第一篇:毕业设计英文 翻译(原文)
编号:
毕业设计(论文)外文翻译
(原文)
院(系):桂林电子科技大学
专 业: 电子信息工程
学生姓名: xx 学 号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学 姓 名: xxxx
职 称: xx
2014年x月xx日
桂林电子科技大学毕业设计(论文)报告用纸
Timing on and off power supply uses
The switching power supply products are widely used in industrial automation and control, military equipment,scientific
equipment,LED
lighting,industrial medical equipment,communications
equipment,electrical
equipment,instrumentation, equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.Introduction
With the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc.have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology.Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation(PWM)ICs and switching devices(MOSFET, BJT)composition.Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates.A power point, linear power supply costs, but higher than the switching power supply.With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of.In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.桂林电子科技大学毕业设计(论文)报告用纸
classification
Modern switching power supply, there are two: one is the DC switching power supply;the other is the AC switching power supply.Introduces only DC switching power supply and its function is poor power quality of the original eco-power(coarse)closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer.However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges.This switch is called the resonant switch.Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways.At present, many countries in the world are committed to several trillion Hz converter utility.the principle of Introduction
The switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor Vthe step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuitbuck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit-a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit.Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S.VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density(6.2 , 10,17)W/cm3 efficiency(80-90)%.A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency(200 to 300)kHz, power density has reached 27W/cm3 with synchronous rectifier(MOSFETs instead of Schottky diodes), so that the whole circuit efficiency by up to 90%.AC / DC conversion
AC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the “rectification”, referred to as "active inverter power flow returned by the load power.AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards(such as UL, CCEE, etc.)and EMC Directive restrictions(such as IEC, FCC, CSA)in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mounting 桂林电子科技大学毕业设计(论文)报告用纸
circuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit.Press the power phase can be divided into single-phase three-phase, multiphase.Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supply
Switching power supply input on the anti-jamming performance, compared to its circuit structure characteristics(multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to(0.5)%.Switching power supply module as an integrated power electronic devices should be selected
第二篇:采矿工程本科毕业设计英文翻译
Use of Mineral Coal for Sorption Sewage Treatment
A.V.Mozolkova Russian University of People’s Friendship.Moscow, Russia E.V.Chekushina Russian University of People’s Friendship.Moscow, Russia A.A.Kaminskaya Russian University of People’s Friendship.Moscow, Russia
Treatment of mining, industrial, household and other sewage is an actual problem for many mining and processing enterprises.Coal-mining industry is not an exception.Usually, at coal enterprises, treatment of mine sewage before it is dumped consists in settling and subsequent filtering.Many pollutants are not removed from the sewage by this method.Hence, dumped water frequently does not satisfy sanitary requirements regarding the permissible content of oil products, dissolved substances and other parameters.For additional cleaning of sewage it is possible to use sorption methods.By these methods water is cleaned of oil products, heavy metals, a number of organic substances and other polluting substances, depending on the used sorbent properties.Both natural and artificial materials can be used as sorbents.Constraint for wide use of sorption methods of sewage treatment in the coal industry is high cost of the majority of sorbents.A number of technologies for obtaining inexpensive and good quality sorbents from coal minerals have been developed.These sorbents can be manufactured directly in coal mines which has additional advantage of reducing transport costs.The processes sorbents may be recycled or burnt.Apart from that production and sale of sorbents can serve the coal-mining enterprises as an additional source of income.One of the most widespread sorbents is activated coal.Quality activated coals are carbon sorbents, having an internal specific surface of more than 500㎡/g, and characterized by iodine adsorption(iodine value)of more than500mg/g.mineral coal, peat and wood can serve as raw materials for activated coal production.Traditional production techniques of activated coal include two basic stages of thermal processing of the initial carbon-containing raw material-carbonization and activation, done in different devices.Both stages are energy-consuming and ecologically dangerous, which explains the high cost of activated coal, received through this technology(1200-4000 dollars/MT).Carbonization is the elimination of volatile substances by heating up to the temperature of 600-900℃, because with volatile components there are basically formed the oxygen and hydrogen, and increase carbon content in initial raw material.Carbonization is done in mining or rotating furnaces with utilization of external form-holder, as a rule, waste gases with temperatures of 600℃ and higher.Activation means increasing the volume and pore surfaces of carbonized material at heterogeneous reaction.The most used reagent is water vapour with the temperature of 900℃ and higher, and the process takes 15-20 hours.Both stages are energy consuming and pose threat to environment.For one tonne of activated coal from 2 up to 4 tonnes of specific fuel like crude oil and natural gas are consumed.From 1000 up to 1500 m³ of processed gasses with high content of SOx(1-2 g/ m³), H2S(200-250mg/ m³), resinous substances(10-40mg/ m³), phenols(50-70mg/ m³), carbon oxides(up to 5%)and also other substances which are carcinogenic and mutagenic are formed and released into the atmosphere during both stages.High-energy consumption and environmental danger, which requires large investments in nature protection activities, result in the high cost of quality-activated coal.Another group of carbon sorbents, which was widespread in the 80’s, consists of inexpensive carbon sorbents used in nature protection technologies and industry.Such sorbents are produced by a one-phase technology, without additional activation.Their adsorption activity is not high(iodine value less than 300mg/g)but the cost is low(250-700 USD/MT).because the price of these sorbents is comparable to the cost of their regeneration, they are used only once and are burnt after saturation.The leaders in the production of such sorbents are Rheinbraun AG(Germany, 200 thousand MT per year)and Australian Char Ltd(Australia, 150 thousand MT per year), which produce brown coal semi-coke used for treatment of wastewater and smoke.In Russia research work in this direction is conducted, but only test works have been done so far, although the quality of carbon sorbents obtained from Kansk-Achinsk coals did not concede to production from Rheinbraun AG and Australian Char.One of the directions of utilization of semi-coke from Kansk-Achinsk coals, production of which was planed at Krasnoyarsc thermal power station 2(device ETX-175), was its utilization as carbon sorbent.The reason for production of inexpensive carbon sorbents by one-phase technologies being not developed in Russia is the absence of demand for this product.This production is basically used for cleaning of sewage, however there is no effective ecological service in Russia, and the penal sanctions of the environmental protection legislation are so insignificant that industrial enterprises do not have ant motivation to invest in nature protection.In1992-1994 the employees from Joint-Stock Company “Carbonica-F”(at that time Open Company “Sibtermo”)have developed a new method of production of carbon sorbents, which considerably from all known technologies.During the research of dynamic effects in a layer evaporator the regime conditions were defined under which the effect of “thermal wave” could be observed in the device.Using this effect, the authors created a layer evaporator in which volatile components of coal were exposed to gasification(incomplete oxidation), and the degree of carbon conversion was adjusted by the mode of injection feed.By changing the regime parameters it was possible to conduct the process as fuel gasification(with only ashes remaining in the end)without any residue, and also as gasification of volatile components of coal, thus receiving so-called semi-coke containing solid coal.From one tonne of Kansk-Achinsk coal with calorific content of 3600-3800 kcal/kg can be produced about 0.33 tonnes of semi-coke with calorific content up to 7000 kcal/kg(as anthracite)and up to 1700 m3 of combustible gas with calorific content of 800-900 kcalJm3, suitable for use as an energy source.Technological process of Joint-Stock Company “Carbonika-F” has a large number of advantages in comparison to the already known methods of obtaining activated coal and semi-coke
1.Simplicity of hardware.One-phase process.The stages of drying, pyrolysis, thermal decomposition of volatile substances and semi-coke cooling are incorporated in one device.The device is auto-metric;it means that external heat-carrier for coal heating is not used.2.Ecological safety.In the technology of Joint-Stock Company “Carbonica-F” all hydrocarbons, including resinous substances, are broken down and gasified inside the device during the formation of combustible gas containing only CO, H2, CO2, N2, H20, H2S and insignificant quantity CH4.Sludge, pyroligneous waters, phenols and other harmful impurities are not formed in this process.3.Because the speed of gas filtration from a layer reactor is low(0,02-0,03 m/s in comparison to 0,5-2,5 m/s for mine furnaces), the process is less dependent on fractional composition of coal, hydraulic resistance of the layer and allows to process fine-grained coals.4.As a result of low speed of filtration the phenomenon of carrying out of fly ashes from the layer does not occur, because the device works as a granular filter.Combustible gas is moved in user-boiler or can move to the gas turbine without preliminary cleaning.The volume of SOx, NOx, CO contained in waste gases is lower than that produced when obtaining equivalent quantity of heat by burning coal.Combustible gas without prior cleaning can be used to produce electric and/or thermal power or as an energy carrier for thermal processes.5.Unlike the already existing technologies, in the given process there is no dump(排空孔)of gaseous heat-carrier(气体热载体)into the atmosphere and consequently(因此)the construction of other additional gas purification systems(更多的天然气净化系统工程)and catalytic burning of carbon oxide(CO)(催化燃烧的碳氧化物)is not required.与现有的技术不同,在以上给出的过程呢个中,没有气体热载体排放的到空中的排空孔,因此,更多的天然气净化系统和催化燃烧的碳氧化物的工程是不必要的。
Test of the solid residue(semi-coke)have revealed, that this material is characterized by large specific surface(more than 500㎡/g)and high adsorption activity(iodine value 500mg/g and higher), and because of these parameter does not concede to quality-activated coal.经过试验的固体残渣(半焦)表明:这种材料的特点是表面积大(大于五百平方米)并且有很强的吸附性(碘值是500毫克每克甚至更高)而且因为这些参数并不退让与高质量的活性炭。
The product received with the technology of Joint-Stock Company “Carbonica-F” is certificated as activated coal ABG(active, brown coal of gasification), for it there were developed technical conditions TU 6-00209591-443-95.The characteristics of ABG activated coal produced from the coal of 62 mark from “Berezovsky-1” opencast colliery.获得技术联合股份公司“Carbonica-F认证的产品被认证为ABG类活性炭(就是具有活性的棕色的气化煤)为此,在此基础上又发展了TU 6-00209591-443-95技术条件。ABG活性炭的特点来自于出产它的来自”Berezovsky-1“露天煤矿的62号煤。
High specific surface and adsorption activity of ABG coal is explained by the fact that both gasification of coal volatile components, and activation of carbon-containing solid residue of gaseous products occur in the device simultaneously.Because gasification products contain up to 20%n of hydrogen whose molecules are smaller than the ones of water vapour, and hence their permeability in pores of semi-coke is higher, activation(heterogeneous reaction)is done not only with vapor, but also with hydrogen, which practically is not present in the traditional technologies.Thus, carbonization stages and activation are combined in one device.气化煤挥发性成分和激活含碳固体残留气体产品同时在装置上发生的事实就解释了ABG煤的高比表面积和强大的吸附特性。因为气化产品包含了20%以上的氢,而这些氢分子比那些水蒸汽要小一些,因此他们在半焦气孔的渗透率就高一些,激活(异构反应)就完成了,不仅与蒸汽,还与氢,而这些实际上是传统技术中不存在的。因此,碳化阶段和激活是在同一装置中同步进行的(相结合的)。
Other positive effect of application of this method of coal processing is that in ”thermal wave“ mode the products of thermal decomposition which contain very toxic resinous substances(coal tar pitch used in experimental medicine for the inoculation of cancer in experiments on mice, brown coal is more toxic), passing through a hot layer of semi-coke(500-700℃)are completely broken down into two and three-nuclei gases H2O, CO2, CO, H2.Measurements done at the working production plant of Joint-Stock Company ”Carbonica-F“ have shown that the gas does not contain hydrocarbons of lines above methane, and also carcinogens, including benzo(a)pirene.其他应用到这种方法的积极效果是在“热波”模式中产品的热分解含有剧毒物质的树脂(煤沥青用于实验医学的接种癌症的实验小鼠,褐色碳毒性更强。)经过一个半焦的热层(500到700摄氏度)完全分解成双核或三核气体:水,二氧化碳,一氧化碳,氢气。测量工作在”Carbonica-F“联合股份公司的工作生产厂完成,这表明了这种气体不仅包含了碳氢化合物甲烷以上的行,也包含了致癌物质,包括:
Cooling of the activated coal from 550 up to 70℃ before discharging is carried out by compulsory circulation of gaseous heat-carrier(waste gases)through a layer of the product and further through shell-and-tube heat exchanger in which water used in closed circuit is also provided.Total process efficiency reaches 95% due to the high degree of utilization, which is associated with utilizing the thermal energy.在把活性炭从高于550摄氏度冷却到70摄氏度的过程以前,Departing waste gases do not undergo any cleaning;there are even no cyclones.Nevertheless, the content of harmful mixtures(NOx 150 mg/m3, SOx 50 mg/m3, ash less than 10 mg/m3)is essentially lower than the established norms and parameters of working boiler and thermal power stations, even those equipped with modern multistage systems of gas purification including electro filters.This is explained by a insignificant ablation of ash from devices, sorption of sulfur compounds in activated corner, and also focus temperature from the user-boiler is lower than 1600℃-“threshold(” 阈值)temperature at which begins the formation of nitrogen oxides due to the oxidation of nitrogen from the air.汽车尾气不经过任何清理,也没有分离器。然而,有害混合物的含量(NOx 150 mg/m3, SOx 50 mg/m3,含灰尘少于10 mg/m3)实质上比规定和工作锅炉和热电站的参数都要低。甚至是那些配备了现代化多级系统的气体净化过滤器。这是用来自仪器燃烧产生的毫无意义的灰尘来解释的,硫磺混合物的吸附作用在激活的一角进行,并且也把用户锅炉法制温度低于1600℃作为重点,而这个温度是空气中的氧化氮形成氮氧化物的开始。
The technology of Joint-Stock Company ”Carbonica-F“ can be used for any not conglomerating coals.”Carbonica-F“联合股份公司的技术可以被用在任意的非聚合煤上。
Similar sorbents or slightly conceding in quality to activated coal are formed by semi-coking of unconglomerated coal.Semi-coke received by using the technology developed and patented at Joint-Stock Company ”Carbonika-F“ is characterised by large specific surface(above 500 m2/g)and high adsorption activity(iodine value 500 mglg and more), and with these parameters does not concede in quality to activated coal.The production of this sorbent is ecologically safe.The producon by-product-combustible gas can be burnt in boilers of thermal power station.类似的吸附剂或是质量稍微差一点的活性炭油由聚合碳的半焦形成。半焦被使用该技术发展和专利的”Carbonika-F"联合股份公司使用,特点是表面积大(大于500平方米/ g),和高吸附活性(碘值500 mglg等)而且这些参数不会影响到活性炭的质量。生产这些吸附剂是具有生态安全性的。产品的副产品会在热电站的锅炉里被燃烧。
Some mineral coals(called mesoporous)have internal pores accessible to water, having the size 3.5-4 manometers(mesopores), forming active surface, sized 50-120 m2/g(unlike all other natural coals with surface of 0.5-1 m2/g).These coals can be used as sorbents without additional activation.They clear water of undissolved and dissolved mineral oil, deep dispersing mixtures, iron, phenol, ions of heavy metals, ammonia, nitrates, benzo(a)pirene and so forth.Sorbent MIU-S received from poorly metamorphosed mesopore coal can be used for 3-7 years with periodic regeneration.Alkali regeneration solution is removed from the fitter without other additional neutralization, because in alkali and acid medium MIU-S presents buffer properties, neutralizing these media.一些矿产煤(叫做孔)有内部吸水孔,面积在50-120 m2/g(不像其他自然界的煤表面积是0.5-1 m2/g)。这些煤无需激活就可以被用作吸附剂。他们可以清理不溶水和融化的矿物油,深层分散混合物,铁,酚,重金属离子,氨,硝酸盐,苯等等。MIU-S吸附剂来自劣质变形孔煤,可以在定期更改新的情况下用3-7年。碱再生解决方案从管工上移除而没有其他而外的失效,因为酸和碱的中介MIU-S存在缓冲性能,能够中和这些媒介。
Specific porous structure of mesopore coals assures sorption extraction of dissolved mineral oil products with concentration lower than 1 mg/l, and thus is not always reachable even with activated coals.具有特殊渗透结构的孔酶能够吸附提取溶解浓度低于1毫克/升的矿物油产品,因此并非总是能获得活性炭。
Using MIU-S filters in drinking water supply systems made the stability of their work in conditions of continuous exploitation evident, maintaining the properties of sorbents at null and sub-zero temperatures and absence of biomass formation.使用MIU-S filters在饮水供应系统中使用MIU-S filters可以使系统工作具有稳定性。可以为储蓄开采创造条件,保证吸附剂在零度或是零下温度条件下都可以持续进行且没有生物的形成。
Besides the abovementioned technologies, sorbents can be obtained from material coal by its briquetting and activation.Raw mineral for briquettes can be coals of any rank.除了上述提到的技术,吸附剂可以从矿物煤中通过成型和活化获得。制作煤球的矿物原料可以是任何一种煤。Thus , sorbents suitable for additional cleaning of sewage are possible to be produced from mineral coals by special processing, and sometimes directly.Production of own sorbents may solve the problem of additional cleaning of sewage in coal enterprises.Mesopore coals can be used as sorbents without additional processing;the other coals need additional activation.The studied sorbents can be used for cleaning sewage water from mineral oil products, organic substances and metal ions.因此,适合附加清洗下水道里的)污物的吸附剂可以通过特殊处理从矿物煤中得到,并且有时候是可以直接得到的,不需要特殊处理。制作自己的吸附剂可以解决煤炭企业附加清洗污水的问题。有孔煤不经过额外的处理就可以直接被用作吸附剂;其他的煤需要额外的处理才行。吸附剂的研究能被用于矿物油产品,有机物质和金属离子的污水处理中。
REFERENCES Kovaleva LB., Matvienko N.G., Solovyeva E.A., Tarnopolskaya M.G.: The Application of Natural Mineral Coal in the Technology of Sewage Treatment from Mineral Oil.World n Mining Ecology.Works of the Congress 1999, pg.310-315.2.Congress o For the preparation of the article have been used materials from the site www.xiexiebang.com.ru, www.miu-sorb.ru
第三篇:安徽理工大学毕业设计英文翻译
安徽理工大学
自动化专业本科毕业设计英文翻译
学院(部):电气与信息工程学院 专业班级: 自动化0 班 学生姓名: x x x 指导教师: 讲师
年 月 日 Implementation of Fuzzy-PID in Smart Car Control
Abstract—An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guide line well and fast-stable complete running the whole trip.Keywords — fuzzy-PID;smart car;fuzzy controller;fuzzy control 1 Introduction In recent years, many countries are developing unmanned vehicle technology.This gives birth to many new theories and applied technology.Reference[1] presents the theory of turn ahead which uses real-time monitoring speed to change the turn-in point dynamically, then it implements the control strategy to achieve a perfect characteristics of steering.Reference[2] uses edge detection algorithm to extract track information and adopt P control.Reference[3] proposes a efficient, good anti-jamming and adaptive image processing dynamic algorithm which effectively solves the out of track caused by the changes of ambient light and track.Reference[4] reconstructs spatial relationships of track and calibrates camera using nonlinear optimization, then it can measure lateral deviation accurately.The above improve vehicle performance in one way but they are all lack of characteristics of car movement and based on lots of experiments.A fuzzy-PID control algorithm and a design scheme of fuzzy-PID controller are put forward in this paper.At last, the experimental result is given out to prove the validity of fuzzy-PID.2 Hardware system design To implement the design of fuzzy-PID algorithm, it’s necessary to design a hardware system of smart car.Smart car would have a smart control unite which contain detection of guide line, steering angle value, speed value and so on.See details in Fig.1.1
Fig.1 The functional block diagram of smart car 3 Basic principle of fuzzy-PID It’s difficult for usual PID control algorithm to achieve the best effect.Because, the parameters Kp, Ki, Kd can’t adjust to different object or different state of the same object.Fuzzy control is based on fuzzy set and fuzzy logic.Without precise mathematical model it can determine the size of controlled variable according the rule table organized by experience.In general, fuzzy control input variables are based on system error E and error change EC, which is similar to PD control.Such control might have a good dynamic characteristic, but the static performance is not satisfactory.Combining fuzzy control and PID control, this would make a system have both flexibility-adaptablity of fuzzy control and high accuracy of PID control.Fig.2 shows the structure diagram of fuzzy-PID control system, in which fuzzy controller is responsible for selecting a different PID parameter to improve the local performance thus increasing over all performance.2 Design of fuzzy-PID controller Speed drive motor controller design is similar to the following example for steering gear controller design.Fuzzy controller consists of fuzzification, fuzzy-inference and defuzzification, which are based on the knowledge base.[6] Controller input error and error change, output the parameters Kp,Ki,Kd.Suppose the fuzzy set for E is{NB,NM,NS,NO,PO,PS,PM,PB};the fuzzy set for EC、Kp、Ki and Kd is{NB,NM,NS,ZO,PS,PM,PB}.The linguistic meanings are: NB = negative big, NM = negative middle, NS = negative small, NO = negative zero, ZO = zero, PO = positive zero, PS = positive small, PM = positive middle, PB = positive big.So the membership function curves of fuzzy variables E、EC、Kp、Ki and Kd are shown in the Fig.3-Fig.7: 3
It’s necessary to establish rule table after finishing fuzzification.According the description of rule table, 56 fuzzy conditional statements can be summed, which look like If(E is PB)and(EC is PB)then(Kp is PB)(Ki is ZO)(Kd is PB).See details in Tab.1-Tab.3.Then, the last step is defuzzification and making a lookup table.During fuzzy control, the lookup table would be embed into the program.Suppose input value is fixed, the corresponding output value would be found in the table.Actually, this would save much computing time, and the control would become simply.Analysis of experimental results
Experiment used the steering gear model.The simulation circuit were shown in Fig.2.The usual PID and fuzzy PID algorithm were all simulinked in the Matlab.Responding curves obtained were shown in Fig.8 and Fig.9.The experimental result show that compared with the usual PID, the responding time of fuzzy-PID algorithm is shorter without over swing.The system dynamic performance is improved significantly.6 Conclusion and outlook This paper provided a design scheme for controlling a smart car, which is proved practically and superlatively though experiments.Unmanned smart car is due to the development of computer technology, pattern recognition and intelligent control technique.Many countries and research groups are doing research in the area.But it’s a complicated system, which involves a number of technologies.So the development of each technology is important, for it would become the bottleneck of the development of smart car.Stepper motor Stepper motor is the electric pulse signals into angular displacement or linear displacement of the open-loop stepper motor control element pieces.In the case of 8 non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, when the driver receives a step pulse signal, it will drive a stepper motor to Set the direction of rotation of a fixed angle, called the “step angle”, which the angle of rotation is fixed step by step operation.Number of pulses can be controlled by controlling the angular displacement, so as to achieve accurate positioning purposes;the same time by controlling the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes.1 Work Induction motor is a stepper motor, does it work is the use of electronic circuits, the DC power supply into a time-sharing, multi-phase timing control current, this current stepper motor power supply, the stepper motor to work properly , The drive is sharing power supply for the stepper motor, the polyphase timing controller.Although the stepper motor has been widely used, but the stepper motor does not like a normal DC motor, AC motor in the conventional use.It must be double-ring pulse signal;power driver circuit composed of the control system can be used.Therefore, it is not easy with a good stepping motor, which involves mechanical, electrical, electronics and computers, and much other specialized knowledge.As the stepper motor actuators, electromechanical integration, one of the key products, widely used in a variety of automatic control systems.With the development of microelectronics and computer technology, increasing demand for stepper motor has applications in all areas of the national economy.2 Categories Now more commonly used include the reaction of step motor stepper motor(VR), permanent magnet stepper motor(PM), hybrid stepper motors(HB)and single-phase stepper motor.3 Permanent magnet stepper motor Permanent magnet stepper motor is generally two-phase, torque, and smaller, usually 7.5 degree step angle or 15 degrees;Permanent magnet stepper motor output torque, dynamic performance, but a large step angle.4 Reaction Stepper Motor
Reaction is generally three-phase stepping motor can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large.Reaction by the stepper motor rotor magnetic circuit made of soft magnetic materials, a number of the stator phase excitation winding, the use of permeability changes in torque.Step Motor simple structure, low production costs, step angle is small;but the dynamic performance is poor.Hybrid Stepping Motor Hybrid Step Motor combines reactive, permanent magnet stepper motors of both, it's a small step angle, contribute a large, dynamic performance, is currently the highest performance stepper motor.It is also sometimes referred to as Permanent Magnet Induction Stepping Motor.It consists of two phases and the five-phase: the general two-phase step angle of 1.8 degrees and the general five-phase step angle 0.72 degrees.The most widely used Stepper Motor.Stepper motor drive for energy saving 6 Three-phase stepper motor drive special features: 180% low torque output, low frequency characteristics of a good run Maximum output frequency 600Hz, high-speed motor control full range of detection of protection(over voltage, under voltage, overload)instantaneous power failure restart acceleration, deceleration, such as dynamic change in the stall protection function to prevent Electrical dynamic parameters of automatic recognition function to ensure stability and accuracy of the system quick response and high-speed shutdown abundant and flexible input and output interface and control, versatility use of SMT production and three full-mount anti-paint treatment process, product stability and high full range of Siemens IGBT power devices using the latest, to ensure the quality of high-quality 7 Basic principles Usually for the permanent magnet rotor motor, when current flows through the stator windings, the stator windings produce a magnetic field vector.The magnetic field will lead to a rotor angle of the magnetic field makes the direction of a rotor and the stator's magnetic field direction.When the stator magnetic field vector rotating at an angle.As the rotor magnetic field is also transferred from another perspective.An electrical pulse for each input, the motor turning a point forward.It is the angular displacement of the output and input the number of pulses proportional to speed and pulse frequency is proportional to.Power to change the order of winding, the motor will reverse.Therefore, the number of available control pulse, frequency and power the motor windings of each phase in order to control the stepper motor rotation.8 Induction Stepping Motor 8-1 features: Induction, compared with the traditional reactive, structural reinforced with a permanent magnet rotor, in order to provide the working point of soft magnetic materials, and the stator excitation magnetic field changes only need to provide to provide the operating point of the consumption of magnetic materials energy, so the motor efficiency, current, low heat.Due to the presence of permanent magnets, the motor has a strong EMF, the damping effect of its own good, it is relatively stable during operation, low noise, low frequency vibration.Induction can be seen as somewhat low-speed synchronous motor.A four-phase motor can be used for four-phase operation, but also can be used for two-phase operation.(Must be bipolar voltage drive), while the motor is not so reactive.For example: four phase, eight-phase operation(A-AB-B-BC-C-CD-D-DA-A)can use two-phase eight-shot run.Not difficult to find the conditions for C =, D =.a two-phase motor's internal winding consistent with the four-phase motors, small power motors are generally directly connected to the second phase, the power of larger motor, in order to facilitate the use and flexible to change the dynamic characteristics of the motor, its external connections often lead to eight(four-phase), so that when used either as a four-phase motors used, can be used for two-phase motor winding in series or parallel.8-2 classification:Induction motors can be divided in phases: two-phase motor, three phase motor, four-phase motor, five-phase motor.The frame size(motor diameter)can be divided into: 42BYG(BYG the Induction Stepping motor code), 57BYG, 86BYG, 110BYG,(international standard), and like 70BYG, 90BYG, 130BYG and so are the national standards.8-3 the stepper motor phase number of static indicators of terms: very differently on the N, S the number of magnetic field excitation coil.Common m said.Beat number: complete the necessary cyclical changes in a magnetic field pulses or conducting state with n said, or that turned a pitch angle of the motor pulses needed to four-phase motor, for example, a four-phase four-shot operation mode that AB-BC-CD-DA-AB, shot eight four-phase operation mode that A-AB-B-BC-C-CD-D-DA-A.Step angle: corresponds to a pulse signal, the angular displacement of the rotor turned with θ said.θ = 360 degrees(the rotor teeth number of J * run shot), the conventional two, four-phase, the rotor teeth 50 tooth motor as an example.Four step run-time step angle θ = 360 ° /(50 * 4)= 1.8 degrees(commonly called the whole step), eight-shot running step angle θ = 360 ° /(50 * 8)= 0.9 degrees(commonly known as half step.)Location torque: the motor is not energized in the state, its locked rotor torque(as well as by the magnetic field profile of harmonics caused by mechanical error)static torque: the motor under the rated static electricity, the motor without rotation, the motor shaft locking torque.The motor torque is a measure of volume(geometry)standards, and drive voltage and drive power, etc.has nothing to do.Although the static torque is proportional to the electromagnetic magnetizing ampere turns, and fixed air gap between the rotor teeth on, but over-use of reduced air gap, increase the excitation ampere-turns to increase the static torque is not desirable, this will cause the motor heating and mechanical noise.12 智能小车控制中模糊-PID控制的实现
摘要:本文设计了一个自动智能小车控制系统和模糊-PID控制算法。提出了一个设计模糊PID控制器的方案。通过matlab的仿真分析表明,模糊-PID控制算法的性能比一般的PID控制更好。智能小车的试验结果表明它会随黑色的引导线快速并且稳定的走完整个行程。关键词:模糊PID;智能小车;模糊控制器;模糊控制。
1.简介
近年来,许多国家正在研制无人驾驶的车辆技术。产生了许多新的理论和应用技术。文献[1]中提出了一个采用实时检测速度从而准确、动态改变小车转向的理论,从而实现转向完美特性的控制策略。文献[2]中采用边缘检测算法来提取道路信息,并采用了比例控制。文献[3]提出了一种有效、具有良好抗干扰性的、适应性强的动态图像处理算法。这种算法有效的解决了由环境光线变化以及轨道变化所引起的小车偏离轨道现象。文献[4]利用非线性最优化重建了轨道和摄像调整间的空间关系,从而使它能够精确的测量出横向偏差。上述方案都从某种意义上改善了小车的性能,但他们都缺少以小车运动和大量实验为基础的小车的特性。这篇文章中提出了一个模糊控制算法以及模糊PID控制器的设计方法。在本文最后,给出了实验结果来证明模糊PID算法的有效性。
2.硬件系统设计
要实现模糊PID控制算法的设计,有必要设计一个智能小车硬件系统。智能小车应该有由道路检测,转角检测,速度检测等构成的智能控制单元。详见图1。
图1 智能小车原理框图 3.模糊PID控制的基本原则
用一般的PID控制算法来获得最好的响应是不容易的。因为参数Kp、Ki、Kd不适应于不同的对象,或者同一个对象的不同状态。模糊控制是以模糊集合和模糊逻辑为机车的。不需要精确的数学模型,它可以由用经验建立起来的规则表来确定控制变量的大小。一般来说,模糊控制的输入变量基于系统的误差E和系统的误差变化量Ec。这和比例-微分控制相似。这样的控制可能可以获得较好的动态性能,但获得的静态性能不能让人满意。
将模糊控制于PID控制结合起来,这就会使系统即具有模糊控制所具有的灵活的适应特性,又具有PID控制的所具有的较高的精确度。图2给出了模糊PID控制系统的结构图,其中模糊控制器的作用是选择不同的PID参数来改善局部响应,进而改善整体的响应。
图2 模糊PID控制仿真框图
4.模糊PID控制器的设计
速度驱动电机控制器的设计和下面给出的转向机构控制器设计是相似的。模糊控制器由模糊化、模糊推理、去模糊化组成,这些都是以知识库为基础的。控制器输入为误差及误差变化量,输出为参数Kp、Ki、Kd。
假设误差E的模糊集合为{NB NM NS NO PO PS PM PB};误差变化量Ec、参数Kp、Ki、Kd的模糊集合为{NB NM NS ZO PS PM PB}。他们表示的意义为:NB=负大、NM=负中、NS=负小、NO=负零、ZO=零、PO=正零、PS=正小、PM=正中、PB=正大。得到模 糊变量E、EC、Kp、Ki、Kd的隶属度函数曲线如图3至图7所示:
图3 Kp隶属函数响应曲线
图4 Ki隶属函数响应曲线
图5 Kd隶属函数响应曲线
图6 E隶属函数响应曲线
图7 Ec隶属函数响应曲线
在模糊化完成后需要建立规则表,根据规则表的描述,可以总结出56个模糊条件语句,形式例如:如果(E 是 PB)并且(Ec 是 PB)那么(Kp 是 PB)(Ki 是 ZO)(Kd是 PB)。详见表1—表3。
最后一个步骤是去模糊化和建立查询表。在模糊控制中查询表应该嵌入到程序中。假设输入的值是固定的那么可以在表中查出相应的输出值。实际上,这可以节省许多计算时间并使控制简化。
表1 Kp规则表
表2 Ki规则表
表3 Kd规则表
5.实验结果分析
图8 PID控制响应曲线
图9 模糊PID控制响应曲线
实验利用了转向机构模型,它的仿真回路已经由图2给出。我们已经用MATLAB仿真出了一般PID控制算法和模糊PID控制算法,获得的响应曲线如图
8、图9所示。
实验结果表明,同一般得PID控制相比模糊控制的响应时间要短且没有超调的。系统的动态性能有了重大的提高。
6.总结和展望
这篇文章给出了一个控制智能小车的设计方案,并且通过实验从实际上很好的验证了这个方案。
无人驾驶智能小车是以计算机技术、模式识别以及智能控制技术的发展为基础的。许多国家和机构都在做这一方面的研究,但它是一个复杂的系统,它包含了许多方面的技术,所以任何一个技术的发展都是重要的,这可能成为智能车发展的瓶颈。
„„„„„„
步进电机
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方 向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。工作原理
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。分类
现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。永磁式步进电机
永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度 或15度; 永磁式步进电动机输出力矩大,动态性能好,但步距角大。反应式步进电机
反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。
反应式步进电动机结构简单,生产成本低,步距角小;但动态性能差。混合式步进电机
混合式步进电动机综合了反应式、永磁式步进电动机两者的优点,它的步距角小,出力大,动态性能好,是目前性能最高的步进电动机。它有时也称作永磁感应子式步进电动机。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。变频器对步进电机的节能改造 三相步进电机专用变频器特点:
■低频转矩输出180%,低频运行特性良好 ■输出频率最大600Hz,可控制高速电机
■全方位的侦测保护功能(过压、欠压、过载)瞬间停电再起动
■加速、减速、动转中失速防止等保护功能
■电机动态参数自动识别功能,保证系统的稳定性和精确性 ■高速停机时响应快
■丰富灵活的输入、输出接口和控制方式,通用性强 ■采用SMT全贴装生产及三防漆处理工艺,产品稳定度高 ■全系列采用最新西门子IGBT功率器件,确保品质的高质量 基本原理
通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。当定子的矢量磁场旋转一个角度。转子也随着该磁场转一个角度。每输入一个电脉冲,电动机转动一个角度前进一步。它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。改变绕组通电的顺序,电机就会反转。所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。感应子式步进电机
1、特点: 感应子式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。感应子式某种程度上可以看作是低速同步的电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C=,D=.一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。
2、分类
感应子式电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。
3、步进电机的静态指标术语 相数:
产生不同对极N、S磁场的激磁线圈对数。常用m表示。拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用θ 20 表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过分采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。
第四篇:采矿工程毕业设计英文翻译
Underground Mining
Most present-day mining in Europe occurs under 2000 to 4000 ft of overburden, as more easily mined coal deposits have been depleted.At this depth most mines are developed as shaft mines.All personnel, material, and coal have to be hoisted trough these shaft.Considering the two factors of hoisting capacity and required length of shaft, a considerable investment is necessary to reach the coal-bearing strata.The requires huge investments.Openings at this depth have to be equipped with costly supports, and periodic reworking and repair is necessary.Mines not only extend horizontally but also vertically through the development of new levels.The life of the mines is thus extend considerably, and surface installations can be amortize over a longer period.The more limited reserves have forced companies into mining less favorable deposits, and European government require that all possible deposits be mined to conserve the nation’s energy resources.These factor and the large percentage of inclined seams and faults make mining very difficult and costly.The population density and the heavy surface buildup cause additional expense in the form of payments for subsidence damage to surface structures.Therefore, backfilling is frequently practiced to reduce subsidence.The close spacing of faults often severely limits the size of a mining section, forcing frequent moves and excessive development work.The thickness of the overburden results in very high ground pressure.This would require extremely large pillars if the room and pillar method was applied.Additionally, support is required for any opening, adding prohibitive costs to a multiple-entry room and pillar operation.As a result, single-entry longwall operations requiring the minimum number of entries and allowing maximum recovery of resources is the mining method almost exclusively practiced.Shaft mines dominate the European coal mining industry.Shafts 20 to 30 ft in diameter, with circular cross section, lined with masonry, concrete, or steel are the dominant means of gaining access to the coal-bearing strata.They are often extended beyond the last mining level to provide for future expansion.As in the Unite States, shafts are developed by drilling, blasting, and excavating or by large-diameter shaft-boring equipment.Shaft boring is more frequently used, particularly on the smaller and shorter subshaft, which connect the different levels but do not extend to the surface.Haulage in the shaft is usually accomplished by hoisting of the filled mine cars on multistage cages or by skips.Pumping of coal slurry is also done in special cases.The complex system of forces and the resulting rock mechanical problems developed by mining activities at different levels result in significant differences between European and US underground development.The rock mechanical interaction of the extraction operations at the various levels require that all deposits be mined as completely as possible.Pillars left after mining create zones of extreme and often unmanageable ground control problem, as well as a high probability of roof bounce.Since the number of entries is kept to a minimum because of cost, no bleeder systems are provided.If retreat mining is practiced, only two entries are advanced in to a new mining area.Panels are laid out as large as possible.The large-panel layout is used as another means of reducing the number of entries.Minded–out panels are sealed off to prevent spontaneous combustion through the removal of oxygen.The main levels, with extensive entry systems, are used for coal, supply, and personnel haulage and for ventilation.They are often spaced with little regard to the position of the coal seams, because the deposits are reached selectively through other means.In the past, 165-or330-ft intervals were selected while increasing ground pressures and development and maintenance increase substantially, requiring large volumes of air for cooling.As a result, entry cross sections at these levels have to be increase.Fig.9.1 German multilevel, multiseam shaft-type coal mine.Underground facilities:
(1)main shaft with skip hoisting;(2)exhaust ventilation shaft with multistage cage;(3)third-level station;(4)blind shaft with cylindrical storage bin;(5)blind shaft with car-hoisting facilities;(6)main entry;(7)main entry;(8)section or panel entry;(9)road heading machine(10)longwall section with plow;(11)longwall section with shearer;(12)longwall section in a steeply pitching seam mined manually with air picks;(13)longwall section in steeply pitching seam with plow;(14)minded-out gob area;(15)ventilation lock;(16)belt conveyor as main haulage;(17)main car haulage;(18)storage bin and skip-loading facilities;(19)supply haulage with a mono-rail;(20)supply haulage with mine cars;(21)monorail system as personnel carrier;(22)worker-trip cars;(23)pump station.Surface facilities:(a)hoisting tower with overhead hoist;(b)shaft building;(c)head frame;(d)main exhaust fan and diffuser;(e)coal preparation plant with loading facilities;(f)coking coal silo;(g)container vehicle for filling of coke ovens;(h)coke oven battery;(i)coke watering car;(k)coke quenching tower;(l)gas tank;(m)water-treatment plant;(n)refuse pile;(o)power plant;(p)cooling tower;(q)water tower;(r)supply storage area;(s)sawmill;(t)training and teaching center.地下采煤
目前,大部分欧洲的煤矿开采都已经达到了2000到4000英尺,主要是因为浅部容易开采的煤层都已经采完。在这个深度的大部分煤层都已经发展成为要用相关井筒进行开采的地步。所用的人员、材料、煤炭都不得不从井筒采用绞车等提升进行运输。考虑到绞车提升容量以及所需要的井筒长度的两个因素,一个相当大的资金投入对于开采到煤层所处的地层是必需的。这些大范围的地下巷道或隧道的网络的开拓和维护费用需要一笔巨大的投资。在这个深度进行开拓不得不装备一些很昂贵的支架和一些循环型的改造和返修,这些也都是必要的。
采矿不单单是拓宽水平方向而且通过开拓新的水平来拓宽来延深。所以矿井的服务年限被极大地拓宽,并且地表的安装设备费用也能够在很长的一个时期内得以缓冲。
有限的资源储备迫使公司开采要去开采那些并不是很乐观的煤层,并且欧洲各国政府要求采出所有可采的煤层以保护国家的能源。这些因素由于大比率的煤线和断层以至于煤炭的开采非常困难并且价格昂贵。由于人口密度的增长和地表建筑的增加,从而造成地表的沉陷对于建筑物的破坏,以至于增加了额外的成本。因此,采空区填充是最常用的防治地表沉陷的实践措施。过小的断层间距常常严重地限制采区的尺寸,因而不得不频繁搬家,并造成过大的开拓工程量。
上部覆盖层的厚度导致了相当大的地层压力。如果采用房柱式开采方法,就需要留异常巨大的煤柱。另外,任何一个工作面都需要支 架,并且增加了额外的费用对于多种平巷峒室的支撑措施。
地下开采统治着欧洲的煤炭开采工业。井筒直径大约20到30英寸,一般采用钢筋混凝土砌碹的圆形断面,作为主要的连接巷道连接到含煤地层。他们一般被延深到超过最后一个开采水平来满足未来的拓展。如在美国,立井是用打眼、放炮和挖掘方法或用大直径钻井设备来开凿的。钻井时经常被采用的,尤其对于小型的长度较短的连接各个水平但不通往地面的暗井。
井筒中一般采用罐笼中承载矿车或箕斗进行提升。在特殊情况下采用煤泥泵出的形式开采。
这种力的复杂的系统和岩石力学的合成的问题在煤矿开采活动不同的水平在欧洲和美国存在巨大的不同。
在多个水平煤层进行开采时,岩石之间相互力的作用要求尽可能的将煤全部采出。煤矿开采后留下的煤柱形成了一个压力极高并且相当难以维护的空间,具有很高的发生顶板岩石突出的可能性。
由于资金成本的问题,巷道入口的数目保持在最小值。没有回风巷的系统开始形成。如果采用后退式的开采方法,在采煤区段只有两个入口。
区段一般被尽可能的大。大区段的布置方式其实从另一个角度说就是为了减少入口的数目。开采过后的区域一般打上封闭,以切断氧气的来源从而防止采空区煤层自燃。
在布置有众多巷道主要的水平,它被用来运送煤炭、供给以及人员的运输和通风。他们经常空出一部分位置的煤柱不采,因为储量已 经达到并通过别的方法进行有选择性的开采。在过去,165或330英尺的间隔被有选择的当逐渐增加的矿山压力和开拓的维护费用迫使增加到660或990英尺。温度随着深度的增加也急剧增加,需要大容量的空气从而达到降温的目的。以至于这些水平的采区巷道也就要求增加。
图9.1 德国多水平、多工作面立井井筒式矿井
地下设备:
(1)箕斗提升主井;
(2)担负抽出式通风的并配有多层罐笼的副井;(3)第三水平井底车场;(4)带有圆柱形煤仓的暗井;(5)有矿车提升设备的暗井;(6)主要大巷;(7)主要大巷;(8)采区或盘区平巷;(9)掘进机;(10)采用刨煤机的长壁工作面采区;(11)采用采煤机的长壁工作面采区;(12)采用人工风镐的急倾斜煤层的长壁工作面采区;(13)采用刨煤机的急倾斜煤层的长壁工作面采区;(14)采空区;(15)风门;(16)胶带输送机作为主要运输设备;(17)主要矿车运输;(18)煤仓和箕斗装载峒室设备;(19)材料运输采用单轨运输;(20)材料运输采用矿车运输;(21)单轨矿车用于人员运输;(22)人车;(23)泵房及地表设备:(a)带有高架天轮的提升塔;(b)井筒;(c)井架;(d)主扇和扩散管;(e)有装载设备的洗选厂;(f)焦炭仓罐;(g)运送焦炭冶炼的运送机;(h)焦炭炉电池;(i)焦炭水车;(k)焦炭冷却塔;(l)瓦斯容器箱;(m)水处理装置;(n)矸石堆;(o)动力厂;(p)冷却塔;(q)水塔;(r)仓储区域;(s)锯木厂;(t)培训中心.
第五篇:毕业设计(论文)外文翻译(原文)
毕业设计(论文)——外文翻译(原文)
NEWAPPLICATIONOFDATABASE
Relational databases have been in use for over two decades.A large portion of the applications of relational databases have been in the commercial world, supporting such tasks as transaction processing for banks and stock exchanges, sales and reservations for a variety of businesses, and inventory and payroll for almost of all companies.We study several new applications, which have become increasingly important in recent years.First.Decision-support system
As the online availability of data has grown, businesses have begun to exploit the available data to make better decisions about increase sales.We can extract much information for decision support by using simple SQL queries.Recently however, people have felt the need for better decision support based on data analysis and data mining, or knowledge discovery, using data from a variety of sources.Database applications can be broadly classified into transaction processing and decision support.Transaction-processing systems are widely used today, and companies have accumulated a vast amount of information generated by these systems.The term data mining refers loosely to finding relevant information, or “discovering knowledge,” from a large volume of data.Like knowledge discovery in artificial intelligence, data mining attempts to discover statistical rules and patterns automatically from data.However, data mining differs from machine learning in that it deals with large volumes of data, stored primarily on disk.Knowledge discovered from a database can be represented by a set of rules.We can discover rules from database using one of two models:
In the first model, the user is involved directly in the process of knowledge discovery.In the second model, the system is responsible for automatically discovering knowledge from the database, by detecting patterns and correlations in the data.Work on automatic discovery of rules has been influenced strongly by work in the artificial-intelligence community on machine learning.The main differences lie in the volume of data handled in databases, and in the need to access disk.Specialized data-mining algorithms have been developed to handle large volumes of disk-resident data efficiently.The manner in which rules are discovered depends on the class of data-mining application.We illustrate rule discovery using two application classes: classification and associations.Second.Spatial and Geographic Databases
Spatial databases store information related to spatial locations, and provide support for efficient querying and indexing based on spatial locations.Two types of spatial databases are particularly important:
Design databases, or computer-aided-design(CAD)databases, are spatial databases used to store design information about how objects---such as buildings, cars or aircraft---are constructed.Other important examples of computer-aided-design databases are integrated-circuit and electronic-device layouts.Geographic databases are spatial databases used to store geographic information, such as maps.Geographic databases are often called geographic information systems.Geographic data are spatial in nature, but differ from design data in certain ways.Maps and satellite images are typical examples of geographic data.Maps may provide not only location information-such
as boundaries, rivers and roads---but also much more detailed information associated with locations, such as elevation, soil type, land usage, and annual rainfall.Geographic data can be categorized into two types: raster data(such data consist a bit maps or pixel maps, in two or more dimensions.), vector data(vector data are constructed from basic geographic objects).Map data are often represented in vector format.Third.Multimedia Databases
Recently, there has been much interest in databases that store multimedia data, such as images, audio, and video.Today multimedia data typically are stored outside the database, in files systems.When the number of multimedia objects is relatively small, features provided by databases are usually not important.Database functionality becomes important when the number of multimedia objects stored is large.Issues such as transactional updates, querying facilities, and indexing then become important.Multimedia objects often have descriptive attributes, such as those indicating when they were created, who created them, and to what category they belong.One approach to building a database for such multimedia objects is to use database for storing the descriptive attributes, and for keeping track of the files in which the multimedia objects are stored.However, storing multimedia outside the database makes it harder to provide database functionality, such as indexing on the basis of actual multimedia data content.It can also lead to inconsistencies, such a file that is noted in the database, but whose contents are missing, or vice versa.It is therefore desirable to store the data themselves in the database.Forth.Mobility and Personal Databases
Large-scale commercial databases have traditionally been stored in central computing facilities.In the case of distributed database applications, there has usually been strong central database and network administration.Two technology trends have combined to create applications in which this assumption of central control and administration is not entirely correct:
1.The increasingly widespread use of personal computers, and, more important, of laptop or “notebook” computers.2.The development of a relatively low-cost wireless digital communication infrastructure, base on wireless local-area networks, cellular digital packet networks, and other technologies.Wireless computing creates a situation where machines no longer have fixed locations and network addresses.This complicates query processing, since it becomes difficult to determine the optimal location at which to materialize the result of a query.In some cases, the location of the user is a parameter of the query.A example is a traveler’s information system that provides data on hotels, roadside services, and the like to motorists.Queries about services that are ahead on the current route must be processed based on knowledge of the user’s location, direction of motion, and speed.Energy(battery power)is a scarce resource for mobile computers.This limitation influences many aspects of system design.Among the more interesting consequences of the need for energy efficiency is the use of scheduled data broadcasts to reduce the need for mobile system to transmit queries.Increasingly amounts of data may reside on machines administered by users, rather than by database administrators.Furthermore, these machines may, at times, be disconnected from the network.Summary
Decision-support systems are gaining importance, as companies realize the value of the on-line data collected by their on-line transaction-processing systems.Proposed extensions to SQL, such as the cube operation, help to support generation of summary data.Data mining seeks to discover
knowledge automatically, in the form of statistical rules and patterns from large databases.Data visualization systems help humans to discover such knowledge visually.Spatial databases are finding increasing use today to store computer-aided design data as well as geographic data.Design data are stored primarily as vector data;geographic data consist of a combination of vector and raster data.Multimedia databases are growing in importance.Issues such as similarity-based retrieval and delivery of data at guaranteed rates are topics of current research.Mobile computing systems have become common, leading to interest in database systems that can run on such systems.Query processing in such systems may involve lookups on server database.毕业设计(论文)——外文翻译(译文)
数据库的新应用
我们使用关系数据库已经有20多年了,关系数据库应用中有很大一部分都用于商业领域支持诸如银行和证券交易所的事务处理、各种业务的销售和预约,以及几乎所有公司都需要的财产目录和工资单管理。下面我们要研究几个新的应用,近年来它们变得越来越重要。
1、决策支持系统
由于越来越多的数据可联机获得,企业已开始利用这些可获得的数据来对自己的行动做出更好的决策,比如进什么货,以及如何最好的吸引顾客以提高销售额。我们可以通过使用简单的SQL查询语句提供大量用于决策支持的信息。但是,人们最近感到需要使用多种数据源的数据,以便在数据分析和数据挖掘(或知识发现)的基础上,更好的来做决策支持。
数据库应用从广义上可分为事务处理和决策支持两类。事务处理系统现在正被广泛使用,并且公司已经积累了大量由这类系统产生的信息。
数据挖掘这个概念广义上讲是指从大量数据中发现有关信息,或“发现知识”。与人工智能中的知识发现类似,数据挖掘试图自动从数据中发现统计规则和模式。但是,数据挖掘和机器学习的不同在于它处理的是大量数据,它们主要存储在磁盘上。
从数据库中发现的知识可以用一个规则集表示。我们用如下两个模型之一从数据库中发现规则:
● 在第一个模型中,用户直接参与知识发现的过程
● 在第二个模型中,系统通过检测数据的模式和相互关系,自动从数据库中发现知识。有关自动发现规则的研究很大程度上是受人工智能领域在知识学习方面研究的影响。其主要的区别在于数据库中处理的数据量,以及是否需要访问磁盘。已经有一些具体的数据挖掘算法用于高效地处理放在磁盘上的大量数据。
规则发现的方式依赖于数据挖掘应用的类型。我们用两类应用阐述规则发现:分类和关联。
2、空间和地理数据库
空间数据库存储有关空间位置的信息,并且对高效查询和基于空间位置的索引提供支持。有两种空间数据库特别重要:
● 设计数据库或计算机辅助设计(CAD)数据库是用于存储设计信息的空间数据库,这些信息主要是关于物体(如建筑、汽车或是飞机)是如何构造的。另一个计算机辅助设计数据库的重要例子是整合电路和电子设备设计图。
● 地理数据库是用于存储地理信息(如地图)的空间数据库。地理数据库常称为地理信息系统。
地理数据本质上是空间的,但与设计数据相比在几个方面有所不同。地图和卫星图像是地理数据的典型例子。地图不仅可提供位置信息,如边界、河流和道路,而且还可以提供许多和位置相关的详细信息,如海拔、土壤类型、土地使用和年降雨量。地理数据可以分为两类:光栅数据(这种数据由二维或更高维的位图或像素图组成)、矢量数据(由基本几何对象构成)。地图数据常以矢量形式表示。
3、多媒体数据库
最近,有关多媒体数据(如图像、声音和视频)的数据库的研究很热门。现在多媒体数据通常存储在数据库以外的文件系统中。当多媒体对象的数目相对较少时,数据库提供的特点往往不那么重要。但是当存储的多媒体对象数目较多时,数据库的功能就变得重要起来。总之,事务更新、查询机制和索引也开始变的很重要。多媒体对象常常有描述属性,如指明它们是何时创建的、谁创建的,以及它们属于哪一类。构造这种多媒体对象的数据库的方法之一是用数据存储描述属性,并且跟踪存储这些媒体对象的文件。
但是,将多媒体数据存储在数据库之外,使得难于提供数据库的功能,譬如基于实际多媒体数据内容的索引。此外这种情况还会造成不一致,譬如一个文件在数据库中做了记录,但其内容却丢失了;或其相反情况。因此我们更希望将数据本身存储在数据库中。
4、移动性和个人数据库
大型商用数据库传统上是存储在中央计算设备上的。在分布式数据库应用中,通常有强大的中央数据库和网络管理。然而以下这两个技术趋势的结合产生了一些应用,这些应用使中央控制和管理不再完全正确:
● 个人计算机越来越广泛的使用,其中更重要的 是便携式或“笔记本”计算机的使用。● 基于无限局域网、蜂窝数字包网络,以及其他技术成本相对低廉的无线数字通信基础设
施的发展。
无线计算使得计算机不必有固定的位置和网络地址这使得查询处理更加复杂,因为它难于决定实体化查询结果的最佳位置。某些情况下,用户的位置是一个查询参数。例如,一个旅客信息系统提供关于酒店、路边服务的信息及类似信息给乘车的旅客。有关当前道路前放服务的查询必须根据用户的位置、移动的方向及速度进行处理。
能源(电池能源)对应动计算机来说是有限的资源,这一限制影响了系统设计的许多方面。能源效率需求最有趣的结果之一的使用计划的数据广播来减少传输查询中移动系统的需求。越来越多的数据会放在由用户管理、而不是由数据库管理员管理的计算机上,并且这些计算机有时可能与网络断开连接。
5、总结
随着企业认识到联机事务处理系统收集的联机数据的价值,决策支持系统也越发变得重要了。现已提出SQL扩展,如cube操作,能帮助系统生成汇总数据。数据挖掘致力于从大数据库中自动发现统计规律和模式等知识。数据可视化系统帮助人们从视觉上发现这些知识。
目前,空间数据库正越来越多的被应用于存储计算机辅助设计数据和地理数据。设计数据基本上是以矢量数据的形式存储,而地理数据则包含矢量数据和光栅数据。
多媒体数据库正变得越来越重要。基于相似性的查询以及按可以确保的速率传送数据是当前研究的重要课题。
移动计算系统的普及使人们对这类系统上运行的数据库产生了浓厚的兴趣。在这类系统上的查询处理可能会设计在服务器端数据库上的查找。