第一篇:PFM与PWM的技术总结
PFM与PWM的技术总结
开关电源的控制技术主要有三种:
1、脉冲宽度调制((pulse width modulation PWM是频率的宽和窄的变化);
脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。
优点:(1)、噪音低;
(2)、满负载时效率高且能工作在连续导电模式;(3)、纹波电压小;
(4)、且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。(5)、控制方法实现起来容易 缺点:
(1)、PWM由于误差放大器的影响,回路增益及响应速度受到限制,PFM具有较快的响应速度
(2)、PWM在低负荷时虽然效率较逊色
1、脉冲频率调制(Pulse frequency modulation PFM是频率的有和无的变化)
(1)、导通时间不变,断开时间变;(2)、断开时间不变,导通时间变;
一种脉冲调制技术,调制信号的频率随输入信号幅值而变化,其占空比不变。由于调制信号通常为频率变化的方波信号,因此,PFM也叫做方波FM。
优点:
(1)、PFM相比较PWM主要优点在于效率。(2)、PFM具有静态功耗小的优点
(3)、没有限流的功能也不能工作于连续导电方式(4)、与PWM相比,PFM的输出电流小
(5)、消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。
对于外围电路一样的PFM和PWM而言,其峰值效率PFM与PWM相当,但在峰值效率以前,PFM的效率远远高于PWM的效率,这是PFM的主要优势.缺点:
1、滤波困难(谐波频谱太宽)。
2、峰值效率以前,PFM的频率低于PWM的频率,会造成输出纹波比PWM偏大。
3、PFM控制相比PWM控制 IC 价格要贵。
PFM之所以应用没有PWM多最主要的一个原因就是另外一个原因就是PWM的巨大优点了:,PFM控制方法实现起来不太容易。
(3)、脉冲宽度频率调制(PWM-PFM)
PWM-PFM兼有PWM和PFM的优点。
控制原理
DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到与设定电压相同的输出电压。
PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。
PWM控制也是与频率同步进行开关,但是它会在达到升压设定值时,尽量减少流入线圈的电流,调整升压使其与设定电压保持一致。
目前业界PFM只有Single Phase,且以Ripple Mode的模式来实现,故需求输出端的Ripple较大。没有负向电感电流,故可提高轻载效率。由于是看输出Ripple,所以Transient很好,在做Dynamic的时候没有under-shoot。
PWM有Single Phase & Multi-phase,多以Voltage Mode or Current Mode来实现,对输出Ripple没有要求,轻载时存在电感负向电流,故轻载效率较差,Compensation较Ripple相比较慢。
将PWM于PFM结合使用,当侦测到电感负电流的时候,变出现Pulse Skipping,而不再受内部Clock控制。此时,controller will turn off both h-mos & l-mos,Coss & L会出现阻尼振荡。
第二篇:PFM与PWM的技术总结
PFM与PWM的技术总结
做电源设计的应该都知道PWM 和PFM 这两个概念
开关电源的控制技术主要有三种:(1)脉冲宽度调制(PWM);(2)脉冲频率调制(PFM);(3)脉冲宽度频率调制(PWM-PFM).
PWM:(pulse width modulation)脉冲宽度调制
脉宽调制PWM是开关型稳压电源中的术语。这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。PFM:(Pulse frequency modulation)脉冲频率调制
一种脉冲调制技术,调制信号的频率随输入信号幅值而变化,其占空比不变。由于调制信号通常为频率变化的方波信号,因此,PFM也叫做方波FM PWM是频率的宽和窄的变化,PFM是频率的有和无的变化, PWM是利用波脉冲宽度控制输出,PFM是利用脉冲的有无控制输出.其中PWM是目前应用在开关电源中最为广泛的一种控制方式,它的特点是噪音低、满负载时效率高且能工作在连续导电模式,现在市场上有多款性能好、价格低的PWM集成芯片,如UCl842/2842/3842、TDAl6846、TL494、SGl525/2525/3525等;PFM具有静态功耗小的优点,但它没有限流的功能也不能工作于连续导电方式,具有PFM功能的集成芯片有MAX641、TL497等;PWM-PFM兼有PWM和PFM的优点。
DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到与设定电压相同的输出电压。PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。PWM控制也是与频率同步进行开关,但是它会在达到升压设定值时,尽量减少流入线圈的电流,调整升压使其与设定电压保持一致。
与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。
若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。此功能是在重负荷时由PWM控制,低负荷时自动切换到PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。
就DC-DC变换器而言目前业界PFM只有Single Phase,且以Ripple Mode的模式来实现,故需求输出端的Ripple较大。没有负向电感电流,故可提高轻载效率。由于是看输出Ripple,所以Transient很好,在做Dynamic的时候没有under-shoot。PWM有Single Phase & Multi-phase,多以Voltage Mode or Current Mode来实现,对输出Ripple没有要求,轻载时存在电感负向电流,故轻载效率较差,Compensation较Ripple相比较慢。将PWM于PFM结合使用,当侦测到电感负电流的时候,变出现Pulse Skipping,而不再受内部Clock控制。此时,controller will turn off both h-mos & l-mos,Coss & L会出现阻尼振荡。
每位工程师接触的领域不一样,可能有的领域是用PFM比较多,有的是用PWM比较多,但从整个电源行业来说,相信目前还是PWM用的多.上世纪80年代至今,PWM开始了在电源变换领域的“王朝统治"地位,因为每种方式都有缺点和优点.关键还是看是否适合客户需要吧在论坛看到一位网友是这样写的,我觉得写的比较形象,他说如果把PFM与PWM的电源用车来比较的话,用PFM的=奔驰,用PWM的=大众。PFM相比较PWM主要优点在于效率
1、对于外围电路一样的PFM和PWM而言,其峰值效率PFM与PWM相当,但在峰值效率以前,PFM的效率远远高于PWM的效率,这是PFM的主要优势.2、PWM由于误差放大器的影响,回路增益及响应速度受到限制,PFM具有较快的响应速度 PFM相比较PWM主要缺点在于滤波困难
1、滤波困难(谐波频谱太宽)。
2、峰值效率以前,PFM的频率低于PWM的频率,会造成输出纹波比PWM偏大。
3、PFM控制相比PWM控制 IC 价格要贵。
PFM之所以应用没有PWM多最主要的一个原因就是另外一个原因就是PWM的巨大优点了:控制方法实现起来容易,PFM控制方法实现起来不太容易。
第三篇:STM32 PWM输出总结
学习后发现stm32的定时器功能确实很强大,小总结一下方便以后使用的时候做参考。Stm32定时器一共分为三种:tim1和tim8是高级定时器,6和7是基本定时器,2—5是通用定时器。从名字就可以看得出来主要功能上的差异。今天我主要是用定时器做pwm输出,所以总结也主要是针对pwm方面的。
先大致说下通用和高级定时器的区别。通用的可以输出四路pwm信号互不影响。高级定时器可以输出三对互补pwm信号外加ch4通道,也就是一共七路。
所以这样算下来stm32一共可以生成4*5+7*2=30路pwm信号。接下来还有功能上的区别:通用定时器的pwm信号比较简单,就是普通的调节占空比调节频率(别的不常用到的没去深究);高级定时器的还带有互补输出功能,同时互补信号可以插入死区,也可以使能刹车功能,从这些看来高级定时器的pwm天生就是用来控制电机的。
Pwm输出最基本的调节就是频率和占空比。频率当然又和时钟信号扯上了关系。高级定时器是挂接到APB2上,而通用定时器是挂接到APB1上的。APB1和APB2的区别就要在于时钟频率不同。APB2最高频率允许72MH,而APB1最高频率为36MHZ。这样是不是通用定时器只最高36MHZ频率呢,不是的;通用定时器时钟信号完整的路线应该是下面这样的: AHB(72mhz)→APB1分频器(默认2)→APB1时钟信号(36mhz)→倍频器(*2倍)→通用定时器时钟信号(72mhz)。
在APB1和定时器中间的倍频器起到了巨大的作用,假如红色字体的“APB1分频器”假如不为1(默认是2),倍频器会自动将APB1时钟频率扩大2倍后作为定时器信号源,这个它内部自动控制的不用配置。设置这个倍频器的目的很简单就是在APB1是36mhz的情况下通用定时器的频率同样能达到72mhz。我用的库函数直接调用函数SystemInit();这个函数之后时钟配置好了:通用定时器和高级定时器的时钟现在都是72mhz(你也可以自己再配置一下RCC让他的频率更低,但是不能再高了)。定时器接下来还有一个分频寄存器:TIMX_PSC经过他的分频后,才是定时器计数的频率。所以真正的时钟频率应该是72mhz/(TIMX_PSC-1),我们设为tim_frepuency下面还会用到。
stm32的时钟频率弄得确实是很饶人的,所以关键就是先要把思路理清楚。时钟的频率弄好了下面终于可以开说重点PWM了。当然还少不了频率:pwm主要就是控制频率和占空比的:这两个因素分别通过两个寄存器控制:TIMX_ARR和TIMX_CCRX。ARR寄存器就是自动重装寄存器,也就是计数器记到这个数以后清零再开始计,这样pwm的频率就是tim_frequency/(TIMX_ARR-1)。在计数时会不停的和CCRX寄存器中的数据进行比较,如果小于的话是高电平或者低电平,计数值大于CCRX值的话电平极性反相。所以这也就控制了占空比。
下面是定时器1的配置代码:
GPIO_InitTypeDef GPIO_InitStructure2;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
//第一步:配置时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|
RCC_APB2Periph_GPIOB|RCC_APB2Periph_TIM1,ENABLE);
//第二步,配置goio口
/********TIM1_CH1 引脚配置*********/
GPIO_InitStructure2.GPIO_Pin=GPIO_Pin_8;
GPIO_InitStructure2.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure2.GPIO_Mode=GPIO_Mode_AF_PP;
//设置为复用浮空输出
GPIO_Init(GPIOA,&GPIO_InitStructure2);
/*********TIM1_CH1N 引脚配置********/
GPIO_InitStructure2.GPIO_Pin=GPIO_Pin_13;
GPIO_InitStructure2.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure2.GPIO_Mode=GPIO_Mode_AF_PP;
//设置为复用浮空输出
GPIO_Init(GPIOB,&GPIO_InitStructure2);
//第三步,定时器基本配置
TIM_TimeBaseStructure.TIM_Period=1000-1;
// 自动重装载寄存器的值
TIM_TimeBaseStructure.TIM_Prescaler=72-1;
// 时钟预分频数
TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;// 采样分频
TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;//向上计数
TIM_TimeBaseStructure.TIM_RepetitionCounter=0;//重复寄存器,用于自动更新pwm占空比
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
//第四步pwm输出配置
TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM2;
//设置为pwm1输出模式
TIM_OCInitStructure.TIM_Pulse=500;
//设置占空比时间
TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low;
//设置输出极性
TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;
//使能该通道输出
//下面几个参数是高级定时器才会用到,通用定时器不用配置
TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_High;
//设置互补端输出极性
TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Enable;//使能互补端输出
TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Reset;
//死区后输出状态
TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//死区后互补端输出状态
TIM_OC1Init(TIM1,&TIM_OCInitStructure);
//按照指定参数初始化
//第五步,死区和刹车功能配置,高级定时器才有的,通用定时器不用配置
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Disable;//运行模式下输出选择
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Disable;//空闲模式下输出选择
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
//锁定设置
TIM_BDTRInitStructure.TIM_DeadTime = 0x90;
//死区时间设置
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
//刹车功能使能
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;//刹车输入极性
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;//自动输出使能
TIM_BDTRConfig(TIM1,&TIM_BDTRInitStructure);
//第六步,使能端的打开
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);//使能TIMx在CCR1上的预装载寄存器
TIM_ARRPreloadConfig(TIM1, ENABLE);
//使能TIMx在ARR上的预装载寄存器
TIM_Cmd(TIM1,ENABLE);
//打开TIM2
//下面这句是高级定时器才有的,输出pwm必须打开
TIM_CtrlPWMOutputs(TIM1, ENABLE);
//pwm输出使能,一定要记得打开
TIM_OC1PreloadConfig(),TIM_ARRPreloadConfig();这两个函数控制的是ccr1和arr的预装在使能,使能和失能的区别就是:使能的时候这两个局存期的读写需要等待有更新事件发生时才能被改变(比如计数溢出就是更新时间)。失能的时候可以直接进行读写而没有延迟。另外在运行当中想要改变pwm的频率和占空比调用:TIM_SetAutoreload()TIM_SetCompare1()这两个函数就可以了。
第四篇:传感器与检测技术总结
《传感器与检测技术》总结
姓名:王婷婷 学号:14032329 班级:14-1
1传感器与检测技术
这学期通过学习《传感器与检测技术》,懂得了很多,以下是我对这本书的总结。第一章 概 述
传感器的作用是:传感器是各种信息的感知、采集、转换、传输和处理的功能器件,具有不可替代的重要作用。
传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
传感器的组成:被测量量---敏感元件---转换元件----基本转换电路----电量输出
传感器的分类:按被测量对象分类(内部系统状态的内部信息传感器{位置、速度、力、力矩、温度、导演变化}、外部环境状态的外部信息传感器{接触式[触觉、滑动觉、压觉]、非接触式[视觉、超声测距、激光测距);按工作机理分类(结构型{电容式、电感式}、物性型{霍尔式、压电式});按是否有能量转换分类(能量控制型[有源型]、能量转换型[无源型]);按输出信号的性质分类(开关型[二值型]{接触型[微动、行程、接触开关]、非接触式[光电、接近开关]}、模拟型{电阻型[电位器、电阻应变片],电压、电流型[热电偶、光电电池],电感、电容型[电感、电容式位置传感器]}、数字型{计数型[脉冲或方波信号+计数器]、代码型[回转编码器、磁尺]})。
传感器的特性主要是指输出与输入之间的关系。当输入量为常量,或变化极慢时,称为静态特性;输出量对于随时间变化的输入量的响应特性,这一关系称为动态特性,这一特性取决于传感器本身及输入信号的形式。可以分为接触式环节(以刚性接触形式传递信息)、模拟环节(多数是非刚性传递信息)、数字环节。动态测量输入信号的形式通常采用正弦周期(在频域内)信号和阶跃信号(在时域内)。
传感器的静态特性:线性度(以一定的拟合直线作基准与校准曲线比较LLmaxY100%)、迟滞、重复性、灵敏度(K0=△Y/△X=输出变化量/输入变化量=k1k2···kn)和灵敏度误差(rs=△K0/K0×100%、稳定性、静态测量不确定性、其他性能参数:温度稳定性、抗干扰稳定性。
传感器的动态特性:传递函数、频率特性(幅频特性、相频特性)、过渡函数。
0阶系统:静态灵敏度;一阶系统:静态灵敏度,时间常数;二阶系统:静态灵敏度,时间常数,阻尼比。
传感器的标定:通过各种试验建立传感器的输入量与输出量之间的关系,确定传感器在不同使用条件下的误差关系。国家标准测力机允许误差±0.001%,省、部一级计量站允许误差±0.01%,市、企业计量站允许误差±0.1%,三等标准测力机、传感器允许误差±(0.3~0.5)%,工程测试、试验装置、测试用力传感器允许误差±1%。分为静态标定和动态标定。
第二章 位 移 检 测 传 感 器
测量位移常用的传感器有电阻式、电容式、涡流式、压电式、感应同步器式、磁栅式、光电式。参量位移传感器是将被测物理量转化为电参数,即电阻、电容或电感等。发电型位移传感器是将被测物理量转换为电源性参量,如电动势、电荷等。属于能量转换型传感器,这类传感器有磁电型、压电型等。
电位计的电阻元件通常有线绕电阻、薄膜电阻、导塑料(即有机实心电位计)等。电位计结构简单,输出信号大,性能稳定,并容易实现任意函数关系。其缺点是要求输入能量大,电刷与电阻元件之间有干摩擦,容易磨损,产生噪声干扰。
Rx线性电位计的空载特性:
RxKRxl,KR----电位计的电阻灵敏度(Ω/m)。电位计输出空载电压为U0UixKuxl,Ku------电位计的电压灵敏度(V/m)。
C电容式传感器的基本原理:
SroSδ、S和εr中的某一项或几项有变化时,就改变了电容C0,δ或S的变化可以反映线位移或角位移的变化,也可以间接反映压力、加速度等的变化;εr的变化则可反映液面高度、材料厚度等的变化。ε0=8.85×10-12F/m。
Ka.变极距型电容位移传感器的灵敏度为
CSC00,C00;b.变极板面积型电C容位移传感器2(lx)xCxC0C0lnRB/RAl, C0l ; c.变介质型电容式位移传感器
C0Sd/r,其中ε0为真空介电常数(空气介电常数ε1=ε0)εr为介质的相对介电常数,r/0,ε为介质的介电常数; d.容栅式电容位移传感器
Cmaxnab(RRrr)n2,其中n为可动容栅的栅极数,a、b分别为栅极的宽度宽度和长度,α为每条栅极所对应的圆心角,R、r分别为栅极外半径和内半径。特点分辨力高、精度高、量程大,刻划精度和安装精度要求有所降低。
电容式传感器的转换电路:电桥电路、二极管双T形电路、差动脉冲调宽电路、运算放大器式电路、调频电路。
电容式传感器的特点:优点:温度特性好,结构简单、适应性强,动态响应好,可以实现非接触测量、具有平均效应。缺点:输出阻抗高、负载能力差,寄生电容影响大。
电感式位移传感器:是一种利用线圈自感和互感的变化实现非电量电测的装置。感测量:位移、振动、压力、应变、流量、比重。种类有:根据转换原理:分自感式和互感式两种;根据结构型式,分气隙型、面积型和螺管型。
电感式传感器的转换电路:调幅电路;调频电路;调相电路。
自感式电感受位移传感器:NmLi ;
mNiNNLRm ;Rm ;Rml2S0S0;其中l----铁心与衔铁中的导磁长度;μ---铁心与衔铁的磁导率(H/m);S---铁心与衔铁中的导磁面积;δ---气隙厚度;μ0---真空磁导率;S0---气隙导磁横截面积。互感式位移传感器:将被测物理量的变化转换成互感系数的变化。常接成差动形式,故也称差动变压器式位移传感器,属于螺管型。则总输出电动势E0E1E2(M2M1)di1dt
互感式位移传感器的误差因素:零点残余电压(当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。电涡流式传感器:电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,该电流的流线呈闭合回线,类似水涡形状,称之为电涡流。电涡流式传感器是以电涡流效应为基础,由一个线圈和与线圈邻近的金属体组成,当线圈通入交变电流I时,在线圈的周围产生一交变磁场H1,处于该磁场中的金属体上产生感应电动势,并形成涡流。金属体上流动的电涡流也将产生相应的磁场H2,H2与H1方向相反,对线圈磁场H1起抵消作用,从而引起线圈等效阻抗Z或等效电感L或品质因素相应变化。金属体上的电涡流越大,这些参数的变化亦越大。如图如式:
涡流位移传感器主要分为高频反射和低频透射两类。电涡流式传感器的转换电路:电桥电路法、谐振电路法、正反馈法。其特点是涡流式传感器结构简单,易于进行非接触测量,灵敏度高,应用广泛,可测位移、厚度、振动等。
霍尔效应的定义:磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势,这种现象称霍尔效应。该电势称霍尔电势,霍尔效应的大小:UHBI/nedUHkHBI
霍尔式传感器的误差因素:元件几何误差以及电极焊点的大小造成的影响;不等位电势的影响;寄生直流电势的影响;感应电势的影响;温度误差的影响(恒流源供电和输入回路并联电阻;合理选取负载电阻;恒压源和输入回路串联电阻;采用温度裣元件。)
光栅式位移传感器:长光栅(测量线位移)、圆光栅(测量角位移)。长光栅:是根据
BH莫尔条纹效应设计的。两个莫尔条纹的间距
WW2sin/2。光栅条纹密度有25条/mm,50条/mm,100条/mm或更密,栅线长度一般为6~12mm。其测长精度可达0.5~3μm(3000mm范围内),分辨力可达0.1μm。圆光栅:圆光栅同心放置时,条纹间距BHWRWRBHr1r2;偏心放置时,e,测量精度可达到0.15“,分辨力可达0.1”。W:光栅栅距。R:圆的半径。R1、R2:分别为切线圆半径。e :偏心量。
光栅可以制成透射光栅和反射光栅,透射光栅的栅线刻制在透明村料上,要求较高时,可以采用光学玻璃;而指示光栅最好采用光学玻璃,反射光栅的栅线刻制在具有反射率很高的金属或镀以金属膜的玻璃上。
感应同步器:利用电磁感应原理将线位移和角位移转换成电信号的一种装置。根据用途可将感应同步器分为直线式和旋转式两种,分别用于测量线位移和角位移。
激光式位移传感器:由激光器、光学元件、光电转换元件构成的将测位移量转换成电信号。常用的激光干涉测长传感器分为单频激光干涉传感器和双频激光干涉传感器。
第三章 力、扭矩和压力传感器 测力传感器:用于测力的传感器多为电气式。电气式测力传感器根据转换方式不同又分为参量型和发电型。参量型测力传感器有电阻应变式、电容式、电感式等。发电测力传感器有压电式、压磁式等。
电阻应变式测力传感器:将力作用在弹性元件上,弹性元件在力作用下产生应变,利用贴在弹性元件上的应变片将应变转换成电阻的变化。然后利用电桥将电阻变化转换成电压(或电流)的变化,再送入测量放大电路测量。最后利用标定的电压(或电流)和力之间的对应关系,可测出力的大小或经换算得到被测力。
dRdLdSd2LE(12)LELS应变片:R;其中μ:电阻丝的泊松系数;ζ:电阻丝受到的应力(Pa);E:电阻丝的弹性模量;πL:电阻丝材料的dR(12)K纵向压阻系数。对于金属丝,(1+2μ)ε»πLEε,则R;其中K:金属电阻丝灵敏系数,K约在1.7~3.6之间。常用金属丝材料在200℃~300℃以下工作可选用康铜丝应变丝,在300℃以上工作可选用镍铬合金应变片、铂铱合金应变片等。
半导体应变片:其工作原理是基于压阻效应。压阻效应:是指当半导体受到应力作用时,由于截流子迁移率的变化,使其电阻率发生变化的现象。表达电阻丝电阻应变效应的公
K式也适用于半导体电阻材料。其应变灵敏系数为:
dR/RLE,半导体应变片的缺点是应变灵敏系数的离散性大,机械强度低,非线性误差大,温度系数大。
应变片的布置和接桥方式:则电桥的输出U0电压为:
R1R3R2R4Ui(R1R2)(R3R4),当R1=R2=R3=R4=R,U0UiR1R2R3R4()4RRRR,应变仪电桥式作方式有:单臂、双臂、四臂。应变片在弹性元件上典型的布片和接桥方式有:柱型、环形、悬臂梁式、两端固定梁、轴。压电式力传感器:是基于压电元件的压电效应而工作的。正压电效应:当某些晶体沿一定方向受到外力作用而变形时,在其相应的两个相对表面产生极性相反的电荷,当外力去掉后,又恢复到不带电状态。晶体受力所产生的电荷量与外力的大小成正比,电荷的极性取决于变形的形式。逆压电效应:在某些晶体的极化方向(受力能产生电荷的方向)施加外电场,晶体本身将产生机械变形,当外电场撤去后,变形也随之消失。
压电元件及其晶片连接方式有:单片式、两片串联式、两片并联式、剪切式、扭转式。压磁式力传感器:在机械力作用下,铁磁材料内部产生应力或应力变化,使磁导率发生变化,磁阻相应也发生变化的现象。外力是拉力时,在作用方向铁磁材料磁导率提高,垂直作用力方向磁导率降低;作用力为压力时,则反之。常用的铁磁材料有硅钢片和坡莫合金。
第四章 速度、加速度传感器
直流测速发电机:按定子磁极的励磁方式不同,可分为电磁式、永磁式两类;若按电枢的结构形式不同,可分为无槽电枢、有槽电枢、空心杯电枢、圆盘印刷绕组等。电枢感应电动势为EsKenCen,其中Ke:感应系数;Φ:磁通;n:转速;Ce:感应电动势与转速的比例系数。空载时:Is=0 ,则有直流测速发电机的输出电压和电枢感应电动势相等,因而输出电压与转速成正比。有负载时,直流测速发电机的输出电压为VCFEsIsrs,rS:电枢回路的总电阻。电枢电流为
ISVCFRL,RL:测速发电机的负载电阻。则可得VCFCenCn1rs/RL
直流测速发电机在工作中,其输出电压与转速之间不能保持比例关系,原因和改进方法:一是有负载时,电枢反映去磁作用的影响,使输出电压不再与转速成正比(在定子磁极上安装补偿绕组,或使负载电阻大于规定值)。二是电刷接触压降的影响(应采用接触压降较小的铜-石墨电极或铜电极,并在它与换向器相接触的表面上镀银)。三是温度的影响(在直流测速发电机的绕组回路中串联一个电阻值较大的附加电阻,再接到励磁电源上)。
交流测速发电机:可分为永磁式、感应式、脉冲式三种。永磁式并流测速发电机实质上是单向永磁转子同步发电机,定子绕组感应的交变电动势的大小和频率都随输入信号而变f化:
ppnE4.44fNKwm44.4NKwmnKn6060 ;
;其中K:常系数,K4.44pNKwm60 ;p:电机极对数;N:定子绕组每相匝数;KW:定子绕组基波绕组系数;Φm:电机每极基波磁通的幅值。通常此电机只做指示式转速计使用。感应式测速发电机与脉冲式测速发电机的工作原理基本相同,都是利用定子、转子齿槽相互位置的变化,使输出绕组中的磁通产生脉动,从而感应出电动势,也称为感应子式发电机原理。输出电动f势的频率为ZrnHz60,其中Zr:转子齿数;n:电动机转速(r/min)线振动速度传感器:当一个绕有N匝的线圈作垂直于磁场方向相对运动时,线圈切割磁力线,由法拉第电磁感应定律可知,线圈产生感应电动势ENBlv,其中B:线圈所在磁场的磁感应强度(T);l:每匝线圈的平均长度;v:线圈磁场的运动速度。
变磁通式:开磁路式:测量时,齿轮随被测旋转体一起转动,每转过一个齿,传感器磁路磁阻变化一次,磁通亦变化一次,因此线圈产生感应电动势的变化频率等于齿轮的齿数与转速的乘积。闭磁路式:测量转速时,磁能周期变化,线圈产生感应电动势的频率与转速成正比。n60f/z ; w(2/z)f(rad/s)
陀螺式角速度传感器:包括转子陀螺、压电陀螺、激光陀螺、光纤陀螺。半导体硅流速传感器是一种可测流速、流动方向的传感器。其工作原理是依据发热体与放置发热体的流体介质的热导率λ与流体流速相关原理制成的。Q(T1T2)(ABvt)(T1T2),Q:流体介质从温度T1流向温度T2的热量;λ:热导率;vt:流体介质流速;B:常数,A为vt=0时的热导率,A与B均由由流体介质性质和发热体性质决定。
加速度传感器:常用的有压电式、应变式、磁致伸缩式等。
压电式加速度传感器包括:压缩型(为了区分异常振动与其它噪声振动,传感器的固有频率设计成与异常振动频率相同,从而提高了信噪比)、剪切型(可忽略横向加速度的影响,还能在高温环境中使用)、弯曲型(结构简单、体积小、重量轻、灵敏度高,但压电材料有阻抗高、脆性大、难于与金属粘结)。因为其本身内阻抗很高,输出微弱,则必须接高输入阻抗的前置放大器。这类放大器有电压放大器(第一级采用场效应管构成源极输出器,第二级晶体管构成对输入端的负反馈,以提高输入阻抗)和电荷放大器(输出电压u0Q/Cf,Q:传感器输出电荷,Cf:反馈电容,即输出电压与电缆分布、长短无关)。压电加速度传感器属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度{输出电压(mV)与所承受加速度之比}、电荷灵敏度{输出电荷(Q)与所承受加速度之比)。对给定的压电材料,灵敏度随质量的增大或压电片的增多而增大。一般加速度传感器尺寸越大,其固有频率越低。因此在选用加速度传感器时应当权衡灵敏度和结构尺寸、附加质量影响和频率响应特性之间的利弊。
第五章 视觉、触觉传感器
视觉传感器:以光电变换为基础,由四个部分组成,照明部(钨丝灯、闪光灯等)、接收部(由透镜和滤光片组成,具有聚成光学图像或抽出有效信息的功能)、光电转换部(将光学图像信息转换成电信号)、扫描部(将二维图像的电信号转换成时间序列的一维信号)。在机电一体化系统中的作用有三:进行位置检测;进行图像识别;进行物体形状、尺寸缺陷的检测。
视觉传感器分为:光电式摄像机(即工业电视摄像机){其光导摄像管是一种兼有光电转换功能和扫描功能的真空管}、固体半导体摄像机{由许多光电二极管组成阵列代替光导摄像管。其摄像元件为CCD即电荷耦合器件,它是一种MOS型晶体管开关集成电路,它的构成主要有隔行传送方式、帧传送方式}、激光式视觉传感器{利用激光作为定向性高密度光源,由光电转换及放大元件、高速回转多面棱镜、激光器组成}、红外图像传感器{由红外敏感元件、电子扫描电路组成}。
人工视觉系统的硬件构成:图像输入、图像处理、图像存储、图像输出四个子系统组成。图像输出装置分为两类:一类是只要求瞬时知道处理结果,以及计算机用对话形式进行处理的显示终端,称为软拷贝;另一类可长时间保存结果,如宽行打印机、绘图机、X-Y绘图仪以及显示器图面照像装置等,称为硬拷贝。图像信息的处理技术中,区域法与微分法不同,它不直接检测灰度的变化点,而是以灰度大致相同的像素集合作为区域而汇集的方法。
触觉传感器:接触觉、压觉的阈值单位为104Pa,人的压觉阈值约为1.28×104Pa,人的手指接触觉阈值约为3×104Pa。接触觉传感器的代表是用硅橡胶制成的矩阵式触觉传感器。硅橡胶与金属电极对置、接触。由于硅橡胶受压其电阻值就改变,所以输出电压相应变化。滑动觉传感器:被用于工业机器人手指把持面与操作对象之间的相对运动,以实现实时控制指部的夹紧力。它是检测指部与操作物体在切向的相对位移。
第六章 温度传感器
热电偶式温度传感器:属于接触式热电动势型传感器,基于热电效应(当两种不同金属导体两端相互紧密地连接在一起组成一个闭合电路时,由于两个端点温度不同,回路中将产生热电动势,并有电流通过,即将热能转换成电能。)它由热电偶(闭合回路)、热电极(两导体)、热端、冷端组成。热电动势由接触电动势、温差电动势两部分组成。
热电偶的分类:普通热电偶(主要用于测量液体和气体的温度)、铠装热电偶(也称缆式热电偶,可分为有碰底型、不碰底型、露头型、帽型。特点是测量结热容量小、热惯性小、动态响应快、挠性好、强度高、抗震性好,适用于普通热电偶不能测量的空间温度)、薄膜热电偶(可分为片状、针状,主要用于测量固体表面小面积瞬时变化的温度。特点是热容量小、时间常数小、反应速度快)、并联热电偶(它是把几个同一型号的热电偶的同性电极参考端并联在一起,而各个热电偶的测量结处于不同温度下,其输出电动势为各热电偶热电动势的平均值,所以这种热电偶可用于测量平均温度)、串联热电偶(又称热电堆,它是把若干个同一型号的热电偶串联在一起,所有测量端处于同一温度T之下,所有连接点处于另一温度TO之下,则输出电动势是每个热电动势之和。为保证测量值的真实性,常用的方法有恒温法、温度修正法、电桥补偿法、冷端补偿法、电位补偿法。)
电阻式温度传感器:分为金属热电阻式、热敏电阻式两大类。金属热电阻式温度传感器:其基理是在金属导体两端加电压后,使其内部杂乱无章运动的自由电子形成有规律的定向运动,而使导体导电。对于大多数金属导体而言RtRo(11t2t2ntn);铂电阻物理化学性能稳定,搞氧化能力强,测温精度
23RtRo[11t2t3(t100C)t],在高,在(-200~0)℃范围内的阻温特性是:(0~850)℃内的阻温特性是:RtRo(11t2t),一般在RO=100Ω或RO=50Ω时,α1=3.96847×10-3/℃,α2=-5.847×10-7/℃2,α3=-4.22×10-12/℃4。铜价格低,在(-50~150)℃,23RtRo(11t2t3t)其电化学性和物理性能稳定,则有。为了避免通过交流电时产
2生感抗,或有交变磁场时产生感应电动势,在绕制时要采用双线无感绕制法。
热敏电阻式温度传感器:所用材料是陶瓷半导体,其导电性取决于电子-空穴的浓度。其阻温特性为RT=ROeB(1/T-1/TO);正温度系数热敏电阻,随温度增加而增加,高温不得超过140℃,临界温度系数热敏电阻,不适于较宽温度范围内的测量;负温度系数热敏电阻,其阻值随温度增加而下降,一般用于(-50~300)℃之间的温度测量。硅热敏电阻即可具有正温度系数也可具有负温度系数,采用线性化措施后,可在(-30~150)℃内实现近似线性化。锗热敏电阻广泛应用于低温测量;硼热敏电阻在工作中700℃高温时仍能满足要求。
非接触式温度传感器:可分为全辐射式温度传感器、亮度式温度传感器、比色式温度传感器。
全辐射式温度传感器:利用物体在全光谱范围内总辐射能量与温度的关系测量温度。
4全辐射式温度传感器测得的温度总是低于物体的真实温度。测量温度:TTr1/T ;Tr:辐射温度;εT:温度T时物体的全辐射发射系数。这种传感器适用于远距离、不能直接接触的高温物体,其测量范围为(100~2000)℃。
亮度式温度传感器:利用物体的单色辐射亮度随温度变化的原理。传感器测得的温度
11lnT值小于被测物体的真实温度T:TTLC2,ελT:单色辐射发射系数;C2:第二辐射常数,C2=0.014388(m·K);λ:波长(m)。
比色温度传感器:通常,将波长选在光谱的红色和蓝色区域内。真实温度T:11ln(1/2)TTPC2(11)12 ;其量程(800~2000)℃,测量精度为0.5%。如果两个波长的单色发射系数相等,则真实温度与比色温度相同。一般灰体的发射系数不随波长而变,故比色温度等于真实温度。通常λ1:对应蓝色,λ2:对应为红色。对于很多金属,由于单色发射系数随波长的增加而减小,故比色温度高于真实温度。半导体温度传感器:以半导体P-N结的温度特性为理论基础,利用晶体二极管与晶体三极管作为感温元件。采用晶体二极管,测温范围在(0~50)℃;采用晶体三极管,测温范围在(-50~150)℃。
第七章 气敏、温度、水份传感器 气敏传感器(N型半导体):是一种将检测到的气体成份和浓度转换为电信号的传感器。具有代表性的是SnO2系和ZnO系气敏元件。这些金属氧化物都是利用陶瓷工艺制成的具有半导体特性的材料,简称半导瓷。材料吸收吸附分子,为正离子吸附(O2和氮氧化合物,为氧化型气体);材料释放电子,为负离子吸附(H2、CO碳氢化合物和酒类倾向,为还原型气体)。SnO2气敏半导瓷掺加Pd、Mo、Ga等杂质,可供制造常温工作的烟雾报警器。
湿度传感器:分为绝对温度(一定大小空间中水蒸气的绝对含量,kg/m3,又称为水气浓度或水气密度。它可以用水的蒸气压表示,空气水气密度
vpvMRT,其中M:水气摩尔质量;R:摩尔气体常数;Pv:蒸气压力;T:热力学温度)、相对温度(为某一被测蒸气压与相同温度下饱和蒸气压比值的百分数,常用%RH表示。是无量纲值。表示为潮湿程度。)
湿敏元件有:氯化锂湿敏元件、半导体陶瓷湿敏元件、热敏电阻湿敏元件、高分子膜湿敏元件。
氯化锂湿敏元件:利用吸湿性盐类潮解,离子导电率发生变化而制成的测湿元件。是典型的离子晶体。
热敏电阻式湿敏元件:特点有灵敏度高且响应速度快;无滞后现象;不像干湿球温度计需要水和纱布及其它维修保养;可连续测量(不需要加热清洗);抗受风、油、尘埃能力强。可制造精密的恒湿槽,精度达±0.2g/m3。
高分子膜湿敏元件:它是以随高分子膜吸收或放出水份而引起电导率或电容变化测量环境相对湿度的装置。根据电容器的容量值
CSd,再测得相对温度。电子温度计由检测部分(有携带型、墙袋型、凸缘型)、数字显示器、变换器构成。常用于工业温度监视、记录和控制,尤可用于湿度小于20%RH的测量。在超过90%RH的高湿区域会出现结露。结露时湿度传感器在沾湿间歇不能测量,一旦沾湿消失,恢复原来特性。
水份传感器:水份是存在于物质中水的数量,以百分比表示。种类有:直流电阻型、高频电阻型、电容率型、气体介质型、近红外型、中子型、核磁共振型。
第八章 传感检测系统的构成
传感检测系统的组成:传感器(信息获取)、中间转换(信号调理)电路(信号转换调理)、微机接口电路(信息传输)、分析处理及控制显示电路(信息分析处理、显示记录)等部分组成。目前常用的有模拟显示(精度受标尺最小分度限制,易引入主观误差)、数字显示(有利于消除读数主观误差)、图像显示(常用的自动记录仪器有笔式记录仪、光线示波器、磁带记录仪)三种。
电桥:是把电阻、电感、电容等元件参数转换成电压或电流的一种测量电路。
直流电桥:在电桥的输入端加入直流电源ES。当输出端与高输入阻抗装置相接时,电桥相当于工作在输出端开路状态,其输出电压UoR1R3R1R4R2R3EsEsEsR1R2R3R4(R1R2)(R3R4)。当R2R3=R1R4时,输出电压UO为0,称这种状态为平衡状态。若将电桥输出端与内阻为Rg的检流计相连接,由戴维南定
Ro理知,AB端的等效电阻
R1R2R3R4R1R2R3R4,AB端的开路电压UocR1R4R2R3RgEsUoUoc(R1R2)(R3R4),则电桥输出端的电压为RoRg。如下图。
交流电桥:采用交流电源供电的电桥。如果交流电源是频率为f的正弦交流信号,则有Z1Z11,Z2Z22,Z3Z33,Z4Z44。当电桥输出端开路时,其输出
UsUsZ1Z4Z2Z3UoZ1Z3UsZ1Z2Z3Z4(Z1Z2)(Z3Z4)电压,当Z1Z4=Z2Z3,则有Z2Z3Z1Z4,2314。如下图
电桥的分类:按电桥采用电源的不同分为:直流电桥、交流电桥。按电桥的工作方式可分为:平衡电桥、不平衡电桥。按电桥被测电阻的接入方式:单臂电桥、差动电桥。
电桥的工作特性指标分别为:电桥的灵敏度、电桥的非线性误差。电桥的灵敏度是单
Kus位输入量时的输出变化量,对于不平衡电桥:
U/UoR/R。电桥的非线性误差:若线
f性化后的输出电压为UOS,则有
UosUoUo。
各类电桥的灵敏度与非线性误差:单臂电桥:当R2=R1、R3=R4时,R1/R1,Uo则有R1R41UsUsUosUs(R1R1R2)(R3R4)2(2),化简可得4,非线性误差fUosUo1Uo2。可见输入变化量越大,非线性误差越大,若要求电桥的误差小于3%,KusUos/Us14。差动电桥:
时允许ε的最大值为0.06。对于单臂电桥,其输出电压灵敏度当R2=R
1,R1/R1,R2R3=R1R4Uo(R1Rx)R4(R2Rx)R3Rx1UsUsUoUs(R1RxR2Rx)(R3R4)R1R2,化简得2,得差动电桥灵
11UsUs2f20Uo/Us11KusUs2,非线性误差2敏度。如下图。有源电桥:装有一个具有高输入阻抗和低输出阻抗及高增益等特点的运算放大器A,当△R=0时,电桥平衡,当
UsUsUsRUo(RR)Uo(1)I1I2Us/(2R)22R2RR变化到R+△R时,则有,(Us/Us)Uo/Us1UoUsKus22,则输出灵敏度及非线性误差分别为2,即
f0。如下图
电桥调零:测量前电桥的输出应调为零,通常采用的有串联调零法(多用于桥参数R值较大的场合,调零电位器的阻值RW « RO)和并联调零法(并联在电桥输出端,多用于桥参数R值较大的场合,调零电位器的阻值RW » RO)。
无源滤波器:特点是电路简单,但是带负载能力差。有源滤波器:由运算放大器和RC网络组成。特点是1)有源滤波器不用电感线圈,因而在体积、重量、价格、线性度等方面具有明显的优越性,便于集成化。2)由于运算放大器输入阻抗高,输出阻抗低,可以提供良好的隔离性能,并可提供所需增益。3)可以使低频截止频率达到很低的范围。
低通滤波器:具有低频信号容易通过并抑制高频信号的作用。高通滤波器:RC电路具有高频信号容易通过并抑制低频信号的作用。带通滤波器:RLC电路用于通过某一频段
Q的信号,而将此频段外的信号加以抑制或衰减。品质因素
fo1B3RFRfRf,带阻滤波器:用于抑制某一频段的信号,而让此频段外的信号通过。品质因素Qfo1B2(2RfRF)Rf。
一阶RC低通滤波器的幅频及相频特性如图。
一阶高通滤波器的幅频及相频特性如图所示:
数字滤波:利用程序来实现,因而不需增加硬件,而且可靠性高、稳定性好、灵活方便。常用的方法有:限定最大偏差法:当
YnYn1Y,则令YnYn1。如果YnYn1Y,则YnYn。算术平均值法:
YnYn1YnYnkkk,适用于压力测量、流
i量测量等。加权平均滤波法:
YnCiYn1i0n1,其中满足i0C1n1。
数/模转换:它是把数字量转变成模拟的器件,它由四个部分组成:电阻网络、运算放大器、基准电源、模拟开关。目前用得较多的是T型电阻网络数/模转换器(D/A)。D/A集成电路芯片分为八位、十位、十二位、十六位等。DAC0832是一个具有两个输入数据缓冲器的八位D/A芯片。其分辨率是指最小输出电压与最大输出电压之比。例如八位D/A的110.00398分辨率212561。其精度的误差由参考电压的波动、运算放大器的零点漂移、模拟开关的压降以及电阻阻值的偏差。通常用非线性误差的大小表示D/A的线性度。
多路模拟开关环节:采用分时法切换信号,完成多路切换的器件称为多路模拟开关。常用的模拟开关有晶体管开关、光耦合器开关、结型场效应管开关、CMOS场效应开关。其中应用最多的是CMOS场效应开关。多路模拟开关电路由地址译码器和多路双向模拟开关组成。
采样保持环节:其作用是在采样期间,其输出能跟随输入的变化而变化,而在保持状态能使其输出值保持不变。采样理论表明,连续模拟信号可以表示为一组等间隔离散化瞬时采样序列,反之也可由这组离散采样脉冲序列恢复为原连续信号。但其中必有采样频率fs2fH采样信号频谱中的最高频率分量,如不满足,将会出现信息丢失或信号失真。LF398采样保持器具有采样速度高、保持电压下降速率慢、精度高等特点。
传感检测信号的细分:为了提高检测系统的分辨力,需要对传感检测信号进行细分。如几何量测量中采用机械式细分(如游标卡尺)、光学式细分和电子式细分等。四倍细分原理:莫尔条纹的间距为BHW/[2sin(/2)]W/。
传感检测系统中的抗干扰问题:产生内部干扰的因素有:信号通过公共电源、地线和传输线的阻抗相互耦合形成的干扰;元件之间、导线之间通过寄生电容或互感耦合造成的干扰;大功率和高压元件产生的电场;电子开关元件的电压或电流急剧变化而产生的干扰源;工作电源,交叉走线等。外部干扰的因素有:外部高压电源因绝缘不良形成的漏电;广播电视、高频感应加热等;空间电磁波的辐射;周围机械振动和冲击的影响。信噪比是指信号通
SPS10lgPN。形成干扰路中,有用信号功率Ps与噪声功率PN之比,通常用S/N表示,N的三个条件有:干扰源、干扰的耦合通道[电容性耦合,互感性耦合,公共地线的耦合,漏电耦合,辐射电磁场耦合]、干扰的接收电路。
抑制干扰的方法:主要是采取单点接地、屏蔽隔离(静电屏蔽、低频磁感应屏蔽、高频磁感应屏蔽)、滤波(电源滤波、退耦滤波器、有源滤波、数字滤波)等。接地在测量系统中有四种接地系统:安全地(强电应用设备)、信号源地、数字信号地、模拟信号地(此三地是为了防止电路有公共阻抗而引起信号交叉耦合)。
典型噪声干扰的抑制:设备启、停时产生的电火花干扰:消除这种干扰的方法通常是RC吸收电路,即将电阻R和电容C串联后再并联到继电器触点或电源开关两端。共模噪声:抑制这种干扰可采用差分放大器,差分放大器的输入阻抗越高,抑制作用越强。串扰:克服串扰的有效方法是将不同信号线分开,并且留有最大可能的空间隔离。
ADC与CPU的时间协调:其控制方式有延时等待、中断式、查询式。
数据转换接口的典型结构有:高电平单路信号调理单ADC系统(性能一般,成本低,全部输入通道共用一路信号调理电路)、低电平多路信号调理单ADC系统(最常见的数据采集系统,性能较高,每个通道均有各自的信号调理电路)、多路信号调理多ADC系统(通过多路ADC转换的数字信号由一个多路数字开关送入微机,其成本虽高,但性能较高)。
A/D转换器与CPU的接口示例:8位8通道A/D转换电路:由模拟多路转换开关(LF13508)、采样/保持器(LF398)、A/D转换(ADC0804:逐次逼近式8位转换芯片,属于脉冲启动转换芯片)和并行接口PIO组成。ADC574是12位逐次比较式A/D转换芯片,很容易与8031单片机的接口相连。
传感器信号的温度补偿:在计算机能力允许时,可采用计算机软件(常用公式法、表格法)进行,也可采用硬件电路实现。温度补偿公式法的步骤:1。给定m+1个温度值,测出每一个温度下传感器静态特性曲线在y轴上的截距;2。将Y表示成以温度T为自变量的n次代数多项式Ya0a1Ta2TanT,用最小二乘曲线拟合法确定a0„,在测得
2nx每一个y值对应的T值,计算出Y,再求传感器的输入值
yYk。温度补偿表格法的步YYi(TTi)骤:Yi1YiTi1Ti,若T
线性化处理方法:可以用硬件实现,也可以用软件实现线性化处理。常用的方法有公式法、表格法。公式法也称曲线拟合法,(求完)
第九章 信号分析及其在测试中的应用
信号的分类:信号有静态信号、动态信号。按能否用明确的时间函数关系描述,可将信号分为确定性信号与非确定性信号。确定信号是指能用明确的数学解析关系式或图表描述的信号,如简谐波、方波、矩形波等信号。确定性信号又可分为周期信号和非周期信号。非确定性信号也称随机信号,是指时域波形不确定,无法用确切的数学关系式描述,也不能准确预测未来的结果。只能用概率统计方法描述它的规律。
模拟信号:在某一自变量连续变化的间隔内,信号的数值连续。离散信号:自变量在某些不连续数值时,输出信号才具有确定值。如果将其各离散点的幅值也作离散化,以二进制编码表示,则称为数字信号。
xlim信号的均值
1TTT0x(t)dt,它表示信号中常值分量或直流分量。信号的方差1limTT2xT0[x(t)x]2dt,它描述信号的波动范围,其正平方根为信号的标准差。信号的均方值x2lim1TTT0x2(t)dt,它描述信号的强度,表示信号的平均功率。则有2x2x2x。信号的概率密度函数
pxlimTxT0T0x,它描述了信号x(t)对指定幅值的取值机会。
信号的相关描述:它又称为信号的时差描述。信号的自相关函数Rx()lim1TTT0x(t)x(t)dt,其中η---时延量,自相关函数的性质:1)当时延0,1Rx(0)limTT信号的自相关函数就是信号的均方值
T0x2(t)dt2,2)当Rx(0)Rx()时,即在η=0处取峰值;3)Rx()Rx();4)周期信号的自相关函数必呈周期性,这是因为有x(t)x(tnT),故
Rx(nT)lim1Tx(tnT)x(tnT)dtRx()0TT。信号的Rxy()lim互相关函数
1TTT0x(t)y(t)dt,互相关函数的性质有:1)Rxy(η)通常不在η=0处取峰值,其峰值偏离原点的位置为ηd,图反映两信号相互有ηd时移时,相关程度
1Rxy()limTT最高;2)Rxy(η)与Ryx(η)是两个不同的函数。根据定义Ryx()lim1TTT0x(t)y(t)dt;T0y(t)x(t)dt,不难证明Rxy()Ryx();3)均值为零的两个统计独y(t),其中Rxy()0。信号的互相关系数立的随机信号x(t)和xy()Rxy()Rxy()Rx(0)Ry(0)xrmsyrms,由于Rxy()Rx(0)Ry(0),故xy()1,一般有:xy()1说明x(t)和y(t)完全相关;xy()0说明x(t)和y(t)完全不相关;0xy()0,x()说明x(t)和y(t)部分相关。自相关系数
Rx()Rx(0)。
周期信号与离散频谱:傅里叶级数
x(t)a0(ancosnw0tbnsinnw0t)n1,其中w02/T,a01TT0x(t)dt,an2T2Tx(t)cosnw0tdt,bnx(t)sinnw0tdt,T0T0如果周期信号x(t)为奇函数时,an0,a00,此时
x(t)bnsinnw0tn1;如果周期信号x(t)为偶函数时,bn0,此时x(t)a0ancosnw0tn1。周期信号频谱特点:离散性、收敛性、谐波性。瞬态信号的频谱连续。傅里叶变换的主要性质有:(如图所示
非确定性信号的功率谱密度函数:自功率谱密度函数:若自相关函数满足绝对可积条件,即Rx()d,则定义
Sx(f)Rx()ej2fd,为x(t)的自功率谱密度函数,称自谱或自功率谱。频域上Sx(f)曲线下的总面积代表信号x(t)的总功率。互功率谱密度函数:如果互相关函数Rxy(η)满足傅里叶变换的条件Rxy()d,则定义
称Sxy(f)为信号x(t)和y(t)的互谱密度函数,简称互谱。互相干函数:有一种方法能评价测试系统输入信号和输出信号之间的因果性,即输出信号的功率谱中有多少是所测输入信号引起的响应,这个指标常用相干函数γxy(f)表示,其定义为Sxy(f)Rxy()ej2fd2xy(f)Sxy(f)22(0xy1)Sx(f)Sy(f)。当
2xy(f)0,表示输出信号y(t)与输入信号x(t)不相干;当2xy(f)1,表示输出信号y(t)与输入信号x(t)完全相干,系统无干扰输入;若
2xy(f)在0~1之间,则表示下述可能性:测试中有外界噪声干扰输入;联系x(t)和y(t)的系统非线性;输出y(t)和x(t)和其它输入的综合。
第十章 传感器在机电一体化系统中的应用
零位和极限位置的检测:零位的检测精度直接影响工业机器人的重复定位精度和轨迹精度;极限位置的检测则起保护机器人和安全动作的作用。工业机器人常用的位置传感器有:接触式微动开关、精密电位计,非接触式光电开关、电涡流传感器。
位移量的检测:机器人上常用的位移传感器有:旋转变压器、差动变压器、感应同步器、电位计、光栅、磁栅、光电编码器等。例如关节型机器人大多采用光电编码器,由于刚性原因,位移传感器多与驱动元件同轴,以提高分辨力。直角坐标机器人中的直线关节或气动、液压驱动的某些关节采用线位移传感器。
速度、加速度的检测:速度传感器是为实现机器人各关节的速度闭环控制。加速度传感器被用于机器人中关节的加速度控制。
在大位移量中,常用位移传感器有感应同步器、光栅、磁尺、容栅等。传感器在位置反馈系统中,在传感器安装位置的不同有半闭环控制和全闭环控制;按反馈信号的检测和比较方式不同有脉冲比较伺服系统、相伴比较伺服系统、幅值比较伺服系统。光电编码器PE同时进行速度反馈和位置反馈的半闭环控制系统中,光电编码器将电动机转角变换成数字脉冲信号,反馈到CNC装置进行位置伺服控制。又由于电动机转速与编码器反馈的脉冲频率成比例,因此采用F/V(频率/电压)变换器将其变换为速度电压信号就可以进行速度反馈。
“测量中心”是指三坐标测量与机械加工中心相配合。测量系统按其性质可以分为机械式测量系统、光学式测量系统、电气式测量系统。三坐标测量机的测量头按测量方法分为接触式{ 应用广泛,它可分为硬测头[多为机械测头,使用较少]、软测头[可分为触发式测头、三维测微测头(可分为模拟测头、数字测头)},、非接触式{常用激光测头、光学测头、电视扫描测头等} 汽车机电一体化的中心内容是以微机为中心的自动控制系统取代原有纯机械式控制部件,从而改善汽车的性能,增加汽车的功能,实现汽车降低油耗,减少排气污染,提高汽车行驶的安全性、可靠性、操作方便和合适性。汽车行驶控制的重点是:1)汽车发动机的正时点火、燃油喷射、空燃比和废气再循环的控制,使燃烧充分、减少污染、节省能源;2)汽车行驶中的自动变速和排气净化控制,以使其行驶状态最佳化;3)汽车的防滑制动、防碰撞,以提高行驶的安全性;4)汽车的自动空调、自动调整车高控制,以提高舒适性。
公路交通用传感器:国外采用的传感器有电感式、橡皮管式、超声波式、雷达式及红外线式。
第五篇:屏蔽与接地技术总结
屏蔽技术屏蔽的定义
屏蔽可通过各种屏蔽体来吸收或反射电磁场骚扰的侵入, 达到阻断骚扰传播的目的;或者屏蔽体可将骚扰源的电磁辐射能量限制在其内部, 以防止其干扰其它设备。(对两个空间区域之间进行金属的隔离, 以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。)
1.一种是主动屏蔽, 防止电磁场外泄;
2.一种是被动屏蔽, 防止某一区域受骚扰的影响。
屏蔽就是具体讲, 就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来, 防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来, 防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用, 所以屏蔽体具有减弱干扰的功能。
2.屏蔽的分类
屏蔽可分为电场屏蔽、电磁屏蔽和磁屏蔽三类。电场屏蔽又包括静电场屏蔽和交变
电场屏蔽;磁场屏蔽又包括静磁屏蔽和交变磁场屏蔽。
1.静电屏蔽常用于防止静电耦合和骚扰, 即电容性骚扰;2.电磁屏蔽主要用于防止高频电磁场的骚扰和影响;3.磁屏蔽主要用于防止低频磁感应, 即电感性骚扰。
2.1静电场屏蔽和交变电场屏蔽
用来防止静电耦合产生的感应。屏蔽壳体采用高导电率材料并良好接地,以隔断两个电路之间的分布电容偶合,达到屏蔽作用。静电屏蔽的屏蔽壳体必须接地。
以屏蔽导线为例,说明静电屏蔽的原理。静电感应是通过静电电容构成的,因此,静电屏蔽是以隔断两个电路之间的分布电容。静电感应,既两条线路位于地线之上时,若相对于地线对导体1 加 有V1的电压,则导体2 也将产生与V1成比例的电V2。由于导体之间必然存在静电电容,若
设电容为C10、C12 和C20,则电压V1 就被C12 和C20 分为两部分,该被分开的电压就为V2,可用下式加以计算;
导体1 和2 之间加入接地板便可构成静电屏蔽。这样,在接地板与导体
1、导体2之间就产生了静电电容C`10 和C`20。等效电路,增加了对地静电电容,消除了导体1、2 之间直接偶合的静电电容。按示2.1,由于C12=0,故与V 1 无关,V2=0。这就是静电屏蔽的原理。
我们若用金属壳体将干扰源屏蔽起来, C1 为干扰源与屏蔽壳体之间的电容, C2 为电子设备与屏蔽壳体之间的电容, Zm 为屏蔽壳体对地阻抗。可求得屏蔽后电子设备上的耦合干扰电压:V sm = ω2 C1 C2 Zm ZsV N / {(ω2 C1 C2 Zm ZsjRs/ ωL s)(8)
屏蔽层的截止角频率ωc = R/ L s ,故取模V = V s/ 1 +(ωc/ ω)2当ω = 0(直流)时, V N = 0 ,当ω = 5ωc 时,V n = 0.98 V s。
当屏蔽中有电流时,中心导线上将感应一个电压V n ,此电压在频率ω≥5ωc 时接近于屏蔽层上的电压V S ,并随着频率升高而增大。我们将屏蔽层两端接地并不能抑制磁耦合干扰,因为屏蔽层中的电流所产生的磁通会与中心导线交连。通常只将屏蔽层上感应的电荷泄放入地,起到电场屏蔽作用。
(2)同轴电缆的中心导线是干扰源时,即中心导线有电流流过。这时如将屏蔽层的一端接地,那么中心导线在屏蔽层上感应的电荷被泄放入地,起到了电场屏蔽作用,但对磁场来说,其作用是非常小的。如果将屏蔽两端接地,所示,由A RSL SB 支路到方程:(Rs + jωL s)Is10MHz 及接地面尺寸为l≈λ/ 20 时,一般可采用单点和多点的混合接地方式.3)混合接地:混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用混合接地。对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。
混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。
在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。设备接大地的目的是
1)
保护地,保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。为了保护人员安全而设置的一种接线方式。保护“地”线一端接用电器外壳,另一端与大地作可靠连接。
2)
防静电接地,泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。
3)
屏蔽地,避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。
4)
浮地 :即该电路地与大地无导体连接。(虚地:没有接地,却和地等电位的点)其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。
1)
交流电源地与直流电源地分开
一般交流电源的零线是接地的。但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。
2)
放大器的浮地技术
对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。
3)
浮地技术的注意事项
i.尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。ii.注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。iii.浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。iv.采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。
1.3接地的原因
当许多相互连接的设备体积很大(设备的物理尺寸和连接电缆与任何存在的干扰信号的波长相比很大)时,就存在通过机壳和电缆的作用产生干扰的可能性。当发生这种情况时,干扰电流的路径通常存在于系统的地回路中。
在考虑接地问题时,要考虑两个方面的问题,一个是系统的自兼容问题,另一个是外部干扰耦合进地回路,导致系统的错误工作。由于外部干扰常常是随机的,因此解决起来往往更难。要求接地的理由很多,下面列出几种:
1)安全接地:使用交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会导致电击伤害。
2)雷电接地:设施的雷电保护系统是一个独立的系统,由避雷针、下导体和与接地系统相连的接头组成。该接地系统通常与用做电源参考地及黄绿色安全地线的接地是共用的。雷电放电接地仅对设施而言,设备没有这个要求。
3)电磁兼容接地:出于电磁兼容设计而要求的接地,包括:
a)屏蔽接地:为了防止电路之间由于寄生电容存在产生相互干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。
b)滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。
c)噪声和干扰抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“最低阻抗”通道。
d)电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地。因此所有互相连接的电路必须接地。
电磁兼容接地:出于电磁兼容设计而要求的接地,它包括:(1)屏蔽接地为了防止电路之间由于寄生电容存在产生干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地;(2)滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用;(3)噪声和干扰抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与 地相连,从而为干扰信号提供“最低阻抗”通道;
(4)电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地.因此所有互相连接的电路必须接地.1.4接地的应用
2.1 信号电缆的接地技术
电缆的屏蔽层必须接地,如不接地,由于寄生耦合,其干扰程度反而比不带屏蔽层严重,使导线增加干扰。
(1)1MHz下低频电缆的接地技术。低频信号电缆的屏蔽层应一点接地。屏蔽层单端接地时,流过屏蔽层的信号电流大小相等、方向相反,它们产生的磁场干扰相互抵消;屏蔽层两端接地时,屏蔽层上流过的是信号电流与地环电流的叠加,不能完全抵消信号电流所产生的磁场干扰。因此,屏蔽层单端接地对电磁场干扰具有很好的抑制作用,而屏蔽层两端接地抑制电磁场耦合干扰的能力比单端接地要差。故低频信号电缆以采取单端接地的屏蔽双绞线的抗电磁干扰效果最佳。至于接地点,a)当电路中有一个不接地的信号源与一个接地的放大器相连时,输入端的屏蔽层应接至放大器的公共端
b)当一个不接地的放大器与一个接地的信号源相连时,应在信号源的输出端接地,这样放大器输入端没有干扰电压。
在光缆传输系统中,各监控点的光端机外露导电部分、光缆加强芯等都采用一点接地,一般与系统的接地装置相连。因为光缆传输信号是在微弱的电流下进行的,要求各级工作电路都有良好的信噪比,采用这种方法接地可以加强屏蔽,防止干扰。
(2)1MHz以上高频电缆的接地技术。对于屏蔽双绞线对电缆,高频集肤效应使干扰电流在屏蔽层外表面流动,而信号电流在屏蔽层内表面流动,从而减少屏蔽层上信号电流和干扰电流的耦合。为了保证屏蔽层为地电位, 1 MHz以上高频电缆通常采用多点接地技术
1.5抑制接地干扰 1.应用隔离变压器
通过隔离变压器阻隔地回路的形成来抑制地回路干扰。电路1 的输出信号经变压器耦合到电路2,而地环路则被变压器所阻隔。但是,变压器绕组间存在分布电容,通过此分布电容形成地环路的等效电路所示,该图中设输出电路的内阻为零,变压器绕组之间的分布电容为C,输入电路的输入电阻为RL。
在分析隔离变压器阻隔地环路的干扰时,根据电路分析的叠加原理,可以不考虑信号电压的传输,即将信号电压短路,只考虑地环路电压UG。
由地环路电压U G 产生的地环路电流为:式中,ω为地回路电压UG的角频率,I、UG分别为地回路电流、电压。地回路电流I 在RL上的产生的压降为:
(x-2)将上式整理,得:(x-3)因此有:(x-4)
当没有采用隔离变压器,直接采用信号线传输时,干扰电压UG 全部加到Rl上,而采用隔离变压器后加到RL上的电压为UN。所以,(x-4)式表示隔离变压器抑制地回路 干扰的能力,|UN/UG| 越小,变压器抑制干扰的能力就越大。
由(x-4)式可知,当ωCRl≤1 时,|UN/UG| ≤ 1。所以,要提高隔离变压器的抗干扰能力,有效地办法是减小变压器绕组间的分布电容C(因为ω是无法改变的,而减小负载电阻Rl会影响信号的传输)。如在变压器绕组之间加一电屏蔽,就可以有效的减小变压器绕
组间的分布电容C,从而有效地阻隔了地回路的干扰。为了防止地回路电压UG通过电屏蔽层与绕组间的分布电容耦合加至负载Rl造成干扰,电屏蔽层应接至负载Rl的接地端。必须指出,采用隔离变压器不能传输直流信号,也不适于传输频率很低的信号。但是,隔离变压器对地线中较低频率的干扰具有很好的抑制能力。同时,电路中的信号 电流只在变压器绕组连线中流过,因此可避免对其他电路的干扰。2.应用光耦合隔离
在两电路间采用光耦合器是切断两电路单元间地环路的有效方法之一。电路1 的信号电流通过发光二极管后,发光二极管的发光强弱随通过它的电流变化,这样就把电路1 的信号电流变成强弱不同的光信号。再由光电三极管把强弱不同的光转化成相应的电流,从而实现了电路间的信号传输。通常发光二极管和光电三极管封装在一起,构成一个光耦合器。这种光耦合器可把两电路间的地环路完全隔断,有效地抑制地线干扰。由于光耦合器电流与发光强度的线性关系较差,传输模拟信号时会产生较大的失真,所以应用受到限制。但它对数字信号传输非常适用,如在固态继电器中隔离控制信号的干扰。
1.4常见的问题
Q1:为什么要接地? 接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准„地'作为信号的参考地。而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。最近,高速信号的信号回流技术中也引入了“地”的概念。
Q2:接地的定义
在现代接地概念中、对于线路工程师来说,该术语的含义通常是„线路电压的参考点';对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。注意要求是“低阻抗”和“通路”。
Q3:常见的接地符号
PE,PGND,FG-保护地或机壳;
BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流; GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地
Q4:合适的接地方式
Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。
Q5:信号回流和跨分割的介绍
对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。
第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。
第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。
第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针对多层板多个电源供应情况说的)
Q6:为什么要将模拟地和数字地分开,如何分开? 模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。
一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。Q7:单板上的信号如何接地? 对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。
Q8:单板的接口器件如何接地? 有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。
Q9:带屏蔽层的电缆线的屏蔽层如何接地? 屏蔽电缆的屏蔽层都要接到单板的接大地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。当然前提是接口地也要非常的干净