以作为有志于在物联网领域深入发展的同学的一个努力的方向。
2.专业证书
虽然现在用人都提倡重能力轻证书,但一些跟工作联系紧密的证书还是或多或少能反映求职者一定的水平。目前国内较权威的物联网资格认证有全国物联网技术应用人才培养认证,CETTIC物联网工程师职业培训认证等,这些证书的报考条件一般都要求最低大专学历和一定的工作经验,考试内容偏向于应用层,实用性较强。
3.团队合作能力
物联网是一门综合产业,在一个公司中,某一个人是无法独立完成一整个物联网项目的,必须依靠整个团队的力量,每位成员各展所长,才能和谐发展,如果一个程序员将代码写得无法阅读,移植性差,就会给测试人员造成很大的麻烦,因此团队意识也是非常重要的。
常言道“君子藏器于身,待时而动”,这句话同样可以用在物联网专业的同学们身上,现在物联网还没有真正作为一个学科,一个独立的体系,当然也它也不可能真正独立,它的范围非常广,需要的知识技能比较多,同学们应该有选择性地储备专业知识,丰富自己的能力,到毕业时,才能顺应时势,投身到物联网产业的大潮中去。
第五篇:小论文摘要要求及规范
期刊论文(小论文)摘要应符合“拥有与论文同等量的主要信息”,包括:“研究目的、方法、结果、结论”四要素,研究目的应精炼。例一
基因选择的快速Fisher优化模型
摘要:基因选择是基因芯片数据分析中的一个重要问题,基因选择的主要困难在于基因数远远大于实验样本数。在Fisher优化模型的基础上,提出了快速Fisher优化模型,(将模型中……怎样改进),从而使得算法的计算规模主要依赖于样本数而不是特征数,大大提高了计算速度(计算速度提高到多少)。在公共数据中的实验表明该方法速度快,选择的基因对分类结果是有效的。
关键词:基因芯片;基因选择;特征选择;Fisher优化模型(顺序:范围从大到小)
例二
不同范围区域性提示下视觉空间注意的早期ERP研究
【摘 要】目的:采用提示2目标的视觉实验方式,通过事件相关电位(ERP)研究视觉空间注意中不同范围区域性提示下的脑内时程的动态变化.方法:被试为16名在校大学生,以大、中、小3种不同直径的圆圈作为注意范围的区域性提示,让被试完成视觉搜索任务,并记录反应时与ERP数据.结果:对于反应时而言,提示等级的主效应显著, F = 7.9, P = 0.001,表现出在大圈提示时,反应时最长,而在小圈提示时,反应时最短[小:(669 ±29)ms→中:(747 ±25)ms→大:(815 ±23)ms ];ERP早期成分的P1波幅则是在大圈提示时达到最大波幅为:(1.7 ±0.4)μV;而N1波幅在小圈提示时为最大,其值为:(-2.8 ±0.5)μV.结论:研究结果提示了以下电生理学证据:不同注意空间等级的改变调节了早期视皮层的神经活动,不同注意范围与早期的P1及N1成分相关.【关键词】视觉注意;事件相关电位;空间等级 例三
基于主成分分析的fMRI数据处理和分析
摘 要 基于血氧水平依赖(BOLD)的功能磁共振成像(fMRI)技术,具有较高的时间和空间分辨率,且能够无创伤性地多次重复实验,已成为脑认知(cognitive)科学研究中检测人脑神经活动信号的重要手段。由于fMRI信号的变化只有0.5-2%,如何从这些低信噪比的图像中准确、可靠地检测及定位功能激活信号,是基于fMRI脑认知研究中的关键问题。提出了采用基于核主分量分析与脉冲耦合神经网络相结合的图像分割算法,以核主分量分析去除图像中的离散点,结合脉冲耦合神经网络依据图像中各像素点的亮度特性进行聚类,有效地实现了图像分割。实验结果表明,该方法能有效的克服了传统的神经网络方法的不足,提高了算法的时间效能并增强了算法的鲁棒性。
关键词 功能磁共振成像 血氧水平依赖 图像数据处理 主成分分析