汽油发动机技术现状及发展趋势

时间:2019-05-15 07:23:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《汽油发动机技术现状及发展趋势》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《汽油发动机技术现状及发展趋势》。

第一篇:汽油发动机技术现状及发展趋势

汽油机控制技术发展现状及趋势分析

内燃机的发明,带动了汽车的发展,给世人在“行”上带来极大的便利,使得窨距离缩小,人们的工作速度得以提高。近年来随着电子技术的发展,又使汽车发动机如虎添翼,成为高新技术的集成。

一、世界汽油机技术发展现状

为了适应汽车对节油、环保、安全的需要,车用汽油机主要朝着更节油、更环保的方向发展,因此欧洲己执行欧Ⅳ标准。以下为国外在汽油机方面主要先进技术。

1.多气门技术:每缸3-5个气门(大多为4气门),可提高功率,改善燃烧质量,如捷达王5气门、丰田8A4气门等。

2.双顶置凸轮轴(D.HC)可提高转速、提升可靠性。

3.可变气门正时(VVT):根据不同转速调节气门时,可节省燃油,改善排放,如本田VTEC、丰田VVT-i等。

4.汽油机增压:可提高升功率,在排量不变的情况下,可提高功率,如帕萨特1.8T轿车。

5.可变进气道长度(VIM):在不同转速下使用不同进气道长度,保证在任何工况下都有较好的充气效率,如奥迪A6。

6.停缸技术:在输出功率减小时,使一部分气缸停止工作,可节省燃油,如通用开拓者EXT 2005款有8个气缸,需要时可使4个气缸一停止工作。

7.全铝发动机:使用铝缸体、缸盖、活塞等,可减小质量,节省燃油,如日本铃木1.3L、1.4L汽油机。

8.智能驱动气门(SVA):取代传统凸轮轴,每一个气门挺杆上有一个独立的驱动器,可以减少20%油耗及污染物,如:法国法雷奥公司已设计出样机,2009年可大批量投产。9.可变压缩比汽油机:将传输功率与压缩比控制功能进行整合,压缩比可变。2005年法国MCE-5公司己开发出样机。

10.汽油机直喷(GDI)和稀薄燃烧技术:将高压汽油直接喷射到气缸内,周围为稀薄混合气,实现分层燃烧,可提高燃料经济性,节油约20%,如丰田皇.冠3.0L V6汽油机(国产皇冠无GDI技术)。

11.可控燃烧速率系统(CBR):两个进气道,有一个是切向进气的,另一个是中性的。喷油器向两个进气道喷入等量的燃油。改变进气口封闭控制阀的位置,可调节气缸内空气涡流强度和混合气浓度,实现稀薄燃烧;

12.发动机控制用ECU已达32位,匹配参数超过6000个。

二、国内汽油机技术现状及发展水平

我国早期汽油机大多是引进和测绘仿制产品,如:一汽解放载货车用CA6102、BJ2020车用BN492Q、南汽轻型货车用6427等。之后随着中外合资企业的建立及技术引进,我国汽车行业已生产多种机型,例如:切诺基BJ498Q、BJ698Q(2.5L、4.0L);桑塔纳AEE(1.8L);帕萨特AWL(1.8L);北京现代伊兰特B4GB(1.8L);天津一汽夏利TJ376Q(LOL);长安奥拓JL368Q(0.8L);广州丰田凯美瑞(丰田2.4L);广州本田雅阁(2.0L、2AL、3.0L);广州本田飞度(1.3L、1.5L);东风日产(1.6L、1.8L、2.0L);一汽轿车引进技术生产的克莱斯勒CA488(2.2L);沈阳航天三菱引进的三菱4G63、4664(2.0、2.4L)和4669系列汽油机;东安动力引进的三菱4G1(1.3L、1.6L),4G9(1.8L、2.0L);东风悦达起亚千里马(1.6L),以及国内沈阳新光、保定长城等企业生产的491Q(丰田4Y),吉利生产的JL376(LOL)、JL479(1.3、1.50、JL481(1.8L)汽油机等。

在技术应用方面,大多数引进机型和合资企业生产的机型都采用一些国外先进技术。1.天津丰田8A、5A,东风本田,北京现代,奇瑞SQR372(0.8L)、SQR481Q(1.6L),神龙公司爱丽舍(1.6L)等都使用多气门和DOHC技术。

2.东风本田发动机,天津丰田发动机有限公司生产的花冠、皇冠汽油机,东风日产,北京现代等生产的汽油机型都引进可变气门技术(VTEC、VVT-i、CVVT等)。特别是奇瑞公司,在AVL公司帮助下开发的自主品牌1.6LSQR481H和2.0L SQR484H汽油机使用了VVT可变气门技术,吉利也开发出了带可变技术的自主品牌汽油机。

3.汽油机直喷(GDI)发动机国内尚未批量生产,但奇瑞公司在AVL公司帮助下开发的自主品牌2.0L SQR484J汽油机使用了GDI技术。

4.全铝发动机国内产品较多,如长安铃木雨燕1.3L汽油机、东风本田发动机的产品、上海大众POLO发动机等,奇瑞动力1.6L SQR481F(已投产)和SQR481 H及未投产的SQR484J、SQR681 V(2.4L)、SQR684V(3.0L)都是全铝发动机。

5.国内奇瑞公司已投产的自主品牌SQR481H(1.6L)具有CBR系统,奇瑞公司其他样机中不少机型也装有CBR系统。

6.国内引进的已投产机型中已有不少机型采用涡轮增压技术:如PASSAT 1.8T、宝来1.8T等;华晨金杯在德国FEV公司帮助下开发的1.8T汽油机,也是增压机型(配装中华轿车)。

7.停缸技术、智能气门、可变压缩比等技术尚未在国内生产的汽油机中采用。

8.发动机电喷管理系统(EMS)国内主要有联合电子有限公司、北京万源德尔福发动机管理系统公司,分别是中方与德国BOSCH公司和中方与美国德尔福公司的合资企业。同时,还有马瑞利、电装和摩托罗拉等企业生产。

9.汽油机电喷系统中传感器、电控喷油泵等国内己批量生产;汽油机排气系统中三效催化转化器及陶瓷芯等,国内己批量生产,如:大连华克吉来特、天津卡达克高新技术公司等生产三效催化转化器;在苏州的日本独资企业NGK(苏州)环保陶瓷有限公司生产国Ⅲ、国Ⅳ汽油机用三效催化转化器陶瓷芯等。

三、汽车产量持续增加引发系列问题

全球汽车总保有量将从目前的约8亿辆增加到2020年的12亿辆,21世纪中叶,将达38亿辆,其中,发展中国家汽车保有量将增长15倍以上。目前全球每年新生产的各种汽车约6400万辆,按平均每辆车年消耗10到15桶石油及石油制品计算,汽车的石油消耗量每年达85至127亿桶,约占世界石油产量的一半。石油资源的开采每年达几十亿吨,经过长期的现代化大规模开采,石油资源日渐枯竭,按科学家预测,地球上的石油资源如果按目前的开采水平,仅仅可以维持60到100年左右。2007年我国进口石油1.9亿吨,预计到2020年前后我国的石油进口量有可能超过日本,成为亚太地区第一大石油进口国。国务院发展研究中心预测,预计到2010年和2020年,我国汽车消耗石油为1.38亿吨和2.56亿吨,约占全国石油总消耗量的43%和67%。因此能源危机是我们必需面对的重要问题。

汽车拥有量的增长带来了许多问题,如健康威胁、环境污染、气候变化、能源短缺和交通拥挤等。目前空气污染在城区已经成为非常严重的问题,汽车的有害物排放对人类的生存环境形成了一种公害性的破坏,据资料显示,市区的大气污染物60%来自于汽车尾气。全球变暖、气候变化正在吸引人们更大的注意力,与之相对应的二氧化碳排放将成为汽车制造商要解决的主要问题。2010年左右,发展中国家能源的供需平衡问题将会导致世界石油价格的波动,在保证环保的同时,使用替代能源的汽车将成为汽车制造商开发的重点。2008年,欧盟要求轿车CO2排放达到140克/公里,对于汽油车,对应油耗将达到6升/100公里以下;2012年,CO2排放要求达到120克/公里。因此,降低油耗、降低排放将是汽车行业目前急需解决的问题。

四、汽油机技术的发展趋势

由于汽油机的燃油经济性比柴油机差,所以降低汽油机的能耗已经成为汽车界当前必须要解决的一个问题。具有理论空燃比的均质混合气的燃烧理论在火花点火发动机上被广泛使用,它的最大优点是可以实用三效催化器来降低CO、HC和NOx等废气的排放。不足之处是不能获得较高的燃油经济性,为了提高发动机的热效率和降低废气排放,燃烧技术在不断地发展。汽油机经历了由完全机械控制的化油器供油为主到采用电控喷射、缸内直喷、电辅助增压和电动气门、可变压缩比、停缸等技术的变化,汽油机发展的最终方案将采用综合汽油机和柴油机优点的燃烧控制技术。

目前最有代表性的三大汽油机技术是:

a.汽油直喷技术。开发车用具有汽油机优点同时具有柴油机部分负荷高燃油经济性优点的发动机是主要的研究目标。汽油缸内直喷是提高汽油机燃油经济性的重要手段,近些年来,以缸内直喷汽油机(Gasoliine Direct Injection, GDI)为代表的新型混合气形成模式的研究和应用,极大地提高了汽油机的燃油经济性。以日本为代表的非均质直喷技术面临燃烧稳定性和后处理等问题,同时以欧洲为代表的均质直喷技术正在兴起。

b.电动气门与无凸轮发动机。发动机可变气门正时技术(Variable Valve Timing, VVT)是针对在常规车用发动机中,因气门定时固定不变而导致发动机某些重要性能在整个运行范围内不能很好的满足需要而提出的。VVT技术在发动机运行工况范围内提供最佳的配气正时,较好地解决了高转速与低转速,大负荷与小负荷下动力性与经济性的矛盾,同时在一定程度在一定程度上改善了排放性能。随着环境保护和人类可持续发展的要求,低能耗和低污染已成为汽车发动机的发展目标。VVT技术由于自身的优点,日益受到人们重视,尤其是当今电子技术的飞速发展,促进了VVT技术从研究阶段向实用阶段发展。电动气门具有与电控喷射同等重要的意义,它将给发动机空气系统控制和循环过程管理带来一系列技术变革,如取消节气门、可变压缩比、部分停缸等。

c.燃烧方式的混合。传统的火花点火发动机的燃烧过程在火焰传播中,火焰前锋的温度比未燃混合气高很多。所以这种燃烧过程虽然混合气时均匀的,但是温度分布仍是不均匀,局部的高温会导致在火焰经过的区域形成NOx。柴油机的燃烧过程是扩散型的,燃烧过程中燃烧速率由混合速率决定,点火在许多点发生,这种类型的燃烧过程混合和燃烧都是不均匀的,NOx在燃烧较稀的高温区产生,固体微粒在燃料较浓的高温区产生。在均质充量压缩点燃(Homogeneous Charge Compression Ignition, HCCI)过程中,理论上是均匀的混合气和残余气体,在整个混合气体中由压缩点燃,燃烧是自发的、均匀的并且没有火焰传播,这样可以阻止NOx和微粒的形成。这种汽油机均质与柴油机压燃混合的燃烧方式,以燃料技术和控制技术为基础,综合汽油机和柴油机两种燃烧方式优点的均质压燃HCCI内燃机技术正在兴起。

汽车产量持续的发展面临着许多问题,降低燃油消耗量和二氧化碳排放将成为汽车制造商要解决的主要问题。随着汽油机电子控制系统性能的提高,相信在不久我们将使用上更节能、更高性能的汽车。

第二篇:天然气管道技术现状及发展趋势

天然气管道技术现状及发展趋势 世界天然气管道技术现状

(1)长运距、大管径和高压力管道是当今世界天然气管道发展主流

自20 世纪70 年代以来,世界上新开发的大型气田多远离消费中心。同时,国际天然气贸易量的增加,促使全球输气管道的建设向长运距、大管径和高压力方向发展。1990 年,前苏联的天然气管道的平均运距达到2 698 km。

从20 世纪至今,世界大型输气管道的直径大都在1 000 mm 以上。到1993 年,俄罗斯直径1 000 mm以上的管道约占63%,其中最大直径为1 420 mm 的管道占34.7%。西欧国家管道最大直径为1 219 mm,如著名的阿-意管道等。

干线输气管道的压力等级20 世纪70 年代为6~8 MPa;80 年代为8~10 MPa;90 年代为10~12MPa。

2000 年建成的Alliance 管道压力为12 MPa、管径为914 mm、长度为3 000 km,采用富气输送工艺,是一条公认的代表当代水平的输气管道。

(2)输气系统网络化

随着天然气产量和贸易量的增长以及消费市场的扩大,目前全世界形成了洲际的、多国的、全国性的和许多地区性的大型供气系统。这些系统通常由若干条输气干线、多个集气管网、配气管网和地下储气库构成,可将多个气田和成千上万的用户连接起来。这样的大型供气系统具有多气源、多通道供气的特点,保证供气的可靠性和灵活性。前苏联的统一供气系统是世界最庞大的输气系统,连接了数百个气田、数十座地下储气库及约1 500 个城市,管道总长度超过20×104km。目前欧洲的输气管网已从北海延伸到地中海,从东欧边境的中转站延伸到大西洋,阿-意输气管道的建成实际上已将欧洲的管网和北非连接起来。阿尔及利亚—西班牙的输气管道最终将延伸到葡萄牙、法国和德国,并与欧洲输气管网连成一体。

(3)建设地下储气库是安全稳定供气的主要手段

无论是天然气出口国家,还是主要依赖进口天然气的一些西欧国家,对建造地下储气库都十分重视,将地下储气库作为调峰、平衡天然气供需、确保安全稳定供气的必要手段。截止到1998 年,全世界建成储气库605 座,总库容575.5亿立方米、工作气量307.7立方米。工作气量相当于世界天然气消费量的11%,相当于民用及商业领域消费量的44%。2001 年美国的储气库总工作气量约120立方米,预计到2010 年储气能力将达到170立方米。国外天然气管道在计量技术、泄漏检测和储存技术等方面取得了一些新进展

(1)天然气的热值计量技术 世纪80 年代以后,热值计量技术的应用在西欧和北美日益普遍,已成为当今天然气计量技术的发展方向。天然气热值计量比体积和质量计量更为科学和公平,由于天然气成分比较稳定,按热值计价可以体现优质优价。天然气热值的测定方法有两种:直接测定法和间接计算法。近几年,天然气热值的直接测量技术发展较快,特别是在自动化、连续性、精确度等方面有了很大提高。

(2)天然气管道泄漏检测技术—红外辐射探测器

目前,美国天然气研究所(GRI)正在进行以激光为基础的遥感检漏技术研究,该方法是利用红外光谱(IR)吸收甲烷的特性来探测天然气的泄漏。该遥感系统由红外光谱接收器和车载式检测器组成,能在远距离对气体泄漏的热柱进行大面积快速扫描。现场试验表明,检漏效率比旧方法提高50%以上,且费用大幅度下降。

(3)天然气管道减阻剂(DRA)的研究应用

美国Chevron 石油技术公司(ChevronPetroleum Technology Co)在墨西哥湾一条长8 km、.152mm 的输气管道上进行了天然气减阻剂(DRA)的现场试验。结果表明,可提高输量10%~15%,最高压力下降达20%。这种减阻剂的主要化学成分是聚酰胺基,通过注入系统,定期地按一定浓度将减阻剂注入到天然气管道中,减阻剂可在管道的内表面形成一种光滑的保护膜;这层薄膜能够显著降低输送摩阻,同时还有一定的防腐作用。

(4)天然气储存技术

从商业利益考虑,国外管道公司非常重视使大型储气库垫底气最少化的技术研究。目前,正在研究应用一种低挥发性且廉价的气体作为“工作气体”来充当储气库的垫底气。

(5)管道运行仿真技术

管道在线仿真系统的应用可有效地提高管道运行的安全性和经济性。管道计算机应用表现在3 个方面:管道测绘及地理信息系统、管道操作优化管理模型和天然气运销集成控制系统。仿真技术在长输管道上的应用不仅优化了管道的设计、运行管理,而且为管输企业带来巨大的经济效益。目前,国外长输管道仿真系统主要分为3 种类型:一是用于油气管道的优化设计、方案优选;二是用于运行操作人员的培训;三是管道的在线运营管理。如美国最大的天然气管道公司之一的Williams 管道公司,采用计算机仿真培训系统在不影响正常工作的情况下即可完成对一线工人的上岗培训,大大缩短了培训时间,节约大量费用,比传统的培训方式提高效率约50%。

(6)GIS 技术在管道中的应用

随着管道工业自动化的发展,GIS(地理信息系统)在长输管道中得到了日益广泛的应用。它融合了管道原有的SCADA 系统自动控制功能,美国、挪威、丹麦等国家的管道普遍使用GIS 技术。目前,该技术已实现地理信息、数据采集、传输、储存和作图统一作业,可为管道的勘测、设计、施工、投产运行、管理监测、防腐等各阶段提供资料。技术发展趋势

(1)高压力输气与高强度、超高强度管材的组合是新建管道发展的最主要趋势

高压气管道是指运行压力在10~15 MPa 之间的陆上天然气管道。根据专家研究成果,年输量在10亿立方米以上时,采用高压输气可节省运输成本。当运输距离为5 000 km、年输量在15~30亿立方米之间时,采用高压输气比传统运输方式可节约运输成本20%~35%。采用高压输气可减小管径,通过高钢级管材的开发和应用可减小钢管壁厚,进而减轻钢管的重量,并减少焊接时间,从而降低建设成本。例如采用管材X100 比采用X65 和X70 节约费用约30%,节约管道建设成本10%~12%。

目前X100 管道钢管已由日本NKK、新日铁、住友金属、欧洲钢管等公司开发出来。另外,复合材料增强管道钢管正在开发,即在高钢级管材外部包敷一层玻璃钢和合成树脂。采用这种管材,可进一步提高输送压力,降低建设成本,同时可增加管输量,增加管道抵抗各种破坏的能力和安全性。当管材钢级超过X120 及X125 时,单纯依靠提高钢级来减少成本已十分困难,必须采用复合材料增强管道钢管。X100 及以上管道钢管目前还未得到商业应用的主要原因是对材料性能、安装技术和现场试验还需进一步验证和更好的了解。

(2)高压富气输送技术及断裂控制

高压富气输送是指在输送过程中采用高压使输送气体始终保持在临界点上,保证重组分不呈液态析出。采用高压富气输送能取得很大的经济效益,但富气输送时天然气的热值较高,要求管材不但能防止裂纹的启裂,而且还要具有更高的防止延性裂纹扩展的止裂韧性。以Alliance 管道为代表的高压富气输送是天然气输送技术的重大创新,其断裂控制是该管道的关键技术之一。

深入了解高钢级管道钢管的断裂控制是未来以低成本建设管道的前提。由ECSC、CSM、SNAM 和European 联合进行的项目,就是研究大口径X100管道在15 MPa 的高压下的断裂行为。

(3)多相混输技术 世纪70 年代,各发达国家相继投入了大量资金和人力,进行多相流领域的应用基础与应用技术研究,取得了不少成果。目前,这些成果已在上百条长距离混输管道上得到了应用。

近年来,英国、美国、法国及挪威等国相继建成了不同规模的试验环道,采用多种先进测量仪表和计算机数据采集系统,在大量高质量的试验数据基础上进行多相流研究。已有的多相流商业软件中,著名的OLGA 软件可以进行多相流稳态和瞬态流动模拟。

(4)天然气水合物(NGH)储运技术

据专家保守估计,世界上天然气水合物所含天然气的总资源量约为0.018亿亿立方米~0.021亿亿立方米,能源总量相当于全世界目前已知煤炭、石油和天然气能源总储量的两倍,被认为是21 世纪最理想、最具商业开发前景的新能源。天然气水合物潜在的战略意义和经济效益,已为世界许多国家所重视。目前,世界范围内正在兴起从海底开发天然气水合物新能源的热潮。虽然目前世界上还没有高效开发天然气水合物的技术,但许多国家已制定了勘探和开发天然气水合物的国家计划。美国1998 年将天然气水合物作为国家发展的战略能源列入长远计划,准备在2015 年试开采。日本、加拿大、印度等国都相继制定了天然气水合物的研究计划。

根据目前国外对天然气水合物技术的研究,可以得出几点共识:一是天然气水合物在常压、-15~-5℃的下储存在隔热容器中可长时间保持稳定;二是对于处理海上油田或陆上边远油田的伴生气,该技术的可行性优于液化天然气、甲醇和合成油技术。该技术安全且对环境无污染;三是天然气水合物技术的成本比液化天然气的生产成本约低四分之一;四是采用天然气水合物技术可以对天然气进行长距离运输。国内天然气管道技术现状

西气东输代表了目前我国天然气管道工程的最高水平。西气东输管道设计输量为120×108m3/a;管道全长3 898.5 km;管径1 016 mm;设计压力10MPa;管道钢级L485(X70);全线共设工艺站场35座,线路阀室137 座,压气站10 座。目前我国天然气管道的技术水平分析如下:

(1)采用的设计和建设标准与国际接轨。

(2)采用卫星遥感技术、GPS 系统,优化管道线路走向。

(3)采用国际上通用的TGNET、SPS、AutoCAD等软件,进行工艺计算、特殊工况模拟分析和设计出图。

(4)管材采用高强度、高韧性管道钢,主要有X52、X60、X65 和X70,国内有生产大口径螺旋缝埋弧焊钢管和直缝钢管的能力。

(5)管理自动化、通信多种方式并用。运营管理采用SCADA 系统进行数据采集、在线检测、监控,进行生产管理和电子商务贸易;通信采用微波、卫星和租用地方邮网方式,新建管道将与国际接轨,向光缆通信发展。

(6)管道防腐。管道外防腐层主要采用煤焦油瓷漆、单层环氧粉末、双层环氧粉末、聚乙烯防腐层(二层PE)和环氧粉末聚乙烯复合结构(三层PE)。管道内涂层主要采用液体环氧涂料。

(7)天然气计量。我国早期建设的管道天然气计量大都采用孔板计量;而近年新建的几条输气管道采用超声波流量计。

(8)主要工艺设备。目前国内输气管道输气站主要工艺阀门大都采用气动球阀,今后新建管道将以采用气-液联动球阀为主。国内在役输气管道采用的增压机组有离心式和往复式压缩机,驱动方式有燃驱和电驱;将来我国的长距离输气管道主流机型采用离心式,在有电源保证的条件下采用变频电机驱动为发展方向。

(9)管道施工。目前我国的管道建设引进了国际上通行的HSE 管理技术,采用了第三方监理的机制;管道专业化施工企业整体水平达到国际水平,装备有先进的施工机具,如:大吨位吊管机、全自动焊机等;掌握了管道大型穿(跨)越工程的施工技术,如水平定向穿越技术、盾构穿越技术。

(10)优化运行。目前在役输气管道利用进口或国产软件进行在线或离线不同工况模拟,以确定既能满足供气需求,又使单位输气成本最低的运行操作方案。差距分析

我国大部分输气管道建于20 世纪60~70 年代,与国外发达国家和地区完善的供气管网相比有很大的差距,管道少、分布不均、未形成全国性管网;管径小,设计压力低,输量少,不能满足目前增长的市场需求。

第三篇:浅谈钻井技术现状及发展趋势

浅谈钻井技术现状及发展趋势

【摘要】随着油田的深入开发,钻井技术有了质的发展,钻井工艺技术研究、破岩机理研究、固控技术研究、钻井仪表技术研究、保护油气层钻井完井液技术研究以及三次采油钻井技术等都取得了科研成果,施工技术逐渐多样化,目前已在水平井、径向水平井、小井眼钻井、套管开窗侧钻井、欠平衡压力钻井等方面获得了突破。一些先进的钻井技术走出国门,走向世界,如:计算机控制下套管技术、套管试压技术、随钻测斜技术、密闭取心技术、固控装备、钻井仪表、钻井液监测技术、MTC固井技术及化学堵漏技术等,本文就国内钻井技术的现状及发展趋势进行分析。

【关键词】钻井技术;发展趋势;油田开发

引言

通过钻井技术及管理人员的不懈努力,钻井硬件设施已经比较完善,很多钻井公司配备了先进的钻井工艺实验室、固控设备实验室、钻井仪表实验室、油田化学实验室、高分子材料试验车间、全尺寸科学实验井等,这些硬件设施满足了各种钻井工程技术开发与应用的需要。钻井技术也有了长足发展,具备了世界先进水平,钻井技术的进步为油田科技事业的发展做出了积极的贡献,并取得了良好的经济效益和社会效益,如TZC系列钻井参数仪作为技术产品曾多次参与国内重点探井及涉外钻井工程技术服务,并受到外方的认可。多年来,由于不断进行技术攻关研究与新技术的推广应用,水平井钻井技术迅速提高。水平钻进技术是在定向井技术基础上发展起来的一项钻进新技术,其特点是能扩大油气层裸露面积、显著提高油气采收率及单井油气产量。对于薄油层高压低渗油藏以及井间剩余油等特殊油气藏,水平井技术更具有明显的优势。

1、钻井技术发展现状

从世界能源消耗趋势看,还是以油气为主,在未来能源消耗趋势中,天然气的消耗增加较快,但是在我国仍然以石油、煤炭作为主要能源。尽管如此,我国的油气缺口仍然很大,供需矛盾很突出,60%石油需要进口,从钻井的历史看,我国古代钻井创造了辉煌历史,近代钻井由领先沦为落后,现代钻井奋起直追,逐步缩小差距,21世纪钻井技术有希望第二次走向辉煌。随着钻进区域的不断扩大及钻井难度的不断增加,各种新的钻井技术不断出现,目前,水平井钻井技术逐渐成为提高油气勘探开发最有效的手段之一。各种先进的钻井技术在油田开发中显示出了其优越性,新技术、新工艺日益得到重视和推广应用。例如:旋转钻井技术,是目前世界上主要的钻井技术,旋转钻井方式有以下几种:转盘(或顶驱)驱动旋转钻井方式、井下动力与钻柱复合驱动旋转钻井方式(双驱)、井下动力钻具旋转钻井方式、特殊工艺旋转钻井方式:欠平衡钻井、套管钻井、连续管钻井、膨胀管钻井等、冲旋钻井方式(空气锤钻井等)。其中,冲击旋转钻井就是在普通旋转钻井钻头上部接一个冲击器。冲击器(有液动冲击器,气动锤等)是一种井底动力机械,依靠高压钻井流体,推动其活塞冲锤上下运动,撞击铁砧,并通过滑接套传递给钻头,钻头在冲击动载和静压回转的联合作用下破碎岩石。冲击力不同于静压力,它是一种加载速度极大的动载荷,作用时间极短,岩石中的接触应力瞬时可达最大值并引起应力集中,岩石不易产生塑性变形,表现为脆性增加,岩石易形成大体积破碎,提高钻井速度。从破岩机理来看,空气锤钻井主要依靠空气锤活塞对钻头的高频冲击作用破岩,而不需要采用大钻压迫使钻头吃入地层破岩。因此,钻井作业中,空气锤钻井技术是采用低转速(20~30rpm)、小钻压(5~10kN)及高频震击破岩方式的钻进技术,既能有效满足井斜控制要求,又能大幅度提高机械钻速,是一种比较理想的防斜打快钻井技术。

2、与钻井技术相关难题分析

(1)针对我国复杂深井和超深井钻井工程中面临的严重井斜和低效率等技术难题,应积极组织优势力量,从客观(地层各向异性)和主观(垂钻系统)两个方面进行技术攻关研究,以期尽快获得具有自主知识产权的先进控制工具、科学计算软件及智能钻井系统等。随着材料、信息、测量与控制等相关学科领域的发展,钻井与油气井工程技术不断朝着信息化、智能化及自动化的方向发展,如旋转导向钻井系统、智能完井等。应积极发展膨胀管技术,以便彻底革新井身结构,推动油气井工程的技术革命。这不仅能够大幅度提高石油工程效率和效益,而且能够为不断创造人类“入地、下海”的新纪录提供高技术支持。

(2)复杂结构井、深井超深井、高危气井及特殊工艺钻井等技术系列,在20世纪90年代已得到迅速发展与应用。进入21世纪后,这些技术系列仍是油气资源勘探与开发所需要的关键技术系列,并将得到进一步发展与提高。与国外先进水平相比,我国在这些技术方面整体上仍存在较大的差距。国外先进的自动垂钻系统,虽然可以在昂贵的复杂深井和超深井垂直钻井工程中发挥有效作用,但目前的技术水平仍在使用条件上具有一定的局限性,在实际工作中应注意对其进行科学评估与合理选用。

(3)钻井逐渐与录井、测井及地震等信息技术融为一体,以有效地解决钻井过程中的不确定性问题,从而可提高油气钻探与开发的效果和效益,如LWD和SWD等技术即为典型例证。

3、油气钻井技术发展趋势

油气井包括普通结构井和复杂结构井。复杂结构井包括多分支井、大位移井、水平井、复杂地条件下的深井超深井、高危气井、高温高压气井等。地下环境的复杂性及其不确定性(地应力、地层压力、各向异性、可钻性、理化特性、不稳定性等地层特性十分复杂和异常)给油气钻探造成极大困难:钻井事故多、速度慢、质量差、效益低(成本高),严重制约了油气勘探开发的步伐。目前,钻井复杂深井油气钻探难度很大,钻井技术正在根据实际需求,不断攻克难关,未来钻井技术的发展趋势:大位移井技术在我国逐步应用,采用大位移井技术已经开发了南海西江24-1油田和流花11-1油田;欠平衡钻井技术正在各大油田推广应用;国外已经成熟的CTD(连续管钻井)技术,我国也逐渐开始常识应用;膨胀管钻井技术和套管钻井技术也有了实质性发展;旋转导向钻井技术正在研制中;钻井向地球的更深处钻探、井身结构有重大革新、挑战大位移井延伸极限、钻井的信息化与智能化发展、井下测量与可视化计算。

结束语

经过历代钻井人员的努力,国内各油田钻井队伍不断壮大,钻井装备水平逐渐提高,生产管理水平实现现代化,众多先进钻井技术已经达到世界先进水平。但是,随着油田开发的不断深入,油田开采难度逐渐加大,勘探开发有了更高的要求,这给钻井技术带来了新的挑战,钻井难度不断加大。相信在钻井人员在苦难面前一定能够正确面对,一定能够不断的进行技术创新和技术进步,一定能够不断解决世界性难题,为油田勘探开发打下良好的基础作用。

参考文献

[1]沈忠厚,黄洪春,高德利.世界钻井技术新进展及发展趋势分析[J].中国石油大学学报(自然科学版),2009年04期

[2]李东方.我国石油钻井技术现状及发展趋势初探[J].化工管理,2014年08期

第四篇:国内汽车发动机缸体铸件铸造技术发展趋势

国内汽车发动机缸体铸件铸造技术发展趋势 吴殿杰

(机械工业第九设计研究院有限公司)

提要:介绍了国内发动机缸体铸造工艺和生产设备情况,同时指出了缸体铸件的熔炼、造型、清理等铸造技术的发展方向,特别介绍了代表未来先进水平的铝镁合金压铸技术、计算机模拟技术和快速成形技术的研究应用情况。

关键词:汽车发动机;缸体;铸造技术;发展趋势;铸件 1国内车用发动机市场需求

我国汽车产业近年来发展迅速,主要汽车企业(集团)2011年年底形成整车产能1 841万辆,相应发动机产能已达到年产1 671万台。随着社会经济快速发展和人民生活水平不断提高,我国汽车国产化进程不断加快,汽车消费需求旺盛,汽车保有量保持快速增长趋势。2006年至2010年,汽车保有量年均增加951万辆;据分析,目前中国的汽车保有量为7 000多万辆,到2020年将达到2亿辆,也就是每年将净增1 300万辆,考虑到汽车报废等因素,每年净增量将在2 000万辆左右。巨大的汽车市场保有量,必将促进汽车发动机缸体市场的大发展,表1为2007~2020年国内汽车发动机缸体铸件生产及预测情况。2国内发动机缸体铸件铸造工艺及生产设备 2.1熔化工艺和设备

缸体铸造所用的熔炼设备大多为冲天炉—中频感应炉双联熔炼,也有采用中频感应炉—中频感应炉双联熔炼,而使用变频感应炉作为保温炉的企业亦在不断增加。为了节能和环保,部分企业的冲天炉采用水冷热风除尘方式,用具有高发热值的铸造焦取代冶金焦,以提高铁液温度,保证铁液质量,增强熔化效率。一汽铸造公司的冲天炉熔化过程控制采用微机等集散式控制系统,冲天炉熔炼铁液的检测采用测温仪、碳当量检测仪和化学成分直读光谱仪等。从掌握的汽车行业铸造厂资料来看,哈尔滨东安机械厂、上汽通用和安徽奇瑞等许多车间的熔化设备多数以中频炉为主。当然,熔化设备的选择主要考虑当地的能源供应状况;但从熔炼质量看,这些熔炼设备都能满足供货需求,与世界先进水平基本接近。随着工业废钢的生产量增加,国内已经采用以废钢增碳的熔化工艺来生产缸体等薄壁高强度合金铸铁件,这为提高铸件质量和稳定生产提供了可靠的保证。一汽铸造公司使用国产10 t中频熔化炉,采用废钢增碳熔化技术生产高强度灰铸铁,铸件各项指标均达到国际同类水平,抗拉强度达230-320 MPa,硬度达180-220 HB,内腔清洁度要求小于3 000 mg。

总之,国内熔化设备的水平不断提高,不论是冲天炉还是电炉,均已接近世界先进水平。关键的电器控制元件引进后,电炉产品的总体水平已满足生产要求,熔化效率都有提高,但在运行过程中仍会出现小问题,有待设备生产厂家进一步降低设备故障率。

目前,大批量流水线生产的汽车铸造行业采用大吨位中(变)频炉熔化也是一种趋势。如安徽芜湖奇瑞60万台发动机缸体铸造及原一汽大宇发动机有限公司铸铁厂(现为上海通用烟台动力)熔炼炉和保温炉全部采用美国应达8 t容量的中频炉和20 t容量的保温炉。近10年来,随着静态变频装置的发展,其效率和安全性能不断提高而投资呈逐年下降的趋势,使得铸造厂采用中频感应电炉来代替工频感应电炉熔炼铁合金和非铁合金变得越来越普遍。目前,国内几乎停止制造工频坩埚式感应电炉。另外,采用高功率密度的中频感应电炉的熔化时间较工频炉大大缩短,常见配置见表2。表2中(变)频电源与电炉的配置方式 2.2造型工艺和设备

缸体是发动机上最关键、最复杂的铸件,其壁厚最薄处往往不到3 mm,缸体铸件生产应用最广的仍然是湿型粘土砂,具有成型性能好、能耗低、噪音小、污染少、效率高、运行可靠等优点的静压造型线及气冲造型线使用较为广泛。近年来,国内外造型线制造厂家对造型机的不断改进,先后已出现气冲加压实、气流增益气冲加压实、静压加压实、主动多触头压实、成型挤压等加砂方式,砂型硬度更加均匀化,成为缸体铸件生产首选的造型设备。另外,对于发动机缸体铸件年产量万台左右的厂家,如潍柴四川柴油机厂和康明斯四川五粮液等大中型柴油机缸体铸造企业,均采用pepset自硬砂工艺和三乙胺冷芯盒工艺,这也是节能低碳的最佳选择。国内清华大学、济南铸锻所等早已研制静压造型线,苏州铸造机械厂和保定维尔的静压造型线以及无锡华佩线已有数条投入使用,但他们在整线性能和铸型质量一致性方面还显得不足。因此,国内汽车铸件生产所用造型线多以进口为主,济南铸造锻压机械研究所捷迈铸造工程公司为扬动股份有限公司提供了一条砂箱尺寸为1 000 mm×750 mm×320 mm的静压造型线,该线主机选用德国HWS公司的静压造型机,辅机由国内提供,是国内单主机布线生产率最高的造型线,代表了当今世界的最高造型技术水平。气冲造型问世几十年,其技术发展也在不断提高和进步,与其它现代化湿型砂造型方法一样,都是追求提高砂型紧实的均匀性,从而保证砂型表面光洁,尺寸精确,内部致密。为保证这一点,国外近几年又有了新发展,见表3。表3国外造型线发展趋势 2.3制芯工艺和设备

目前,国内汽车铸造厂缸体生产所用砂芯如水套砂芯、曲轴箱砂芯、缸筒与顶端砂芯、前后端面砂芯等依各厂条件不同,分别采用冷芯盒制芯、热芯盒制芯或覆膜壳芯制芯。冷芯盒工艺因其芯砂流动性、溃散性、生产率、节能和砂芯精度优于其它制芯工艺,在国内汽车发动机缸体铸造行业得到广泛应用。从今后趋势看,其应用范围将不断扩大。

另外,采用锁芯工艺,利用砂芯上开设的工艺孔,二次填砂固化,使多个砂芯组合为一个整体组合砂芯,然后整体涂料、烘干,这样铸件尺寸精度可大大提高,总体尺寸误差不超过0.3 mm。多数厂家采用计算机控制的“制芯中心”使全部制芯过程实现自动化。

制芯等设备主要有德国兰佩冷芯制芯机、西班牙洛拉门迪制芯中心、日本浪速等,国产热芯设备有单工位、两工位、四工位等,壳芯设备有K763/874壳芯机等,可满足复杂、薄壁、高精度铸件对砂芯质量的要求。2.4砂处理工艺和设备 2.4.1粘土湿型砂处理

砂处理工艺对铸件产量和质量至关重要。在大批量流水线生产条件下,型砂周期循环使用,国内汽车行业都非常重视反复使用过程中型砂性能的变化规律,力求选择好的砂处理工艺流程,并采用逐级多点检测和自动控制。随着高压、气冲及静压造型工艺对型砂要求严格性的不断提高,相当多厂家进口了大容量高速混砂设备,如一汽二铸厂采用2套200t/h砂处理单元,分别都配有美国国家工程公司辛普森22G高效混砂机和连续双盘冷却器,整个系统配有各种检测仪器,通过中央控制室模拟控制;哈尔滨东安发动机公司和天津内燃机厂等引进日本新东公司SSD型砂处理系统,回砂采用测温加水(MIA)和测湿加水(MIC)装置以及型砂成型性控制仪,配以先进的检测系统,通过自动化监控向静压造型线提供合格的型砂;上海通用、烟台动力、安徽奇瑞等公司采用塔式结构的砂处理单元,使用国外公司的高效混砂机,旧砂冷却系统以及计算机控制系统,并将旧砂破碎、磁选、筛分、增湿冷却、辅料定量、混砂等工艺布置在24 m×24 m×25 m左右的空间内,这也是目前国外较先进的布置形式。

常州法迪尔克公司开发的MXC 30~120 t/h系列变频式冷却混砂机实现了混砂机创新性的突破,在沈阳华晨、常柴股份等20余家发动机铸造厂得到推广。其砂处理系统布置简单,减少了设备、厂房的基础投入;采用调速变频,降低能耗,型砂混制更均匀;充分发挥膨润土的效率,降低加入量,有效控制型砂温度。表4为部分铸造公司选用的砂处理设备参数。表4部分铸造公司选用的砂处理设备参数

2.4.2粘土湿型砂旧砂(混合型旧砂)热法再生处理线 国内一些汽车发动机铸造厂由于使用砂芯数量较多,落砂时有大量溃散砂芯(这些砂芯几乎都是树脂砂芯)流入到旧砂中,使旧砂量远远超过砂系统的容纳量,迫使必须抛弃大量的旧砂以保持砂处理系统平衡,在所抛弃的旧砂中,不仅有芯头、清理的废砂以及除尘细粉,还有许多落砂时不易破碎的型砂块,形成混合型旧砂。如果把这种混合型旧砂作为废砂(废弃物)抛弃,不仅造成了资源浪费,而且废弃旧砂堆放既占场地,又污染环境,还需大量的运输费用。为减少这类混合型旧砂的产生,有的发动机缸体铸造厂采用热法再生:如哈尔滨东安汽车发动机公司引进意大利的热法再生设备已在生产中应用;一汽铸造公司引进日本热法再生和机械再生结合技术,处理芯砂和型、芯砂混合砂已在生产中得到应用。粘土湿型旧砂再生技术的应用近年来有了突破,实践证明湿型粘土旧砂经热法再生后的LOI值、热膨胀率、发气量、角形系数及灰分含量等指标都优于新砂。但就目前国内铸造行业现状而言,粘土湿型砂热法再生技术的推广仍不如预期的那么广泛,仅有宜宾五粮液康明斯发动机缸体铸造厂以及东风、一拖等大型铸造厂、长三角地区的吴江、昆山等地建有热法焙烧炉用于旧砂再生。最近国外流行一种集铸造与热处理于一体,即落砂、再生和热处理三合一的工艺,国内已陆续有一些采用自硬砂工艺生产铝缸体的铸造厂在落砂清理工序中推广这种工艺。在焙烧炉中,砂型和砂芯的树脂粘结剂所含有的许多能量在与炉中高温及富氧气氛接触燃烧后会被释放,而伴随着粘结剂的燃烧,砂型和砂芯中的型砂就会散落下来。炉顶安装的轴流风扇产生的高速气流向下吹向缸体铸件,将散落的型砂带向炉底。高速气流流过不规则形状的缸体铸件会产生压差,这种压差引起铸件内部和外部的气流扰动,从而将松动的型砂带走。与此同时,高速风扇也使炉内气流分布达到最佳状态,从而使炉内温差保持在很小的范围内。铸件从清洁铸造三合一系统出来后,在完成了固溶热处理的同时,型砂和芯砂都已去除干净。型(芯)砂在漏斗形炉底上被收集在一起。炉底装有流态床,用于对型(芯)砂进行最后清理。粘结剂残留的微粒被分离并被排放。型(芯)砂在炉内被完全再生,经过气力输送到造型、制芯工部。炉内废气集中排放,通过旋风分离器、灼烧器、换热器,最后经过袋式过滤除尘器,清洁后的气体才被排放到大气。

总之,新建铸造工厂必须考虑旧砂再生处理;对已建成投产的铸造工厂,可增加旧砂再生,或将旧砂集中到就近专业处理工厂再生后使用。这已经是一种发展趋势,是国家节能减排、可持续发展的需要。2.5清理工艺和设备

目前,缸体铸件经去除浇冒口后,在清理线上打磨外表面,然后进入鼠笼式抛丸室清理,已是一种常规工艺。生产多品种缸体时,部分厂家采用夹持式高效抛丸清理机进行抛丸。普遍采用各种自动化和机械化专用清理线和高效缸体鼠笼抛丸机以及机械手对缸体进行整体清理,然后用手工对缸体逐个精整及吹净水套内腔残留物。经尺寸检查,气密性试验,铣加工定位点及终检后,进行涂漆或其它防锈处理,成为合格缸体铸件。以钢丸代替铁丸进行抛丸清理,采用机器人分拣缸体铸件,采用浇冒口去除机去除浇冒口以及采用X射线和超声波探伤仪检验内部缺陷等方法已为越来越多的厂家采用。天津丰田等铸造厂都对金属炉料进行抛丸、破碎、净化和称量,以提高熔化效率和铁液质量。表5为国内现有抛丸清理设备的主要技术参数。2.6检测技术和装备

国内大批量生产发动机铸件的厂家都拥有先进的检测仪器和严格的质量保证体系。一般都采用先进的直读光谱仪和红外碳硫仪进行成分检测与控制,利用先进的电子金相显微镜进行精确的金相组织分析,先进的电子拉力试验机可以进行各种金属材料的拉伸、压缩、弯曲等试验,采用三坐标测量机对缸体铸件、模具、芯盒进行自动精确测量,检测水平一直在国内同行业中领先。表6为某铸造厂铸件检测设备及其主要技术参数。

2.7压铸工艺和设备 2.7.1铝合金压铸件

随着人们对环保、轻量化的要求日益提高,汽车发动机缸体逐渐转向采用压铸生产。

目前,发展迅速的有广州东风本田发动机公司、重庆长安汽车集团、长安铃木汽车公司、上海乾通汽车附件公司(3 550 t/年)、乔治费歇尔(苏州)有限公司以及哈尔滨东安动力公司等;此外,长春一汽集团(2 700 t/年)、重庆渝江压铸集团、宜兴江旭铸造公司(3 200 t/年)、广东鸿图科技公司(3 000 t/年)、宁波合力模具科技公司、徐航压铸有限公司、重庆渝美合资公司、重庆蓝黛实业公司以及高要鸿泰精密压铸有限公司等均引进大型压铸机自动生产线生产发动机缸体等铝合金压铸件。由传统铸造方法转向压铸法生产铝合金汽车缸体已经成为一个发展趋势,仅2008一个,国内不同厂家从布勒公司引入了7条2 700 t级别的铝合金发动机缸体生产线。由此可见,我国汽车缸体压铸生产规模在逐步扩大,生产水平也在不断提高,预计在今后铝合金发动机缸体的比例将达到60%~75%。

铝合金缸体压铸工艺如下:熔化采用快速集中熔炼炉,熔化能力一般为1 500~2 000 kg/h,以洁净能源天然气作燃料,控温精度±5℃,炉衬寿命长。大型压铸机选用铝合金定量保温炉,可以在压铸过程中缩短定量循环时间,降低能耗、减少废品率,从而降低成本。压铸机采用压铸岛单元式布置,每台压铸机需要完成铝液精炼、浇注、压铸、取件、冷却、切边、铣浇口、初打磨、检验(在线检测)和装筐等工序,然后进行时效、抛丸、精打磨等后续工序,最后入库。

大型压铸机单元采用取件机械手和喷涂机械手。全自动压铸机采用计算机管理系统实现整个压铸过程检测、存储、计算和记录;强化和提高质量控制手段和检测水平,采用专用真空直读光谱仪对铝合金成分进行快速分析,采用进口仪器对铝液的含氢量、非金属夹杂物、熔渣和铝密度进行检测。

随着压铸工业中一些高新技术的不断出现,如两模板压铸机的应用;采用铝合金390的整套压铸技术压铸出全铝气缸体,摒弃了原来铝合金压铸气缸体中缸筒内铸入铸铁套的方法。近年来,铝合金压铸的柴油发动机壳体已经问世,这是压铸件进入柴油发动机领域的前奏。另外,压铸充型过程理论水平将逐步提高,生产技术也将不断改进;压铸工艺参数的检测技术将不断普及和提高;压铸生产过程中自动化程度逐步完善,并日益普及;电子计算机技术的应用更加广泛和深入;大型压铸件的工艺技术逐步成熟。此外,已研究出各种消除气孔缺陷的工艺方法,如真空压铸、ACRAD压铸(精速密Accurate Rapid Dense)、充氧压铸、匀加速的慢压射技术、局部加压技术等;更有挤压铸造和半固态成型(含流变成型与触变成型)等技术。所有这些,无疑给压铸法注入了新的活力,进而使生产具有高强度、高致密度、可热处理、可焊接等特性的压铸零件成为可能。2.7.2镁合金压铸件

发动机缸体采用镁合金压铸件以实现汽车轻量化也呈不断扩大势态,2010年全国汽车达到1 806万辆时镁合金使用量为6.13万t(仅限于汽车变速箱壳体、制动壳体和方向盘等),这标志着中国镁合金压铸工艺技术正在向国际水平推进。

目前,镁合金的应用已引起我国科研部门的高度重视,早在国家“十五”科技攻关计划中,镁合金项目已被列为重大专项。国内部分企业,如吉利在2007年已经实现了汽车减重10%~14%的初期目标。其轻量化目标是在发动机上全面实施铝镁合金化。乔治费歇尔(苏州)在供应奇瑞和长城等铝合金发动机缸体基础上,正在考虑镁合金发动机缸体压铸项目投产。

汽车镁合金压铸件“入门”要求很高,必须取得一系列的质量体系认证以及生产环境认证,通常包括:ISO9002、QS9000、TS16949等质量体系认证。大型镁合金压铸件生产具有一定的技术难度,这也是需要投入大量人力财力的。由于以上多种因素,向镁合金压铸领域投资应持积极审慎态度,并采取正确的投资策略。2.8发动机缸体凝固模拟软件的应用 目前,国内部分汽车铸造厂家采用凝固模拟软件对发动机缸体铸造过程进行仿真模拟,使整个铸造过程清晰明了地表现出来,以提高铸件的质量及降低成本。

例如,亚新科国际铸造(山西)有限公司的缸体、缸盖铸件在现实生产中经常出现在缩松、渗漏缺陷,如TC6112缸体的渗漏比率高达30%~50%,造成巨大损失。通过使用国内外最先进的模拟凝固软件对产品的浇注状况进行分析;通过UG建立各种设计方案的三维模型,再利用Patran建立它们的有限元模型,然后对各种方案充型过程和凝固过程进行数值模拟。主要模拟了发动机缸体充型过程的速度场与温度场、凝固过程的温度场,以及对可能产生缩孔、缩松等缺陷的区域进行预测。完成模拟后,对各种浇注系统设计方案的充型、凝固过程及缩孔、缩松等缺陷的预测进行了对比分析,从模拟结果中得出最佳的工艺方案。目前ProCAST、Anycasting、CAStsoft CAD/CAE、ABAQUS、华铸CAE铸造模拟凝固软件、INTECAST凝固模拟软件、FT Star凝固模拟软件和SRIFCast充型凝固模拟软件等相继开发,模拟软件在发动机缸体铸造方面的开发应用呈不断扩大趋势。2.9快速成形制造技术的应用

快速成形制造技术又称为快速原型制造技术,它包括立体光刻技术、分层实体制造技术、选择性激光烧结技术、熔融沉积技术、三维印刷技术、热塑性材料选择性喷洒和无模型树脂砂型快速制造工艺等成型方法,集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。

与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其它方法将材料堆积而形成实体零件,所以又称为材料添加制造法。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下几乎能够生成任意复杂形状的零部件,极大地提高了生产效率。与数控加工、铸造、金属冷喷涂、硅胶模等制造手段一起,快速自动成型已成为现代模型、模具和零件制造的强有力手段,是目前适合我国国情的实现金属零件的单件或小批量敏捷制造的有效方法,尤其在汽车发动机缸体铸件等领域已得到了应用。例如,选区激光烧结与铸造技术结合,可有效地应用于发动机设计开发阶段中样机的快速制造,保证产品开发速度,提高产品的开发质量,大大降低开发成本,推动产品早日进入市场。国内已经开发出V8发动机的缸体熔模,利用选区激光烧结成型技术直接制作蜡模,无需开模具,因而大大节省了制造周期和费用,其成型时间为42 h,铸造周期20天。如果按传统制作方法开模具制造,至少需要6个月的时间,费用上百万。此项技术为客户节省大量的时间和开发成本。

汽车发动机缸体的铸造生产中,模板、芯盒、压铸模的制造往往采用机加工的方法完成,此过程不仅周期长、耗资大,而且从模具设计到加工制造是一个多环节的复杂过程,其模具的制造过程极其复杂,开发周期长,研发成本大。不能适用于当前迅速响应市场的需求,而快速成型技术恰好满足了汽车发动机快速制造的要求。采用该技术与传统铸造相结合的方法能够非常迅速地实现从设计到产品的过程,减少中间环节,加快产品投放市场的速度,节省开发成本。例如用激光烧结的方法制作砂型,首先要根据零件的三维CAD模型设计出组合砂型模型。为了与以后的批量生产工艺靠近,砂型模型应尽量与通过模具制作的砂型模型保持一致,将砂型模型的各部分经过软件的分层处理转换为快速成型设备的加工文件,就可以进行激光烧结成型了。如北京某技术中心开发的快速成型用的树脂砂与通常使用的热固化树脂砂极为相似,只不过对粒径分布和形态,树脂成分及表面处理等方面有更严格的指标。成型时的层厚一般为0.2 mm,精度可控制在±0.25 mm以内。由于激光扫描的速度很快,树脂在成型时不能达到完全固化。成型后将未烧结的浮砂清除后,砂型一般要放到加热箱中进行二次固化。经二次固化后的砂型可达到与射芯机制得的砂型相同的性能。由于发动机的部件大多采用砂型铸造,因此快速砂型铸造已成为发动机样机试制的最常用和最有效的方法。山东省汽车零部件快速设计制造工程技术研究中心为某汽车厂采用快速铸造方法生产的四缸发动机的蜡模及铸件,按传统金属铸件方法制造,模具制造周期约需半年,费用几十万。用快速铸造方法,快速成型铸造熔模3天,铸造10天,使整个试制任务比原计划提前了5个月。

国内华中科技大学已经研制出了世界最大成型空间为1 200 mm×1 200 mm的基于粉末床的激光烧结技术快速成型装备。据悉,已有200多家国内外用户购买和使用这项技术及装备,为我国关键行业核心产品的快速自主开发提供了有力手段。我国一些铸造企业应用该技术后,将复杂铸件的交货期由传统的3个月左右缩短到10天左右。我国发动机制造商将大型六缸柴油发动机的缸盖砂芯研制周期由传统方法的5个月左右缩短至一周左右。3结束语

随着清洁化、节能化、轻量化以及智能化理念的不断拓展及不断成为发动机缸体铸造行业的研发重点,低碳排放、节能低污染、可再生循环利用及可持续发展的发动机缸体绿色铸造工艺和技术装备将呈现在世人面前。

第五篇:国内外隧道防火技术现状及发展趋势

国内外隧道防火技术现状及发展趋势

1.概述

随着工程建设和交通事业的发展以及人类生产、生活的不断需求,世界各国所建交通隧道的里程得到丁迅速延长。据统计,2021年整个欧洲地区交通隧道网络总长超过10000km;我国在第二次全国公路普查中,县级以上公路隧道建设总长将近550km。近10年来,由于不断增长的交通流量和路况改善以及运输物品的复杂性,增加了交通隧道的火灾风险,引发了不少严重的火灾事故。例如1999年3月24日发生在法国和意大利之间的MontBlanc隧道火灾,死亡41人,36辆汽车被毁;1999年5月29日发生的奥地利TauemMotorway隧道火灾,死亡12人,伤50人;2021年11月11日奥地利卡布伦山过山缆车火灾,死亡155人,伤18人。

隧道火灾不仅严重威胁人的生命和财产安全,而且对交通设施、人类的生产活动造成巨大的损坏。因此,各国近20年来都投入了相当的力量对隧道的火灾行为,以及火灾防护进行了较广泛的研究,并取得了一定成果、制订了一些技术要求和标准。

交通隧道一般包括公路隧道、铁路隧道和地铁隧道及城市其他交通隧道等。不同类别的隧道在火灾防护上没有本质的区别,原则上均应根据隧道允许通行的车辆和货物来考虑其可能的火灾场景,从

而确定合理、有效的消防安全措施。根据有关研究,公路隧道的火灾风险为铁路隧道的20-25倍。因此,本文在分析、总结国内外相关研究的基础上,主要针对我国公路隧道和城市交通隧道的消防安全设计、研究及其发展提出了一些看法。

2.国内外隧道防火研究现状

20世纪80年代以来,国外在以下几方面开展了研究:车辆的燃烧特性、模拟通风对车辆燃烧的影响、烟气增长、用木垛火与庚烷火模拟正常火灾荷载的比较、烟气中有毒成分生成量分析、隧道内火灾增长和烟气运动数值模拟技术、隧道内衬在火灾中的表现、驾驶人员在隧道内的心理与行为及相关影响因素、消防救援方法与策略以及自救原则等。研究认为:隧道火灾规模主要取决于通行车辆的类型。隧道内部可达到的温度及火灾荷载可见表1。

车辆类型

最高温度℃

最大热释放速率(MW)

小汽车

400-500

3-5

公共汽车

700-800

15-20

载货卡车(油槽车除外)1000-1200

50-100

我国也在隧道的烟气数值模拟、衬砌承载力评估、隧道内温度场分布等方面做过大量研究。

2.1国内外在隧道设计方面的技术要求及标准

在国内,目前有1992年发布的国家现行标准《地下铁道设计规范》

(正在修订);1985年发布的铁道部现行标准《铁路隧道设计规范》;1989年发布的交通部现行标准《公路隧道设计规范》(正在修订)。这些标准分别对地铁、铁路隧道和山岭公路隧道的防火与疏散做了部分规定,但均不够完善,并且未对城市区域内的交通、观光游览隧道的防火设计做出规定。目前,国家标准《建筑设计防火规范》正增补有关城市交通隧道(地铁除外)的防火设计要求。

在国外,荷兰编制了《TNO报告98-CVB-R1161隧道防火》以及TNO测试标准《隧道防火测试方法》,规定了隧道的火灾场景确定方法与相关消防安全工程设计方法以及隧道结构的耐火测试方法。德国1994年制订了《RABT公路隧道设施及运行准则》,其中对隧道中火灾规模做出了规定;1995年又制订了《ZTV-隧道,关于公路隧道建设补充技术条款及准则》,其中第10章“建筑防火'规定了隧道内的升温曲线以及建筑结构及其内部系统所应采取的防火措施。英国制订了《BD78/99,公路及桥梁设计手册》,用于指导运用消防安全工程方法对隧道进行防火设计。美国消防协会制订了《NFPA502公路隧道、桥梁及其他限行公路标准》,其中规定了不同类型隧道的消防要求,并要求长度超过240m的隧道应根据特定隧道的设计参数(如长度、横截面、分级、主导风、交通流向、货物类型、设计火灾参数等),采用工程分析方法设计其通风设施。日本则制订了《日本建设省道路隧道紧急用设施设置基准》,该基准按公路隧道长度及汽车交

通量将隧道进行分级,并根据不同等级规定了公路隧道的火灾防护要求。

2.2国外对隧道结构测试的几种升温曲线

尽管各国在测试建筑构件的耐火极限方面一直采用IS0834国际标准规定的温度-时间曲线,但研究表明,像汽车燃料和车辆所运载的石油化工产品、液化石油气等碳氢化合物或其他化学物质的燃烧释放率、火场温度梯度与可能达到的最高环境温度与该升温曲线所描述的情况有很大差异。因此隧道内的结构设计与耐火保护就需要与这种情况相适应。为此,欧洲各国发展了一系列不同隧道火灾类型的时间/温度曲线。

RWS曲线是在1979年在荷兰TNO实验室的研究结果基础上研究出来的。它假设在最不利的火灾情况下,潜热值为300MW燃油或油罐车持续燃烧120min,并假设120min后消防人员已经将火势控制,接近火源并开始熄灭火源。该曲线主要模拟油罐车在隧道中的燃烧情况,最初温度迅速上升,接着随着燃料的减少而逐步下降。

在瑞士,由于山岭隧道更长而且远离消防队,采用RWS曲线时,设计时间则延长到180min。此外法国采用的隧道升温曲线与RWS类似,只是其最高点温度为1300℃。

碳氢化合物燃烧曲线主要模拟火灾发生在较为开放的地带,热量可以散发。

RABT

曲线是在德国通过一系列的实验的研究结果发展而来的,如尤里卡(EUREKA)项目。该曲线假设火场温度在5min之内快速升高到1200℃,并在持续较短时间后冷却110min。

该曲线模拟一场简单的卡车火灾的升温状况,但针对一些特殊的火灾类型,最高温度的持续时间也可延长到60min或更长的时间,然后冷却110min。

3.隧道火灾场景及火灾发展

近20年来,国际上已经进行了大量的研究来确定可能发生在隧道以及其他地下建筑中的火灾场景和火灾类型,有些是在真正的、废弃的隧道中和实验室条件下进行。研究表明,公路隧道火灾在起火后10-15min之内热释放速率快速增长,温度急剧上升,大部分火灾在5-10min之内即可达到1000℃以上。隧道火灾场景主要取决于交通工具的类型。

火灾的热量输出以热辐射为主,并决定温度;而烟气层的热散失则以对流为主,对温度影响很小,因此在高温时得到的热量总是超过散失的热量。由于隧道是一种相对封闭的地下结构,大多数热量被隧道顶、壁吸收。同时,热的烟气层和顶壁通过辐射将热传递给火焰而加剧火灾的发展速率。所以隧道火灾如果不能在引燃阶段扑灭,会很迅速地形成完全发展火,并伴随着急速升温。

一般的火灾场景可以假设为:多辆小汽车火灾、公共汽车火灾、载货卡车火灾和可燃液体或石油/气槽车火灾。其火灾持续时间、热释放速率等情况因对象不同而有较大差异。

对于多辆小、汽车火灾(以4辆车为例),一般30s后即可达到12MW的最大值,持续约60min。公共汽车火灾在10min后可达到25MW的最大值,持续约90min。载货卡车火灾在5min左右可达到180MW的最大值,持续约60min,火焰传播可达到40-60m。

火灾对周围环境温度的影响主要以热辐射为主,而烟气层以对流为主。由于隧道是一种相对封闭的地下结构,火灾中释放的大部分热量将被隧道顶、壁吸收,而热烟气层和热顶壁同时又通过辐射将热传递回火焰,加剧火灾。因此,隧道火灾如果不能在引燃阶段扑灭,会迅速发展成完全发展火,并使附近区域的温度急速上升。

在悉尼港口隧道的研究中,研究人员将小轿车火灾定义为3MW(a=0.0115),卡车火灾为10MW(a=0.18),危险物品货车为(a=0.18),公路槽车为50MW(a=0.18)。不同的火灾增长参数对危险温度场和烟气扩散区的影响较大。比如,普通轿车(0.1kW/s2)、小型卡车(0.3kW/s2)对危险区域的温度场和烟气扩散区的变化影响较小,但石油罐车、液化石油气槽车(1.54kW/s2~10.5kW/s2)等则能使危险区域的温度场很快升高、烟气扩散蔓延极快。

4.隧道的消防安全工程设计

隧道是一种与外界直接连通口有限的相对封闭的空间。隧道内有限的逃生条件和热烟排除出

口使得隧道火灾具有燃烧后周围温度升高较快、持续时间长、着火范围往往较大、消防扑救与进入困难等特点,增加了疏散和救援人员的生命危险,隧道衬砌和结构也受到破坏,其直接损失和间接损失巨大。因此,隧道设计中必须考虑其火灾防护措施。

隧道内的火灾危险主要有客车的行李、危险货物以及车辆和隧道本身。

隧道的消防安全控制目标主要有:提供可能的疏散设施,减少人员伤亡;方便救援和灭火行动;避免隧道内混凝土内衬爆裂和通过对隧道结构、设备的防护,减小隧道修复和因隧道中断所造成的损失。

在公路隧道防火设计中主要应考虑结构耐火和防坍塌,降低隧道内的材料的燃烧性能,设置火灾探测与报警、监控信号系统,规划与设置分隔、救援、疏散和避难应急系统以及烟气控制系统等。

4.1隧道的结构保护

隧道内的火灾往往持续时间较长,如MontBlanc隧道火灾持续55h,36辆车被卷入火灾。研究表明,混凝土结构表面受热后,会产生爆裂现象,且在混凝土底层冷却之后,还将会出现深裂纹。结构的荷载压力和混凝土含水率(包括物理水含量和分子结合水)越高,产生爆裂的可能性越大,即使在混凝土配料中加入聚丙烯纤维也不会有明显改善。未经保护的混凝土,如果其质量含水

率超过3%,在遇到高温或火焰作用后5-30min,内就会产生爆裂,深度甚至可达40-50mm。这是造成隧道跨塌的主要原因。一般在150-200℃时,混凝土表面开始爆裂。

隧道构造形式有圆形、矩形或拱形。矩形结构的失效通常是由于混凝土或其增强钢筋的温度升高而导致过早产生下垂塑性弯矩,矩形隧道较圆形隧道所受压力荷载较小,产生爆裂情况较轻。圆形隧道的增强钢筋在下垂弯矩下不承受张力,只承受压力荷载。盾构式的圆形隧道通常采用等级为C50的高标号混凝土,在火灾中爆裂的可能性和深度都较高。

混凝土发生爆裂后,不仅直接威胁救援与逃生,还会使增强钢筋直接暴露在火灾中,减少承载结构的横截面面积。因此,隧道结构耐火设计应考虑其内部可能达到的最高温度、升温特性以及结构体的火灾行为,确定相适应的设定火灾规模与时间-温度曲线,能保证隧道结构在所规定类型火灾条件下的完整性与稳定性。

隧道结构的耐火保护一般可采用在混凝土中添加聚丙烯纤维或在混凝土内衬下安装防火绝热保护层,或者在隧道内安装自动喷水灭火系统。

4.2通风及防排烟

根据隧道火灾事故分析,由一氧化碳导致的死亡约占总数的50%,因直接烧伤、爆炸力及其他有毒气体引起死亡的约

50%。通常,采用通风、防排烟措施控制烟气产物及运动可以改善火灾环境,并降低火场温度以及热烟气和火灾热分解产物的浓度、改善视线。但是,机械通风会通过不同途径对不同类型和规模的火灾产生影响,在某些情况下反而会加剧火灾发展和蔓延。实验表明:在低速通风时,对小轿车火灾的影响不大;可以降低小型油池火灾(~10m2)的热释放速率,而加强通风控制的大型油池火灾(~100m2);在纵向机械通风下,载重货车的火灾增长率可以达到自然通风的十倍。

隧道通风主要有自然、横向、半横向和纵向通风四种方式。短隧道可以利用隧道内的“活塞风'采取纵向通风,长隧道则需采用横向和半横向通风。隧道内的通风系统在火灾中要起到排烟的作用,其通风管道和排烟设备必须具备一定的耐火性能。

对于隧道通风设计,一般需要针对特定隧道的特性参数(如长度、横截面、分级、主导风、交通流向与流量、货物类型、设定火灾参数等)通过工程分析方法进行设计,并由多种场模型或区域模型对隧道内的烟气运动进行计算模拟,如FASIT、JASMIN等。

目前有关隧道通风排烟的研究大多集中在其对烟气流动的影响,缺乏通风对火灾自身的影响的研究。

4.3安全疏散与避难设施

人员在隧道内的正常疏散速度为1.5m/s,但在有烟气的情况下可能只有

1m/s。一般人的极限辐射热耐受值为2~2.5kW/m2,消防人员在带有空气呼吸装置时的耐受极限为30min,5kW/m2。一般,160℃的烟气层的辐射热为2kW/m2,270℃的烟气层的辐射热为5kW/m2。人员在疏散时的最高空气温度不应超过80℃,在此温度下的耐受时间约为15min。

避难设施不仅可为逃生人员提供保护,还可用于消防队员暂时逃避烟雾和热气的场所。在中、长隧道设计中,必须考虑人员安全避难所的设置,考虑通道的布置、隔间及空间的分配以及相应的辅助设施的需要。有些火灾表明,火灾时有些人虽已进入安全避难所,但由于热和烟气的泄漏,最终还是导致了死亡。因此,安全避难所的最低耐火极限除应与隧道结构的耐火极限一致,还应能够隔绝高热和阻止烟气进入,通常应考虑在这些区域设置独立的送风系统。

此外,在隧道内的疏散口位置以及疏散门的形式非常重要。尽管侧开、平开或对开门可以提供大小合适的开口以便人或机动车辆的通行,但进入疏散通道或避难所的门应采用能自动关闭的常闭防火门。防火门的耐火极限应与相应结构的耐火极限一致,并具有良好的防烟、绝热性能。

4.4自动喷水灭火系统

自动喷水灭火系统是建筑物内应用最广泛的一种灭火设施。但从现有试验和使用情况看,目前在公路交通隧道内应用自动喷水灭火系统及其有效性仍存在很大争议。一般,交通隧道内设置自动喷水灭火系统应充分考虑以下情况:

(1)隧道内的火灾通常发生在车辆的下部、车厢里或车辆的发动机部分,安装在隧道上部的喷头往往达不到灭火效果。

(2)从火灾引燃到喷头动作之间有一段延迟时间,隧道内快速增长的火灾使喷洒的细小水滴汽化而产生大量高温蒸汽,不但难将火灾扑灭反而会增加对逃生人员的危害性。

(3)隧道内部狭长,车辆行使形成的活塞风使热量和燃烧产物会沿着隧道快速蔓延,仅启动起火点上方的喷头往往不起作用。

(4)灭火系统动作后产生的冷却作用往往使沿隧道顶棚的热烟气层降低并破坏烟气分层。

(5)系统中喷出的水会使路面变得湿滑、危险,并可能导致可燃液体火灾进一步扩大。

(6)水源及相应排水系统、泵站,系统维护、电力保障等。

根据世界道路协会(PIARC)的有关报告,大多数国家认为绝大多数隧道火灾发生于油箱和车厢内,自动喷水灭火系统作用不大。因此,在欧洲,自动喷水灭火系统仅用于特殊的目的。例如挪威有两条隧道中安装的自动喷水灭火系统是为了保护添加了聚亚氨酯的隧道内衬。比利时、丹麦、法国、意大利、荷兰和英国的隧道则从不安装自动喷水灭火系统。在日本,只有10km以上的长隧道和3km以上且通行载重货车的短隧道要求安装自动喷水灭火系统。在美国,只有几条允许装载危险品的车辆通行的隧道安装了自动喷水灭火系统。

NFPA502也建议仅当车辆运输危险货物时,才考虑采用水成膜泡沫雨淋系统。

4.5其他消防设施

隧道中的其他消防安全设施主要包括:应急照明与信号系统、监控与火灾报警系统、通讯设施、消防栓、消防泵及灭火器等。

设计中是否采取某种系统以及采用何种类型的系统应视特定隧道的具体情况而定。例如,在选择自动报警系统时应考虑到感烟探头虽然比感温探头反应快,但由于隧道内车辆尾气排放影响,误报的可能性也较大。在奥地利,长度超过1500m的汽车隧道和流量高的隧道均设置了火灾探测器。瑞士、瑞典和日本也根据隧道情况要求设置火灾探测器。其他国家一般只在一些特殊的隧道内安装。

在设计信号和通讯设施时,应考虑到隧道内的封闭环境、噪声大对人员生理及心理影响,以及如何有效地向行车人员传达信息,降低逃生人员地恐慌心理等。

火灾发生时,电力系统的正常工作对于隧道中人员的逃生至关重要。因此,在一定的时间内就要保护这些系统不受火灾的影响,其中包括消防泵房、火灾报警系统、疏散应急照明系统和排烟管道系统等的用电。

5.我国公路隧道防火设计和开展消防安全研究的相关建议

.1我国公路隧道防火设计的建议

根据有关隧道研究和火灾的情况,我们建议在隧道设计时应根据隧道内的可燃物数量与种类、隧道的用途、物理条件、长度及通风与排烟等因素综合考虑进行,并将单孔和双孔隧道按其长度(L)进行分类,见表2。

类型

L>3000m

1500m<L3000m

500m<L1500m

L500m

可通行危险品及大型货车

一类

一类

二类

三类

通行一般载客或载货车辆

一类

二类

三类

四类

行人或通行非机动车辆

二类

三类

三类

四类

在隧道的结构耐火设

计中,一、二类隧道内承重结构体的耐火极限建议采用BABT升温曲线测试,一类不应低于2.00h,二类不应低于1.5h;三类隧道的耐火极限采用HC升温曲线测试,不应低于2.00h;四类隧道的耐火极限不限。水底隧道的顶部应设置抗热冲击、耐高温的防火内衬,耐火极限不应低于3.00h。

在安全疏散设计中,双孔隧道建议沿隧道长度方向设置通向相邻隧道的安全疏散人行横洞和车行横洞,或在双孔中间设置直通隧道外的人行或车行安全通道。一、二、三类水底隧道宜设置车行横洞,间隔宜为500m~1000m;一、二、三类山岭隧道,其车行横洞间隔宜为200m~300m;车行横洞可兼作人行横洞。一、二、三类供机动车辆通行的纵向通风方式单孔隧道应设置人员疏散出口或独立避难所等确保人员安全疏散的避难设施,间隔不宜大于

300m。一、二类水底隧道应沿隧道长度方向设置有保证人员安全疏散的通道或设施,疏散通道或设施的间隔:一、二类隧道宜为250m,三类隧道不应大于300m(长度小于500m的隧道可不设)。

隧道内应设应急照明系统,其照明时间:一、二类隧道不宜小于3h;三类隧道不宜小于2h。应急疏散指示照明灯具设在隧道两侧,高度不宜大于1.5m。

5.2我国开展公路隧道消防安全研究的相关建议

隧道消防安全是目前国际消防研究的热点领域之一,已取得了许多研究成果,但仍有大量问题需要进一步研究。我国在这方面所开展的工作不甚系统、人力物力投入不足,部门之间的合作及与国际间的合作机制尚需加强与完善。在具体研究内容上,建议在以下几个方面重点开展相关的隧道消防安全工作:

(1)隧道火灾风险评估方法,建立不同类型和规模的隧道消防安全设计基准;

(2)隧道火灾/烟气模型:建立设定火灾场景、火灾发展和烟气运动、火场温度与持续时间预测方法与技术;

(3)隧道火灾试验方法:确定隧道结构在特定火灾场景下的耐火性能及试验标准、防火措施;

(4)研究隧道内驾驶人员和火灾中疏散人员的行为。

下载汽油发动机技术现状及发展趋势word格式文档
下载汽油发动机技术现状及发展趋势.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中国地源热泵技术现状及发展趋势

    中国地源热泵技术现状及发展趋势摘要:本文分析了我国地源热泵技术发展的背景,给出了地源热泵系统的分类及特点,并通过对目前我国地源热泵的发展状况进行调查,得出了地源热泵技术......

    ARM技术应用领域的现状及发展趋势

    ARM技术应用领域的现状及发展趋势 随着我国ARM嵌入式系统板市场的迅猛发展,特别是十二五时期,转变经济增长方式这一主基调的确定,与之相关的核心生产技术应用与研发必将成为业......

    机电一体化技术的现状及发展趋势

    机电一体化技术的现状及发展趋势 摘要:机电一体化技术是由微电子技术、计算机技术、信息技术、机械技术及其它技术相融合构成的一门独立的交叉学科。机电一体化产品迅猛发展,......

    环境监测技术的应用现状及发展趋势

    环境监测技术的应用现状及发展趋势 摘要:在环境问题日益严峻和环境保护工作不断深入的今天,环境监测技术成为了影响环保工作开展的重要因素。利用现代环境监测技术对污染物进......

    汽油,柴油发动机实训报告

    发动机实训报告 内容一《五十铃油发动机》 一、实习目的 ⒈ 巩固和加强汽车构造和原理课程的理论知识,为后续课程的学习奠定必要的基础。 ⒉ 使学生掌握汽车总成、各零部件及......

    2011中国汽车发动机发展趋势

    2011中国汽车发动机发展趋势 时间:2011年4月25日至4月27日 地点:上海 出差人:王建萍 出差事由:2011中国汽车发动机高层研讨会 论坛目的: 为了实现汽车产业的转型升级,2011年国家......

    高速精密冲压技术现状及模具发展趋势

    高速精密冲压技术现状及模具发展趋势 高速精密冲压技术涉及到机械、电子、材料、光学、计算机、精密检测、信息网络和管理技术等诸多领域,是多学科的系统工程。多工位与多功......

    液压设备技术的现状及发展趋势浅析

    液压设备技术的现状及发展趋势浅析 摘要:液压设备系统的传动具有易于实现直线运动、功率质量之比大、动态响应快等优点,在工程机械、冶金、农业、林业、试验设备、航空航天、......