平面直角坐标系知识点归纳总结

时间:2019-05-15 09:58:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平面直角坐标系知识点归纳总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平面直角坐标系知识点归纳总结》。

第一篇:平面直角坐标系知识点归纳总结

平面直角坐标系知识点归纳总结

一、主要知识点概括:

(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a,b);

2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系

1、构成坐标系的各种名称;

2、各象限的点的横纵坐标的符号;

3、各种特殊位置点的坐标特点:原点、坐标轴上的点、角平分线上的点;

4、点A(x,y)到两坐标轴的距离;

5、同一坐标轴上两点间的距离;

6、根据已知条件求某一点的坐标。

(三)坐标方法的简单应用

1、用坐标表示地理位置;

2、用坐标表示平移。

二、各象限内点的坐标特点: 第一象限:P(x,y)x>0 y>0 第二象限:P(x,y)x<0 y>0 第三象限:P(x,y)x<0 y<0 第四象限:P(x,y)x>0 y<0

三、原点及坐标轴上点的坐标特点:

原点:P(0,0)X轴上的点:P(x,0)Y轴上的点:P(0,y)

四、平行于坐标轴的直线的点的坐标特点:

平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

五、各象限的角平分线上的点的坐标特点:

第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

六、与坐标轴、原点对称的点的坐标特点:

关于x轴对称的点的横坐标相同,纵坐标互为相反数 关于y轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数

七、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:

• 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

• 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

第二篇:平面直角坐标系知识点总结

平面直角坐标系

一、目标认知 学习目标:

1.理解平面直角坐标系产生的背景,能正确画出平面直角坐标系.能在直角坐标系中,根据坐标找点,由点求出坐标,掌握点坐标的特征(包括四个象限内点坐标的特征,数轴上点坐标的特征,象限角

平分线上点坐标的特征和对称点坐标的特征).2.由数轴到平面直角坐标系,渗透了类比的数学思想方法.通过学习习近平面直角坐标系的基础知识,逐步

理解平面内的点与有序实数对之间的一一对应的关系,进而培养数形结合的数学思想.

3.在掌握平面直角坐标系的基础知识基础上,可把该知识应用到地理位置识别以及图形平移,培养应用

数学的意识,并激发学习数学的兴趣.4.通过学习活动,验证平面直角坐标系的特征,获得理性认识.重点:

正确画出平面直角坐标系,掌握点坐标的特征.

难点:

掌握点坐标的特征,知道如何在平面直角坐标系内进行平移.

二、知识要点梳理 知识点一:有序数对

比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作:(a,b). 要点诠释:

对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。

知识点二:平面直角坐标系以及坐标的概念

1.平面直角坐标系

在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。

注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

2.点的坐标

点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。

注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。横、纵坐标的位置不能颠倒。

②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。

知识点三:点坐标的特征

l.四个象限内点坐标的特征:

两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).

2.数轴上点坐标的特征:

x轴上的点的纵坐标为0,可表示为(a,0);

y轴上的点的横坐标为0,可表示为(0,b).

注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。坐标轴上的点不属于任何一个象限,这一点要特别注意。

3.象限的角平分线上点坐标的特征:

第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);

第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).

注:若点P(a,b)在第一、三象限的角平分线上,则a=b;

若点P(a,b)在第二、四象限的角平分线上,则a=-b。

4.对称点坐标的特征:

P(a,b)关于x轴对称的点的坐标为(a,-b);

P(a,b)关于y轴对称的点的坐标为(-a,b);

P(a,b)关于原点对称的点的坐标为(-a,-b).

5.平行于坐标轴的直线上的点:

平行于x轴的直线上的点的纵坐标相同;

平行于y轴的直线上的点的横坐标相同。

6.各个象限内和坐标轴上点的坐标符号规律: 象限

横纵坐标符号(a,b)图象

第一象限(+,+)a>0,b>0

第二象限

(-,+)a<0,b>0

第三象限

(-,-)a<0,b<0

第四象限

(+,-)a>0,b<0

x轴上

正半轴(+,0)负半轴(-,0)

y轴上

正半轴(0,+)负半轴(0,-)

原点(0,0)

知识点四:简单应用

l.用坐标表示地理位置

根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:

(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;

(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称. 要点诠释:

在建立平面直角坐标系时,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等。在具体问题中要注意分析题目,灵活运用。而建立平面直角坐标系的方法是不唯一的。

2.用坐标表示平移

(1)点的平移:

在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b)。

由上可归纳为:

①在坐标系内,左右平移的点的坐标规律:右加左减;

②在坐标系内,上下平移的点的坐标规律:上加下减;

③在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.

(2)图形的平移:

在平面直角坐标系内,如果把一个图形各个点的横坐标都加上或减去一个正数a,相应的新图形就是把原图形向右或向左平移a个单位长度;如果把各个点的纵坐标都加上或减去一个正数a,相应的新图形就是把原图形向上或向下平移了a个单位长度。

注:平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决。注意平移只改变图形的位置,图形的大小和形状不发生变化.三、规律方法指导

学习本章首先要理解好有序数对的概念,也就是在这里的数不但表示大小,还表示方向.并且它的位置也是不能改变的.其次,平面直角坐标系的引入,它是帮助我们研究事物的位置关系的一个工具,那么,对于点坐标的特征要熟练掌握,这样对于解题和应用都有很大帮助.最后就是应用平面直角坐标系解决实际问题,尤其是平移图形,这里学生一定要画平面直角坐标系,体会数形结合在数学中的作用,这是利用左右脑学习的最好方法.

第三篇:文档平面直角坐标系知识点总结

平面直角坐标系知识点归纳

1、在平面内两条互相垂直且有公共原点的数轴组成了平面直角坐标系

2、坐标平面上的任意一点P的坐标都和惟一的一对 有序实数对ba 一一对应其中a为横坐标b为纵坐标坐标

3、x轴上的点纵坐标等于0y轴上的点横坐标等于0 坐标轴上的点丌属于任何象限

4、四个象限的点的坐标具有如下特征 小结1点Pyx所在的象限 横、纵坐标x、y的取值的正负性 2点Pyx所在的数轴 横、纵坐标x、y中必有一数为零

5、在平面直角坐标系中已知点Pba则 1 点P到x轴的距离为b 2点P到y轴的距离为a 3 点P到原点O的距离为PO 22ba

6、平行直线上的点的坐标特征 a 在与x轴平行的直线上 所有点的纵坐标相等 点A、B的纵坐标都等于m b 在与y轴平行的直线上所有点的横坐标相等 点C、D的横坐标都等于n 象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限 正 负 Pba a b x y O-3-2-1 0 1 a b 1-1-2-3 Pab Y x X Y A B mB X Y C D n a b

7、对称点的坐标特征 a 点Pnm关于x轴的对称点为1nmP 即横坐标不变纵坐标互为相反数 b 点Pnm关于y轴的对称点为2nmP 即纵坐标不变横坐标互为相反数 c 点Pnm关于原点的对称点为3nmP即横、纵坐标都互为相反数 关于x轴对称 关于y轴对称 关于原点对称

8、两条坐标轴夹角平分线上的点的坐标的特征 a 若点Pnm在第一、三象限的角平分线上则nm即横、纵坐标相等 b 若点Pnm在第二、四象限的角平分线上则nm即横、纵坐标互为相反数 在第一、三象限的角平分线上 在第二、四象限的角平分线上 基本练习练习1在平面直角坐标系中已知点P25mm在x轴上则P点坐标为 练习2在平面直角坐标系中点P422m一定在 象限 练习3已知点P912aa在x轴的负半轴上则P点坐标为 练习4已知x轴上一点A30y轴上一点B0b且AB5则b的值为 练习5点M23关于x轴的对称点N的坐标为 关于y轴的对称点P 的坐标为 关于原点的对称点Q的坐标为。练习6已知点P332a和点A231b关于x轴对称那么ba 练习7如果点M、N的坐标分别是23和23则直线MN与y轴的位置关系是 练习8已知线段AB3AB∥x轴若点A的坐标为12则B点的坐标为 练习9已知点A4a在第三象限的角平分线上则a 练习10已知B2b在第二象限的角平分线上则b X y P 1P n n m O X y P 2P m m n O X y P 3P m m n O n X y P m n O y P m n O X

第四篇:平面直角坐标系教案

平面直角坐标系

学习目标:

(1)理解平面直角坐标系的相关概念.(2)在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置. 学习重难点:

平面直角坐标系及相关概念.

一、复习引入

问题1

回顾已学内容,回答下列问题:

(1)什么是数轴?请画出一条数轴.

(2)如图,A,B,C三点所表示的数分别是什么?在数轴上描出“-3”表示的点.

问题2

在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?

二、设疑自探一:

类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图,你能找到一种办法来确定平面内点B的位置吗?

(1)在图中,点B记为(1,2),类比点B,你能分别写出点A、C、D分别记为什么吗?(2)了解法国数学家笛卡儿 解疑合探一:

学生展示,其他同学补充,教师总结。

三、设疑自探二:

学生自学课本本节课内容后,回答下列问题:

⑴平面直角坐标系 在平面内画两条互相__、原点重合的数轴,组成____________.水平的数轴称为_____或_____,习惯上取______为正方向;竖直的数轴称为______或_____,取______为正方向;两坐标轴的交点为平面直角坐标系的_____.(2)如图写出点的坐标:A____;B____;C____;D____ 1

(3)坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?(在上图中标注出象限)

注意:坐标轴上的点不属于_____.(4)如图甲,在平面直角坐标系中,点B,C,D的坐标分别是什么?

甲 乙

(5)如图乙,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原点的坐标是什么?

解疑合探二:

1、学生展示,其他同学补充,教师总结。

2、教师出示例题,学生展示:

例:画平面直角坐标系并描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(3,0),K(0,-4).

四、质疑再探:

数轴上点与其坐标是什么关系?想一想平面上的点与坐标又是什么关系?

五、运用拓展:

一、选择题:

1.如图1所示,点A的坐标是()A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)2.如图1所示,横坐标和纵坐标都是负数的点是()A.A点 B.B点 C.C点 D.D点 3.如图1所示,坐标是(-2,2)的点是()A.点A B.点B C.点C D.点D 4.若点M的坐标是(a,b),且a>0,b<0,则点M在()A.第一象限;B.第二象限;C.第三象限;D.第四象限

二、填空题: 1.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C(3, 2)在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F(2, 0)在______轴上.2.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限.三、提高训练:: 1.如果点A的坐标为(a+1,-1-b),那么点A在第几象限?为什么? 2.已知点P(a,b)在第四象限,则点Q(b-1,-a)在第 象限。

第五篇:平面直角坐标系教案

以下是查字典数学网为您推荐的平面直角坐标系教案,希望本篇文章对您学习有所帮助。平面直角坐标系第一课时 6.1-1 有序数对

1、理解有序数对的概念,了解平面内的点与有序数对的关系。

2、利用有序数对确定物体的位置。重点:有序数对 难点:用有序数对表示具体位置

一、阅读教材P39~P40的内容,回答下面问题:

二、独立思考:(1)确定直线上某一点的位置一般需要_________个数据,确定平面内某一点的位置一般需要_________个数据。(2)某宾馆第四楼第1个房间的门牌为4-1,那么第五楼第10个房间门牌号应为_____。(3)七年级3班座位有7排8列,王燕同学的座位是第3排第4列,简记作(3,4),张波同学的座位简记作(5,2),则张波坐在第______排第______列。(4)如果影剧院的座位10排2号用(10,2)表示,那么(8,3)表示_______________。例1:怪兽吃豆豆是一种计算机游戏,如图所示的标志 表示怪兽先后经过的几个位置,如果用(1,2)表示怪兽按图中箭头所指的路线经过的第三个位置,那么请你用同样的方法表示图中怪兽经过的其他几个位置。例2:蚂蚁从A点出发,经过通道线爬回蚁巢B点,若用(0,0)(1,0)(1,1)(2,1)(2,2)表示它的一种爬法,请列出其他所有不同的爬法(必须是最短的线路)。例3:如图,是某校七年级(1)班的学生座位的平面图。(1)请说出小明和小丽的位置;(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?小明和小丽的位置可以怎样表示?(3)(3,4)与(4,3)表示的位置是否相同?

一、课堂练习

1、课本P40练习题

二、作业布置:

1、课本P44习题6.1第1题。

2、北京位于东经116.4、北纬39.9,我们用有序数对(116.4,39.9)表示。某地的位置用有序数对(108,19.1)表示,则地理位置位于东经____度,北纬_____度。

3、如图(3)所示,如果点A的位置为(3,2),那么点B的位置为______, 点C 的位置为______,点D和点E的位置分别为______,_______.4、中心五楼第一个房间的门牌号是0501,那么六楼第10个房间的门牌号应为_________.三、自我测评(一)选择题

1、下列数据不能确定物体位置的是()A、4楼8号 B、北偏东30C、希望路25号 D、东经118、北纬402、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B 的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)

3、如图所示,B左侧第二个人的位置是()A.(2,5)B.(5,2)C.(2,2)D.(5,5)

4、如图所示,如果队伍向西前进,那么A北侧第二个人的位置是()A.(4,1)B.(1,4)C.(1,3)D.(3,1)

5、如图所示,(4,3)表示的位置是()A.A B.B C.C D.D(二)填空题

6、如图所示,是小刚画的一张脸,他对妹妹说:如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可表示成___________。

7、如图,是象棋盘的一部分,一匹马在点B的位置,规定列数在前,排数在后,则点B可用有序数对表示为___________,当马从点B跃到点C时,点C的位置可表示为______________;如果按照象棋的规则,马还能跃到哪些位置,怎样表示:_______________________________________(三)解答题

8、如图是某教室学生座位平面图。(1)请说出王明和张强的座位位置;(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?王明和张强的座位位置可以怎样表示?(3)请说出(3,3)和(4,8)表示哪两位同学的座位位置;(4)(3,4)和(4,3)的位置相同吗?一般地,若,()与()表示的位置相同吗?

9、如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方式写出由A到B的其他几条路径吗?

10、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?第二课时 6.1-2平面直角坐标系(一)

1、认识平面直角坐标系,并会画平面直角坐标系

2、能在平面直角坐标系中,根据点的坐标描点的位置,会由点的位置写出点的坐标。重点:平面直角坐标系和点的坐标。难点:平面直角坐标系和点的坐标

一、阅读教材P40-P41。

二、独立思考:

1、_____________________________________叫平面直角坐标系,水平的数轴叫x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

2、教材P44习题6.1第1题。在如图所示的平面直角坐标系中描出A(-1,0),B(5,0),C(2,1),D(0,1)四点,并用线段将A、B、C、D四点依次连接起来,得到一个什么图形?你能求出它的面积吗?如图,写出其中标有字母的各点的坐标,并指出它们的横坐标和纵坐标:建立适当的平面直角坐标系,并在平面直角坐标系中描出下列各点,并将各点用线段依次连接起来;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)

一、课堂练习:

1、教材P43练习第1、2题

二、作业布置

1、教材P45第4、5题;

2、教材P46第7题

二、自我测评(一)选择题

1、点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A、()B、()C、()D、()

2、若点P(x,y)的坐标满足 =0,则点P 的位置是()A、在x轴上 B、在y轴上 C、是坐标原点 D、在x轴上或在y轴上(二)填空题

3、在平面直角坐标系上,原点O的坐标是(),x轴上的点的坐标的特点是_______ 坐标为0;y轴上的点的坐标的特点是 坐标为0。

4、已知x轴上点P到y 轴的距离是3,则点P坐标是_________。

5、已知点M 在 轴上,则点M的坐标为 ___。

6、若点P到 轴的距离为2,到 轴的距离为3,则点P的坐标为 ___(三)解答题

7、图中标明了李明同学家附近的一些地方。(1)根据图中所建立的平面直角坐标系,写出学校,邮局的坐标。(2)某星期日早晨,李明同学从家里出发,沿着(-2,-1)、(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方。(3)连接他在(2)中经过的地点,你能得到什么图形?

8、王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。可是她忘记了在图中标出原点和x轴、y轴。只知道游乐园D的坐标为(2,-2),你能帮她求出其他各景点的坐标?

10、如图,在直角坐标系中,第一次将 变换成,第二次将 变成,第三次将 变成,已知。(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将 变换成,则 的坐标是__,的坐标是__。(2)若按第(1)题找到的规律将 进行了n次变换,得到,比较每次变换中三角形顶点坐标有何变化,找出规律,推测 的坐标是__,的坐标是__。

11、如图,建立平面直角坐标系,使点B、C的坐标分别为(0,0)和(4,0),写出点A、D、E、F、G的坐标。

12、如图:左右两幅图案关于轴对称,左图案中左右眼睛的坐标分别是,嘴角左右端点的坐标分别是,⑴试确定右图案的左右眼睛和嘴角左右端点的坐标⑵你是怎样得到的?与同伴交流。第三课时 6.1-2平面直角坐标系(二)

1、认识坐标平面并能判断各象限内点的符号。

2、能根据象限内点的符号特点做相关练习重点:认识坐标平面难点:坐标平面

一、阅读教材P42-P43的内容

二、独立思考

1、点A(3,2)在第________象限,点B(1,-2)在第_______象限,点C(-3,-4)在第________象限,点D(-4,1)在第______ 象限。

2、点(0,3),(4,0),(2,2),(-1,0)在y轴上的点有_____________________;在第二象限的点是_______.3、点N在第三象限,它到x轴的距离是4,到y轴的距离是3,则N的坐标是________.4、已知点P(),若点P在x轴上,则x=_________,若点P在y轴上,则x=_________。

5、已知点P(x,y)在第二象限,且|x|=6,|y|=5,则点P的坐标是_____________。在平面直角坐标系中描出下列各点,并指出各点所在的象限:A(4,5),B(-2,-3),C(-4,-1),D(2.5,-2),E(0,-4)写出如图中三角形ABC各顶点的坐标,并说明点A、B、C所在的象限,且求出此三角形的面积。已知A(),B(),根据以下要求确定x,y的值。(1)直线AB//x轴;(2)直线AB//y轴;(3)A,B关于x轴对称;(4)A、B两点分别在一、二象限的角平分线上。

一、课堂练习

1、如图,正方形边长为2,写出下各坐标系中正方形的顶点的坐标。

二、作业布置教材P44第2题教材P45第6题

三、自我检测(一)选择题

1、在平面直角坐标系中,点P(-5,8)在()A、第一象限 B、第二象限 C、第三象限 D、第四象限

2、已知点P(a,-2)在二、四象限的角平分线上,则a的值是()A、2 B、-2 C、D、3、若x轴上的点P到y轴的距离是3,则点P的坐标为()A、(3,0)B、(3,0或-3,0)C、(0,3)D、(0,3或0,-3)

4、平面直角坐标系中,点(n,1-n)一定不在第____象限()A、一 B、二 C、三 D、四

5、在平面直角坐标系中,点P(-3,4)到x轴的距离是()A、3 B、-3 C、4 D、-4(二)填空题

6、已知点P(-3,2),则P在第_______象限内,点P到x轴的距离是______,到y轴的距离是________。

7、已知点P(x,y)满足xy0,则点P在______象限内。

8、如果p(a+b,ab)在第二象限,那么点Q(a,-b)在第 象限.9、如果点M(a,b)第二象限,那么点N(b,a)在第 象限。

10、已知线段 MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为。(三)解答题

11、若P(x,y)的坐标满足方程(x+3)2+|y+4|=0,求点P的坐标,并回答点P在第几象限?

12、在平面直角坐标系中,点(-1,m2+1)一定在第几象限?

13、在平面直角坐标系中,点E(3k-9,1-k)在第三象限内,且点的坐标都为整数,求点E的坐标。

14、已知点B(3a+5,-6a-2)在第二、四象限的平分线上,求a2009-a的值。

15、在平面直角坐标系中分别描出下列点的坐标,看看这些点在什么位置上?由此你有什么发现?(1)(2,3),(2,-1),(2,5),(2,0),(2,-5),(2,-4).(2)(3,2),(-1,2),(5,2),(0,2),(-5,2),(-4,2)

16、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来ABCD各个顶点纵坐标保持不变,横、纵坐标都增加2,所得的四边形面积又是多少?

17、已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0);(1)请建立平面直角坐标系,并画出四边形ABCD。(2)求四边形ABCD的面积。

下载平面直角坐标系知识点归纳总结word格式文档
下载平面直角坐标系知识点归纳总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《平面直角坐标系》说课稿

    《平面直角坐标系》说课稿 《平面直角坐标系》说课稿1 一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,......

    七年级下册数学知识点总结:平面直角坐标系(苏教版)

    七年级下册数学知识点总结:平面直角坐标系(苏教版) 第六章平面直角坐标系一、目标与要求 .解有序数对的应用意义,了解平面上确定点的常用方法。 2.培养学生用数学的意识,激发学生......

    初中数学知识点总结:平面直角坐标系(五篇范文)

    在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。以下是小编搜索整理初中数学知识点总结:平面直角坐标系,欢迎大家阅读!平面直角坐标系:在平......

    平面直角坐标系(教学设计说明)★

    《平面直角坐标系》 教案说明 《平面直角坐标系》教案说明 《平面直角坐标系》是人教版《数学》七年级下册第六章的内容,是本章中继《有序数对》之后的第2课时.下面我从教材分......

    直角平面坐标系教学反思

    直角平面坐标系教学反思 直角平面坐标系教学反思1 《平面直角坐标系》这节课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就......

    《平面直角坐标系》教学设计

    《平面直角坐标系》教学设计 学科教学数学 陈亚会 2015050117 一、教学目标 知识与技能: 1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系; 2.能在给定的直角坐标系......

    《平面直角坐标系》教学设计

    《平面直角坐标系》教学设计 一、教材分析平面直角坐标系架起了数与形之间的桥梁,它是数学乃至其它学科研究问题的有力工具,新教科书提前安排此内容,其目的是让学生尽早接触这......

    平面直角坐标系2 教案

    平面直角坐标系2 一.教学目标(一)教学知识点 1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念. 2.认识并能画出平面直角坐标系. 3.能在给定的直角坐标系中,由......