第一篇:光学历年总结
北京大学工学院光学试题2013年04月07日 23:03:44
我把所有能收集到的题目就乱乱的都贴在一起了~ 版本1:
1.写出惠更斯-菲涅尔原理的内容及基尔霍夫衍射积分公式
2.写出光栅的结构因子和单元因子。与投射式光栅相比,反射式闪耀光栅的优点是: 3.写出Abbe干涉成像原理的内容及其意义
4.泽尼克相衬显微镜(1)研究对象是什么(2)用4f系统和矢量图解法画出工作原理(Ps:这个是他上课讲了但是书上和ppt上都没有的东西……)(3)写出步骤(4)能否将 零级谱光强完全去除,为什么?
5.波带片如图所示(只露出第2、4条半波带):(1)写出各焦点的位置(2)为何会有 多个焦点?(3)用螺旋式曲线求主焦点和左侧第一次焦点的光强(4)为何对于圆孔在轴 线上会有亮暗分布,而圆屏则轴线上各点均是亮点?
6.Apple公司新出的Iphone4,分辨率为326像素/英寸(25.4mm),据负责人Steven说已超过了人眼的分辨率,请问是否事实如此。人眼的极限分辨率是多少?瞳孔直径2~8mm,接受的波长范围400~750nm(Ps:可能具体数字不准确……)。将该Iphone4放到多远处可看清每个像素?
7.用波长为λ的平行光和球面光全息照相得到余弦光栅底片,其透过率函数为t(x,y)=t 0 + t1*cosk(x^2+y^2)/2Z.现用与水平面夹角为θ向右下入射的波长为2λ的平行光照射 该余弦光栅,问衍射场的组成及特点。
8.写出透镜的空间极限频率与仪器分辨本领的关系,物放在焦面F处。
9.一台光栅光谱仪,两个凹面镜的焦距均为30cm,接收用CCD宽度为2cm,分2000个像素。接收的波长范围是650~750nm,问光栅应如何选取?若入射光的宽度为1cm,应怎样选择透镜以符合其分辨率?
10.根据惠更斯原理,画出平行光正入射到负晶体上,晶体内和晶体外的o光e光传播方向、偏振方向和波前。光轴方向为与水平面夹角α。
11.两偏振片垂直放置,中间放有光程差(n0-ne)d=λ/2的晶片,初始时光轴平行第一 个偏振片放置,然后晶片以ωt的角速度旋转。I0的自然光垂直入射到第一个偏振片上,求I1(透过第一个偏振片的光)I2(透过晶片的光)及I3(透过第二个偏振片的光)。
版本2:
期中也是,考了好多概念和应用的题,不难不复杂,但是要是原理不清,很可能想不清楚 做不对(比如本人……)
Ps:光学本身很妙,但是上wsf的光学,一定随着他讲课的进度及时自学,否则到考试前 再自学恐怕内容太多来不及……ppt和蓝皮书结合看还是不错的。别的不说啥了,大家懂 得,想选光学的学弟学妹们先去试听一节再说。好自为之……
版本3: 填空题: 简述惠更斯原理 两束光相干的三个条件 两种干涉装置及举例 傍轴条件和远场条件
解答题
1、画出迈克尔孙星体干涉仪的简图,说明其巧妙性。
2、近视眼能不能看清等倾条纹?能不能看清等厚条纹?
3、已知波长,求光频率(这个比较简单……)
4、一个凸透镜在中间,左右是两个焦面。左焦面上有OQ两点源,O在光轴上,Q在光轴上方a处。写出两点波前函数(透镜前和透镜后,一共4个)和右焦面接受屏上的干涉条纹形状、间距。
5、凸透镜劈两半的那个干涉装置。画出干涉区域,求两像点连线中垂面接受屏上的干涉条纹形状、零级亮斑位置。
6、(比较怪诞的题)迈氏干涉仪装置的变型。但是n和h都是T的函数。已知dn/dT和dh/dT,还有初始时的n、h、λ,吞吐了80个条纹,求最后的温度。(主要是计算怪异……据说是270多度?)
7、杨氏干涉装置中光源宽度的问题。求极限宽度、极限缝距(和前面一问条件不同)和在第二问条件下缝距变为1/3时的衬比度。
8、已知相关数据,求迈氏干涉仪的测长精度、量程、讯号频率。
9、(书上习题的翻版)工件上有条沟,已知等厚干涉图样、条纹间距和条纹偏离距离,求沟深。
版本4:(送分题部分)
光场时间相干性和空间相干性的反比公式 惠更斯-菲涅尔原理的表述、做图、积分式 阿贝成像原理的表述、意义
四种光波的成分分析(一种平面,两种球面,一种球面加平面)费马定律的表述 用费马定律推导折射定律
(大题部分)
1、类似于对切透镜,但是只有上半部分。即平行光照射,一个凸透镜的上半部分在光轴 上,远处在3F处有个屏,求干涉条纹和一些性质。
2、等厚干涉检验验规是否等高、平整。和红书上那题类似。
3、已知电视机对角线长度,长宽比,分辨率,人眼直径,光波长,求在多远距离之外看电视比较合适。
4、全息图。把一平面波和一球面波(波长相等)的波前记录下来作为衍射光栅,用另一种波长是前两波一半的球面波去重现,求重现波。
5、衍射重复单元。结构单元是单缝,间距分别为a、2a、a、2a、……求衍射场。
6、平行光照射透射光栅。具体不记得了。但就是关于光栅性质的简单计算。(结果我还 是算错了……ft)
7、两个相同的余弦光栅垂直叠加。求频谱面上出现几个谱斑。然后是滤波:只需要cos(2πf(x+y))成分,画图说明怎么滤掉。
8、偏振片干涉。没做完,不说了。
版本5:
1.岸上一个信号发射器,发出电磁波,水面船上一个信号接收器。已知两者高度,电磁波波长。在一个距离D接收器收到加强信号,在D-80米处又收到。求D以及下一次收到加强信号的位置。
2.和现代光学基础4.18题类似。
版本6:
1、惠更斯-菲涅尔原理的内容、积分式与图示说明,并利用积分式说明为什么太阳看起 来是均匀发光的圆盘
2、阿贝成像原理的内容与意义
3、反射闪耀光栅相比投射光栅的优点
4、相衬显微镜的原理
5、布儒斯特角相关,说明对于平行玻璃板,上表面反射光为线偏振光时,下表面反射 光的偏振状态
6、布拉格衍射相关,说明寻找晶体衍射斑的方法及原因;以及微波衍射中,给定波长 时设计合适的晶面间距使得观察效果较好---------概念与计算的分割线-----------------
7、给定星体角间距,求望远镜的最小口径及对应的放大倍数
8、全息图相关,给定物光、参考光、与成像时的入射光,求屏函数与出射场的成分
9、单缝衍射中,将下半部分以折射率为n,厚度为d的啥(名字不记得了)覆盖,(其 实就是增加(n-1)d的光程),求新的衍射场,并在给定缝宽a与(n-1)d的条件下画出光强 分布图
10、透射光栅相关,给条件求光栅常数d、缝宽a、总长度D并说明衍射场情况11、4f系统相关,求正交密接的全同余弦光栅在频谱面上的光斑形状,并设计滤波器使 得像场与cos(2πf(x+y))成正比。
12、利用四分之一波晶片,求自然光与圆偏振光的混合光中两者的比例
13、偏振光相关,叫欧啥棱镜(名字又不记得了),画光路图并计算出射光夹角,类似 小红本习题指导3-14题,但光轴方向不同
第二篇:大学物理波动光学总结
大学物理学波动光学的学习总结
(北京航空航天大学
仪器科学与光电工程学院131715班
北京 100191)
摘要:文章就大学物理学中的波动光学中的核心部分包括干涉,衍射,偏振部分的知识做了梳理,并就对推动波动光学理论建立的光学实验做了总结性的介绍和研究。关键词:波动光学 干涉 衍射 偏振 实验
19世纪初,人们发现光有干涉、衍射、和偏振等现象。例如,在日常生活中常可看到在太阳光的照耀下,肥皂泡或水面的油膜上会呈现出色彩绚丽的彩色条纹图样;又如,让点光源发出的光通过一个直径可调的圆孔,在孔后适当位置放置一屏幕,逐渐缩小孔径,屏幕上上会出现中心亮斑,周围为明暗相间的圆环形图案等等。这些现象表明光具有波动性,用几何光学理论是无法解释的。由此产生了以光是波动为基础的光学理论,这就是波动光学。19世纪60年代,麦克斯韦建立了光的电磁理论,光的干涉,衍射和偏振现象得到了全面说明。
本文将从光的干涉衍射和偏振来讨论光的波动性以及波动光学中的经典实验。
一、光的干涉
1.光波
定义光波是某一波段的电磁波,是电磁量E和H的空间的传播.2.光的干涉
定义满足一定条件的两束(或多束)光波相遇时,在光波重叠区域内,某些点合光强大于分光强之和,在另一些点合光强小于分光强之和,因而合成光波的光强在空间形成强弱相间的稳定分布,称为光的干涉现象,光波的这种叠加称为相干叠加,合成光波的光强在空间形成强弱相间的稳定分布称为干涉条纹,其中强度极大值的分布称为明条纹,强度极小值的分布称为暗条纹.3.相干条件
表述两束光波发生相干的条件是:频率相同,振动方向几乎相同,在相遇点处有 恒定的相位差.4.光程差与相位差
定义两列光波传播到相遇处的光程之差称为光程差;两列光波传播到相遇处的相位之差称为相位差.5.双光束干涉强度公式
表述在满足三个相干条件时,两相干光叠加干涉场中各点的光强为
式子中,相位差保持恒定,若I1I2I0则
6.杨氏双缝千涉实验
实验装置与现象如图1所示,狭缝光源S位于对称轴线上,照明相距为a的两个狭缝S1和S2,在距针孔为D的垂轴平面上观察干涉图样,装置放置在空气(n=1)中,结构满足dD,Dx,sintan.在近轴区内,屏幕上的是平行、等间距的明暗相间的直条纹,屏幕上P点的光程差为
相应明暗纹条件是
干涉条纹的位置是
式中,整数k称为干涉级数,用以区别不同的条纹.2
7.薄膜干涉
实验装置如图2所示,扩展单色光源照射到薄膜上反射光干涉的情况,光源发出的任一单条光线经薄膜上下两个面反射后,形成两条光线①、②,在实验室中可用透镜将它们会聚在焦平面处的屏上进行观察,在膜的上下两个表面反射的两束光线①和②的光程差为
二、光的衍射
1.光的衍射现象
定义一束平行光通过一狭缝K,在其后的屏幕上将呈现光斑,若狭缝的宽度比波度大得多时,屏幕E上的光斑和狭缝完全一致,如图3 Ca)所示,这时可成光沿直线传播的;若缝宽与光波波长可以相比拟时,在屏幕E上的光斑亮度虽然降低,但光斑范围反而增大,如图3 Cb)所示的明暗相间的条纹,这就是光的衍射现象,称偏离原来方向传播的光为衍射光.2.惠更斯一菲涅耳原理
表述任何时刻波面上的每一点都可以作为子波的波源,从同一波面上各点发出的子波在空间相遇时,可以相互叠加产生干涉.3.菲涅耳衍射与夫琅禾费衍射
定义光源到障碍物,或障碍物到屏的距离为有限远,这类衍射称为菲涅尔衍射:光源到障碍物,以及障碍物到屏的距离都是无限远,这时入射光和衍射光均可视为平行光,这类衍射称为夫琅禾费衍射.三、光的偏振
1.光的偏振性
定义光波是电磁波,其电矢量称为光矢量,在垂直于传播方向的平面内,光矢量E可能具有的振动状态(矢量端点的轨迹),称为光的偏振态.光矢量的振动方向与光传播方向所组成的平面称为振动面.2.偏振光
定义振动方向具有一定规则的光波,称为偏振光。若一束光的光矢量E只沿一个固定的方向振动,称这种光为线偏振光,线偏振光的振动面固定不动,故又称为平面偏振光;若一束光的E矢量按一定频率旋转,其矢端沿着一圆形轨道运动,称这种光为圆偏振光;与圆偏振光类似,若E矢量末端沿着一椭圆形轨道运动,称这种光为椭圆偏振光。
3.部分偏振光
定义如果一束光的光矢量在垂直于传播方向的各个方向上都有分布,各个振动之间没有固定的相位关系,但沿某方向的振动总比其他方向更占优势,称这种光为部分偏振光。
4.偏振片与马吕斯定律
表述某些晶体物质对入射光在某个方向的光振动分量有强烈的吸收,而对与该方向垂直的分量却吸收很少,使之能够通过晶体,具有这种特性的晶体称为“二向色性”物质.把允许通过的光振动方向称为偏振化方向,既透光轴.将具有该性质的晶体制成获取线偏振光的器件,称为偏振片.当一束线偏振光通过偏振片时,透射光的强度是
式中,I0为入射线偏振光的强度,为入射线偏振光的振动方向与偏振片的偏振化方向之间的夹角,这个规律称为马吕斯定律.4
5.反射与折射时的偏振布儒斯特定律
表述当自然光以一定入射角入射到两种透明介质的界面上时,反射光和折射光都是部分偏振光,其中,反射光中垂直于入射面的振动分量占主导地位,折射光中平行于入射面的振动分量占主导地位,当入射角是某一特定角度时,反射光变成垂直于入射面的振动方向的线偏振光,该特定角度称为布儒斯特角.布儒斯特角由布儒斯特定律决定,即布儒斯特角i0满足如下关系:
式中,n1和n2分别为入射空间和折射空间的折射率.6.波片
表述表面与光轴平行的晶体薄片称为波片,当一束光正入射于波片时,具有相同的相位,由于它们的传播速度不同,使之通过波片后产生一定的光程差.式中,d为波片的厚度,对应的相位差是
若使d满足o光和e光在通过波片后产生/2的相位差,则此波片称为该波长的1/4波片;若相位差为π(或光程差为/2),称为该波长的半波片.7.偏振光的干涉
实验装置及现象如图4所示,在两个偏振化方向成一定角度的偏振片之间插入一 个波片,当自然光入射时,先用一个起偏器使自然光变成线偏振光.线偏振光进入波片 后,投射光形成偏振方向相互垂直的口光和e光,再经过检偏振器,使。光和e光变为同 方向的振动,以满足偏振光的干涉条件,形成干涉条纹。
四、推动波动光学发展的重要实验 世纪, 胡克和惠更斯创立了光的波动说.这一时期, 人们还发现了一些与光的波动性有关的光学现象,例如格里马尔迪首先发现光遇障碍物时将偏离直线传播, 他把此现象起名为“衍射”.胡克和玻意耳分别通过实验观察到现称之为牛顿环的干涉现象.这些发现成为波动光学发展史的起点.在随后的一百多年间, 牛顿的“微粒说” 与惠更斯的“波动说”构成了关于光的两大基本理论, 并由此而产生激烈的争议和探讨, 科学家们就光是波动还是微粒这一问题展开了一场旷日持久的拉锯战.因牛顿在学术界的权威和盛名, “ 微粒说” 一直占据着主导地位,波动说则不为多数人所接受.直到进入19 世纪后,人们发现光有干涉、衍射、偏振等现象, 这些事实都对光的波动说提供了重要的实验依据, 从而极大地推动了波动光学的发展.1、杨氏双缝实验
杨氏双缝实验是杨(T.Young)最早以明确形式确立光波叠加原理, 用光的波动性解释干涉现象的一个实验, 从而揭开了波动光学复兴的序幕.杨氏实验示意图如下图 所示, 根据惠更斯原理, 认为双缝S1和S2 是两个发射子波的波源, 它们都是从同一个光源S 而来并位于同一个子波波面, 故它们的相位总是相同而能构成相干光源.由下图 , 若双缝间距离为d , 缝屏到光屏EE′间距为D , 光屏上任一点P 到双缝的距离为r1、r2 , 从S1 和S2 所发出的光, 到达P 的波程差是δ= r2-r1 ≈d sin θ
式中θ表示PO 对双缝中点的张角.若光程差等于波长整数倍, 即
dsink
若光程差等于半波长的奇数倍, 即
k =0 , 1 , 2 , „
P 点为明纹.2k12dsin
k =0 , 1 , 2 , „ P 点为暗纹.2通常能观察到干涉条纹的情况下θ总是很小,则
dsindtand故光屏上各级亮纹离中心O 的距离为
xk DxkDd
k =0 , 1 , 2 , „
两相邻亮条纹或暗条纹的间距都是Δx =Dλd ,且干涉条纹都是等间距分布的.杨氏双缝实验为光的波动学说提供了有力的实验依据, 它导致人们对光的波动理论普遍接受.同时, 杨氏双缝实验还以极简单的装置和极巧妙的构思把普通光源变成相干光源, 即满足了频率相同、相位差恒定, 存在相同的振动分量.在此以后的菲涅尔双面镜、双棱镜、洛埃镜等都是以杨氏双缝实验为原型设计出来的.因此杨氏双缝实验在波动光学发展
史上乃至物理学史上都占有非常重要的地位.2 夫琅禾费单缝衍射实验
衍射和干涉一样, 也是波动的重要特征之一.波在传播过程中遇到障碍物时, 能够绕过障碍物边缘前进, 这种偏离直线传播的现象称为波的衍射.但是因为光波的波长太短, 只有几百纳微米, 因此要想实现光波的衍射比起机械波的衍射要难得多, 所以
在一个相当长的时期内, 光能够发生衍射的观点根本不被人们所接受, 光的波动说也就欠缺了说服力.夫琅禾费单缝衍射实验有力地证明光的波动性.平行光通过狭缝产生的衍射条纹定位于无穷远, 称做夫琅禾费单缝衍射.如下图所示, 根据菲涅尔半波带理论, 设单缝的宽度为a , 在平行单色光的垂直照射下, 位于单缝所在处的波阵面AB 上各点发出的子波沿各个方向传播, 位于两条边缘衍射线之间的光程差为δ=BC = asinθ
式中θ表示衍射角即波衍射后沿某一方向传播的子波波线与平面衍射屏法线之间的夹角.根据菲涅尔半波带理论, 当θ适合
asin2k
k =±1 , ±2;±3 , „ 暗纹
2asin2k1
2k =±1 , ±2 , ±3 , „ 明纹
中央明条纹的半角宽度01arcsina,当θ1 很小时有
0a 泊松亮斑实验
在人类探索光的本性的进程中, 泊松亮斑实验是波动光学发展史上具有重大意义的一个经典实验, 在很大程度上推动了波动光学的进一步发展.1818 年, 法国科学院组织了一次悬赏征文活动,竞赛评奖委员会的本意是希望通过这次征文, 鼓励用微粒理论解释衍射现象, 以期取得微粒理论的决定性胜利.然而, 出乎意料的是, 不知名的学者菲涅耳却按照波动说深入地研究了光的衍射.当时, 泊松是光的波动说的极力反对者, 他按照菲涅耳的理论计算了光在圆盘后的影的问题, 发现在一定条件下,在不透明的圆板的阴影中心有一个亮斑, 这就是著名的“泊松亮斑”, 如下图所示.泊松认为这是十分荒谬的, 于是就声称驳倒了光的波动理论.但后来菲涅耳在实验室观察到了这个亮点, 这样, 泊松的计算公式反而有力地支持了光的波动学说, 使光的波动理论在这场竞赛中, 赢得了新的辉煌的胜利.塞曼效应试验
塞曼效应被誉为继X 射线(1895 年发现)之后物理学最重要的发现之一, 1902 年塞曼因这一发现与洛伦兹共享诺贝尔物理学奖.19 世纪初, 光的波动说获得很大成功, 逐渐得到人们公认.但是当时人们把光波看成像机械波, 需要有传播的媒介, 曾假设在宇宙空间充满一种特殊物质“以太”.而且,“以太” 应具有以下性质:一是有很大的弹性(甚至像钢一样);二是有极小的密度(比空气要稀薄得多——— 以至我们根本不能用实验探测它的存在).这种神秘的“以太” 存在吗?这个问题到目前为止, 甚至还在小范围的争执之中.但是, 各种证明“以太” 存在的实验都被认为是失败的, 这就使光的机械波学说陷入了困境.这时, 有一些新的事实促使人们去进一步探索光的本性的神秘面纱.1862 年法拉第做了最后一次实验, 试图发现磁场对放在磁场内的光源发出的光线的影响, 但结果是否定的, 因为他用的仪器还不够灵敏, 不能探测到这种微细的效应.30 年后, 当时还是青年的塞曼, 从阅读法拉第的实验计划受到启发,他用更精密的仪器重新做实验, 发现了塞曼效应.这个实验证明了光具有电磁本性, 同时也对原子物理的研究有着重要的贡献.塞曼效应的发现使人类对光的认识更加深化,认识范围更加扩大.光具有波动性、光的电磁本性逐渐被人们所公认.这种理论在光学史上起着特殊重要的作用.五、波动光学学习感想
通过对波动光学部分学习,我真切的感受到了光学的奥秘和无限的研究价值之所在。在这之前,一直是几何光学给予我最直接的对于光学的印象,这种印象是我对光学并没有产生多大的兴趣。接触和学习了波动光学部分的内容和知识之后,我感受到了光变化万千的本质。作为一种电磁波,光的波动性质使其具有了诸如干涉,衍射,偏振的性质,这些性质随着科技不断的进步,测量工具的日益进步逐渐为人类所了解熟悉,到应用。这些应用体现在现代科学技术中的各个方面,例如。长度的精密测量,光谱学的测量与分析,光测弹性研究,晶体结构的分析等。随着激光技术的发展,全息照相技术,集成光学,光通信等新技术也先后建立起来,开拓了光学研究和应用的全新领域。其中,在基础理论方面也包括了对波动光学的再认识和新内容。如傅里叶光学、相干光学和信息处理以及在强激光下的非线性光学效应。我们不难发现,波动光学由于其对科学的测量手段的高度依赖性,它的研究和实际价值的开发是有巨大潜力的。
参考文献:
[1]吴百诗.大学物理学[ J ].北京:高等教育出版社,2004.12 [2]游璞,于国萍.光学[ M ].北京:高等教育出版社,2008.12 [3]宋贵才.物理光学理论与应用[ J ].北京:北京大学出版社,2010.3 [4]赵青生.大学物理实验[ M] .合肥:安徽大学出版社, 2004
第三篇:信息光学重点总结
1.什么是脉冲响应函数?其物理意义是什么?
脉冲响应函数(Impulse Response Function)也叫点扩散函数(Point-Spread Function),其表达式为:h(x,y;,)F{(x,y)},表示在光学系统输入平面式位于22112x,y11点的单位脉冲(点光源),通过系统以后在输出平面上(x2,y)点得到的分布,它是输入输出平面上坐标的四元函数。脉冲响应函数表征光学成像系统的成像质量好坏,对于一般的成像系统,由于其存在相差且通光孔径有限,输入平面上的一点(有函数表示)通过系统后,在输出平面上不是形成一个像点,而是扩散成一个弥散的斑,这也就是为什么把脉冲响应函数称为点扩散函数的原因。换句话说,如果没有相差且通光孔径无限大(没有信息散失,物空间的信息完全传递到像空间),则在像平面上即得到和物平面上完全一样的点。
2.什么是传递函数?其物理意义是什么?
在线性空间不变系统中,我们把系统的脉冲响应函数的傅里叶变换叫做该系统的传递函数,即:H(f,fxy)F{h(x,y)},它表示系统在频域中对信号的传递能力。传递函数和脉冲响应函数都是用来描述线性空间不变系统对输入信号的变换作用,两种方法是等效的。只不过脉冲响应函数是在空域中描述,而传递函数是在频域中对系统传递信号能力的描述。
3.什么是线性系统?什么是线性空间不变系统?有哪些性质?
若系统对一线性组合信号的响应等于单个响应的同样的线性组合,则该系统就是线性
g(x,y)F{f(x,y)}i22i11系统。用数学表达式表示如下:
ag(x,y)F{af(x,y)}i1ii22i1ii1122nn,其中f(x,y)代表对系统的激励,g(x,y)代表系统相应的响应,ai是任意复常数。
i11i
线性空间不变系统是线性系统的一个子类,它表示若输入信号在空间发生了平移,则输出信号也发生相应的位置平移。对于成像系统来说,若物函数分布不变,仅在物平面上发生一位移,则对应的像函数形式不变,也只是在像平面上有一个相应的位移。线性空间不变系统的性质:(1)等晕性。h(x,y;,)F{(x,y)}h(x22112,y),当点光源在物
2场中移动时,其像斑只改变位置,而不改变其函数形式。
(2)脉冲响应函数h即可完全描述线性空间不变系统的性质。
g(x,y)f(x,y)h(x,y),对于线性空间不变系统,输出函数可以表示为输222222入函数与系统脉冲响应在输出平面上的一个二维卷积。
(3)傅里叶变换形式简单。对于线性空间不变系统,脉冲响应函数的傅里叶变换H(f,xfy)F{h(x,y)}可以用来描述系统在频域内对输入信号的变换作用,我们称其为系统的传递函数,其对线性空间不变系统的理论和求解运算都有重要的意义。4.透镜在傅里叶光学中的作用?
透镜是光学成像系统和光学信息处理系统中最基本的元件。透镜的作用有:
(1)透镜起到位相调制作用。透镜对入射光的位相变换作用是由透镜本身的性质决定的,而与入射光的复振幅无关。
(2)透镜起到傅里叶变换作用。这是透镜在傅里叶光学中最重要的作用,用透镜实现傅里叶变换,主要有两种途径:一种是采用平行光照明,在透镜的后焦面上观察到物的频谱(除一个位相因子外);另一种是点光源照明衍射屏时,无论衍射屏位于透镜前还是透镜后,在点光源的像平面上将得到衍射屏函数的傅里叶变换谱。
(3)透镜起到限制通光孔径的作用。实际透镜的大小都是有限的,透镜孔径除了限制入射光束从而影响出射光通量外,还对形成傅里叶频谱产生影响,并影响最终成像质量。
5.什么是CTF和OTF?二者有何异同?
CTF是衍射受限相干成像系统的传递函数(Coherent Transfer Function),它表示系统实际输出像的频谱函数G(f,fixxyy)与理想像的频谱函数Gg(f,fxy)之间的比值关系:(f,fGH(f,f)(f,fGicxygx));
yOTF是非相干成像系统的光学传递函数(Optical Transfer Function),它反映了非相干成像系
(f,fG统传递信息的频率特性。其表达式为:H(f,f)G(f,f'Iixoxy'Igxy))。
y
CTF和OTF都是描述系统对信息的传递特性,它们均反映系统本身的属性,都与输入物函数的具体形式无关。所不同的是CTF描述是相干成像系统,此系统是光场复振幅变换的线性空间不变系统;而OTF描述的是非相干成像系统,该系统对光强度是线性空间不变系统。
而且光学传递函数等于相干传递函数的归一化自相关。
H(f,f0xyH)*c(,)Hc(f2x,fy)dd
Hc(,)dd6.什么是匹配空间滤波器?
空间滤波是在频谱面上放置滤波器,以改变或提取某些频段的振幅或相位,进而改变输出像的信息。如果有一透明图片,其振幅透过率为h(x,y),令其傅里叶变换频谱为
11H(f,fxy);若有一空间滤波器,其振幅透过率为H*(f,xfy),其中*表示复共轭,则称该滤波器为上述透明图片h(x,y)的匹配滤波器。
117.联合变换相关识别的原理是什么?
如图所示,在输入平面P1上对称于光轴两侧并排放着待识别的目标图像和参考图像,输入函数可记为二者之和,经透镜L1进行傅里叶变化,在L1后焦面(即联合频谱面)上得到二者的联合功率谱,对于联合频谱面上的联合功率谱再进行一次傅里叶变换,在线性记录条件下,忽略透射率函数中的均匀偏置和比例常说,则经透镜L2进行傅里叶逆变换后,在L2的后焦面(相关输出面)上得到四项,其中第一二项分别是目标图像和待识别图像的自相关,均位于输出平面中心,它们不是信号;第三项和第四项是目标图像与待识别图像的互相关信号,正是我们寻求的相关输出信号,我们适当选取两幅图像的间隔距离,就能把相关输出信号从其他项中分离出来。
8.什么是菲涅尔衍射?什么是夫朗和费衍射?二者有什么异同?
对于最普遍的标量衍射理论,我们得到基尔霍夫衍射公式,在初步近似处理时,我们假设(1)孔径与观察平面之间的距离远大于孔径的最大限度;(2)只考虑在观察平面上z轴附近的一个有限小区域(近轴近似),由此我们得到:
U0(x0,y)01ikr01(,)dx1dyUe1x11jzy
1菲涅尔近似是是在以上公式中用z之间的距离
(x0x1)2(yy)2012z近似代表观察点与衍射点r01,由此得到的衍射公式便是菲涅尔衍射公式,相应近似成立的区域成为菲涅尔衍射区。
k2(x1
夫朗和费近似是采用比菲涅尔近似更严格的限制条件,即令2zy)21max1,这个近似成立的区域成为夫朗和费衍射区,相应的衍射称为夫朗和费衍射。
夫朗和费衍射和菲涅尔衍射都是对基尔霍夫衍射的近似,只是二者近似程度不同而已。夫朗和费衍射包含在菲涅尔衍射范围之内,夫朗和费衍射是采用比菲涅尔衍射更苛刻的限制条件,所以凡是能用来计算菲涅尔衍射的公式都能用来计算夫朗和费衍射。
9.光学傅里叶变换的作用与意义
我们把本已研究的非常成熟、理论完备的通信系统理论与方法带入了光学系统,而正是傅里叶光学使得这种保留与引入是有价值的。傅里叶光学给我们提供了一种新的研究光学系统与光学成像的观点,使得我们可以从频谱或者频域的角度去研究光学系统,而这正是傅里叶光学带来的最大影响。空间滤波和相干或非相干光学信息处理也因为频谱或频域概念的引入变得更方便和更有价值。可以说傅里叶光学促进了图像科学、应用光学和光纤通信的发展。......10.4f系统是如何实现空间滤波的?
4f系统是一种典型的空间频率滤波系统,是相干光学信息处理中一种最简单的处理方式,它利用了透镜的傅里叶变换特性,把透镜作为一个频谱分析仪,并在其频谱面上插入适当的滤波器,借以改变物的频谱,从而使物图像得到改善。
由相干点源S发出的单色球面波经透镜Lc(图中未画出)准直为平面波,垂直入射到输入平面(物面)P1上。P2为频谱平面(滤波面),P3为输出平面(像面),L1和L2是一对傅里叶透镜,用来实现P1、P2间的傅里叶变换和P2、P3间的傅里叶逆变换。从频域来看,只要改变滤波器的透过率函数,该系统就能改变物图像的空间频谱结构;从空域来说,该系统实现了输入信息与滤波器脉冲响应的卷积或相关。
第四篇:集成光学考试总结
第一章
1.集成光学的分类:
• 按集成的方式划分:个数集成和功能集成
• 按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC)• 按集成的技术途径划分:单片集成和混合集成 • 按研究内容划分:导波光学和集成光路 2.集成光学的定义
(1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。
(2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。
(3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。3.集成光学的主要应用
光纤通信,光子计算机,光纤传感 4.集成光学系统有什么优点?
1)集成光学系统与离散光学器件系统的比较
(1)光波在光波导中传播,光波容易控制和保持其能量。(2)集成化带来的稳固定位。
(3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。
(4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必要的器件工作阈值和利用非线性效应工作。
(5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。
2)集成光路与集成电路的比较
把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。
用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。
第二章
1.光波导的分类
(a)平板波导(slab waveguide)(b)条形波导(strip waveguide)(c)圆柱波导(cylindrical waveguide)2.会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。
3.TE、TM模的本征模方程(色散方程)是什么?TE、TM模的截止波长(截止频率)、波导截止厚度的表达式?为什么对称波导的基模不存在截止频率?
4.会求给定平板波导所能传输的模式?
5.各种光束耦合器的工作原理和特点? 棱镜耦合器:
棱镜耦合法的优点:
1.在最佳条件下可以得到很高的效率(输入时约为80%,输出时约为100%)。2.可以从自由导波模中任选一种进行激励。
3.不仅适用于平板波导,在条形波导的情况下也可以高效率地使用。4.棱镜位置可即可离,能够在实验过程中调整,以实现最大耦合强度。缺点:
(1)棱镜与波导间隙以及入射光束的位置需要进行精心调整,缺乏稳定性。
(2)棱镜耦合器所用的材料除应满足np>n1外,还要求对所用的光波长透明,无显著吸收与散射。光栅耦合器
功能与棱镜耦合器类似,用于实现自由空间和平面介质光波导之间的耦合,不同的是棱镜和间隙介质被光栅薄膜代替。
光栅耦合器的优点:
1)不受光波导折射率大小的限制。
2)可以选择所有导模中的任意一种进行激励。
3)可以与波导集成。震动或外界环境的变化,不会改变耦合效率,稳定性好,体积小,价格便宜。4)调整光束的入射位置时不需要特别严格的精度。
5)也可以在横向进行同样的耦合,因此可以激励宽度非常大的波导光。光栅耦合器的缺点:
1)由于光栅耦合与入射光角度的高度相干性,光栅耦合器不能有效地用于发散光束的耦合; 2)光栅耦合器设计过程需要进行复杂的理论计算,而且制作比较困难; 3)器件的参数在制作后无法进一步调整; 4)对于条形波导,光束截面的匹配比较困难。尖劈形薄膜耦合器
优点:制作简单,可以实现有效的输出耦合。缺点:用于输入耦合时,很难获得高的效率。
第三章
1.光波导的调制
内调制(直接调制)和外调制(间接调制):
内调制是利用调制信号直接控制激光器的振荡参数,使输出光的特性随信号而改变。
外调制是用调制信号作用于激光腔外面的调制器,产生某种物理效应(如电光、磁光、声光、热光等效应),使通过调制器的激光束的某一个参量随信号而变。2.光波调制
相位调制,强度调制,偏振调制
3.会求电光效应引起的折射率的变化
22x3x12x2121212111xxx2xx2xx22122232232132x1x21 222n1n2n3n1n2n3n4
n5
n6
4.声光效应的布拉格条件和Q判据?拉曼-奈斯衍射和布拉格衍射有何不同? 根据声波和光波的波长以及相互作用区域的长度L的相对大小,存在两种声光衍射现象,即拉曼-奈斯(Raman-Nath)衍射和布拉格衍射
(1).拉曼-奈斯(Raman-Nath)衍射
此时声波频率较低,声波束宽度L较小,由于声速比光束小的多,在光束通过介质的时间内,折射率的变化可以忽略不计,可以把声光介质看作相对静止的“面相位光栅”或“薄光栅”,此时声波的作用可视为与普通平面光栅相同的折射率光栅。由于光栅较薄,使得入射光在L距离内只受到一次衍射就偏离原方向从器件中输出,从而形成多级衍射光束。
当入射光沿z方向(i0)时,各级衍射处所相应的方向
由下式给出
sinm/na0m0,1,2,计算表明,拉曼-奈斯衍射的效率较低,其中一级衍射效率最大不超过35%,但这种衍射不受入射角的限制,因此调节方便,在许多领域仍得到广泛应用。(2)Raman-Nath衍射条件: 当声波束宽度满足
na2 L40时,即产生Raman-Nath衍射,可以忽略介质中各衍射光的相互影响。
5.自然旋光 旋光定义:
当线偏振光沿某些晶体(如石英)的光轴方向传播,或通过某些溶液(如蔗糖)时,其振动面将以光的传播方向为轴发生旋转,这称为旋光现象。
自然旋光现象的特征
(1)自然旋光具有可逆性。若迎着光传播方向看去,振动面表现为右旋,则当光线逆反时,振动面仍表现为右旋,即左右旋与光的传播方向无关!
(2)光束一正一反两次通过自然旋光物质时,振动 面转过角度为0。
5.什么是磁光效应,利用磁光效应可以构成哪些光学器件?
法拉第磁致旋转效应:在外加磁场B作用下,某些原本各向同性的介质变成旋光性物质,偏振光通过该物质时其偏振面发生旋转。
法拉第旋转的特殊规律
(1)磁致旋光不可逆性。当光传播方向平行于磁场时,若法拉第效应表现为右旋,则当光线逆反时,法拉第效应表现为左旋。
(2)光束一正一反两次通过磁光介质时,振动面转过角度 2。法拉第旋转的应用: 磁光隔离器(Isolators):放置于激光器及光放大器前面,防止系统中的反射光对器件性能的影响甚至损伤,即只允许光单向传输。
磁光环行器(Circulators):一种三端口(或四端口)的非互易磁性器件,在光网络中用于信号的上、下载。
第四章
1.电子跃迁的种类 受激辐射 受激吸收 自发辐射
2.半导体激光器的分类
F-P腔激光器,分布反馈(DFB)激光器和分布Bragg反射器(DBR)激光器,量子限制激光器,垂直腔表面发射激光器(VCSEL),解理耦合腔半导体激光器(C3,cleaved coupled cavity)3.半导体激光器效率的各种定义和表达式,会求半导体激光器的发射波长
发射波长:hc Edir4.DFB和DBR激光器在结构和工作上有何不同?如何求它们的发射波长?(1)DFB激光器的模式: 不正好是布拉格波长,而是对称的位于
B的两侧。
2B假设m是允许DFB发射的模式,此时mB式中m是模数,L是衍射光栅有效长度。
2nL(m1)
完全对称的器件应具有两个与λB等距离的模式;实际上,由于制造过程,或者有意使其不对称,只能产生一个模式;又因为L>> λB,上式的第二项非常小,所以发射光的波长非常靠近λB
(2)DBR激光器除有源区外,还在紧靠其右侧增加了一段分布式布拉格反射器,它起着衍射光栅的作用。
DBR激光器的输出是反射光相长干涉的结果,只有当布拉格波长满足
(2)DBR结构和DFB类似,区别在于DBR根据波导功能进行分区设计,光栅的周期性沟槽放在有源波导两外侧的无源波导上,从而避免了光栅制作过程中可能造成的晶格损伤。有源波导的增益性能和无源周期波导的Bragg反射作用相结合,只有位于Bragg频率附近的光波才能得到激射。(3)DFB激光器的特点: 1)动态单纵模窄线宽振荡
DFB激光器只有满足Bragg反射条件的特定波长的光才能受到强烈反射而形成振荡。多个微型谐振腔同步振荡、共同选模,实现单纵模振荡。
2)波长稳定性好
温度漂移约为0.08nm/℃。3)动态谱线好
DFB激光器在高速调制时仍然保持单模特性。4)线性度好
现已研制出线性度非常好的DFB激光器,广泛用于模拟调制的有线电视光纤传输系统中。
5)波长选择性
改变光栅周期能够在一定范围内有控制地选择激光器的发射波长。(4)DBR激光器的特点:
DFB激光器的增益区同光栅区重叠,当驱动电流改变时,输出功率和发射波长同时改变;而DBR激光器的反射器和增益区分离,所以可以分别控制DBR激光器的输出功率(通过改变流过激射区的电流)和发射波长(通过改变流过光栅段的电流)。所以DBR激光器比DFB激光器更易于控制和调整。
5.参数(1)峰值波长
在规定输出光功率时,激光光谱内强度最大的光谱波长被定义为峰值波长。
(2)中心波长
在光源的发射光谱中,连接50%最大幅度值线段的中点所对应的波长称为中心波长
(3)谱宽与线宽
包含所有振荡模式在内的发射谱总的宽度称为激光器的谱宽;某一单独模式的宽度称为线宽。
m(Bneff)2
(4)边模抑制比(SSR)
边模抑制比是指在发射光谱中,在规定的输出功率和规定的调制(或CW)时最高光谱峰值强度与次高光谱峰值强度之比。该参数仅用于单模LD,如DFB-LD。6.光检测器
光检测器是光信号的接收器件,是完成光信号转变为电信号的一种有源器件,又称光子计数器。它们检测光信号的工作原理,可以分为三个步骤:(1)光信号产生光生载流子;
(2)光生载流子的迁移和可能的倍增(放大);(3)光电流与外电路的相互作用与联系。
7.PIN光电检测器的基本参数及定义,求PIN的响应度和量子效率(1)波长响应(光谱特性)(a)上截止波长:chc1.24(m)EgEg(b)下截止波长:当入射光波长太短时,光子的吸收系数很强,使光电转换效率大大下降。(2)光电转换效率
(a)量子效率:量子效率定义为入射在检测器上的一个光子所产生的对光电流有贡献的光生载流子数目。即
(b)响应度:R(3)响应速度
响应速度常用响应时间(上升时间和下降时间)来表示。输入阶跃光功率时,光生电流脉冲由前沿最大幅度的10%上升到的90%,后沿的90%下降到10%的时间定义为脉冲上升时间和下降时间。8.APD的工作原理 碰撞电离,雪崩倍增
光生的电子空穴对经过高电场区时被加速。从而获得足够的能量,它们在高速运动中与 P 区晶格上的原子碰撞,使晶格中的原子电离,从而产生新的电子-空穴对。这种通过碰撞电离产生的电子空穴对,称为二次电子-空穴对。新产生的二次电子和空穴在高电场区里运动时又被加速,又可能碰撞别的原子,这样多次碰撞电离的结果,使载流子迅速增加,反向电流迅速加大,形成雪崩倍增效应。
IpPine(AW)h第五章
1.光无源器件分类
按功能分类:光耦合器、光开关、分波与合波器、透镜、光偏转器、衍射光栅、反射器、偏振模转换器、光滤波器、光衰减器、光隔离器、光环行器等。
按所利用的物理效应分类:电光集成器件、声光集成器件、热光集成器件、磁光集成器件等。2.电光调制器的分类和工作原理(重点是单波导型和定向耦合器型)
(1)电光调制器的分类:单波导电光调制器,定向耦合器型电光开关与调制器,马赫-曾德尔干涉仪型电光开关与调制器,全内反射型电光开关和调制器
(2)单波导型工作原理:这种调制器一般是在低折射率的衬底上制作高折射率的波导层并做上电极而构成的。这类
调制器中波导与衬底之间的总的折射率差nt主要是由三种不同的原因造成的, ntn1n2nchemnCCRnEO,只要设法改变器件的结构参数,从而改变上式等号右边的三项的差值,就可以设计出不同状态的调制器或开关。
(3)定向耦合器型工作原理:定向耦合式调制器是由平行且距离很小的两个光波导组成,其中一个波导的光能耦合到另一个波导内,电极电场的作用是改变波导的传播特性和促进两波导间的横向光耦合。在光的一个耦合周期内,当电极上无电压时,一个波导内传输的光将完全祸合到另一个波导输出;当电极上有电压时,进入一个波导内的光,耦合后将完全再返回到原波导中传播和输出.因此光信号就受到了控制电压的调制。3.TE-TM模式分离器和转换器的工作原理
分离器:(1)在波导层的表面直接制作金属薄膜,根据金属薄膜对TE模和TM模的传输损耗的差异来实现某个模式的消除。(2)使用各向异性的晶体,在离子交换玻璃波导上,加载与LiNbO3同属于三方晶系的负单轴晶体方解石(CaCO3)而构成偏振器。方解石对应于正常光线和异常光线的折射率,在波长为0.633μm时,分别为no=1.656,ne=1.458,当波导的折射率为ng,存在着no>ng>ne的关系。假设方解石的光轴与TE模的偏振光方向一致,那么TE模就可以在玻璃波导中传输;TM模则由于ng 转换器:TE-TM模式转换器的基本思想是采用沿导波传播方向周期性地变化外加电场的方法来弥补TE模和TM模之间的相位失配,从而实现TE-TM之间的模式转换。相位匹配关系为 共线集成声光器件的基本结构单元是声光TE-TM模式转换器和偏振分束器,通过二者的组合,可以实现波长分波器、滤波器、波长选择开关和分插复用器等。这类声光器件的TE-TM光波模式转换作用是由声表面波引起的,而声表面波是利用在压电材料上制作的叉指换能器通过电-声转换获得的。声表面波的频率决定了能发生偏振模转换的光波长,从而可以实现光波长选择。 第六章 1.光集成的方式有哪些?光集成的类型有哪两种? 光集成方式:期间功能的集成,器件个数的集成 光集成的类型:全光集成(photonic integrated circuit, PIC),光电集成(opto-electronic integrated circuit, OEIC)2.单片集成与混合集成各有什么优点?(1)单片集成包括全光集成和混合电子集成。 优点:生产工艺决定一切,一旦技术确定下来后,可以大幅度降低成本;与混合集成相比,性能更稳定,提高可靠性。 (2)混合集成最大特征和优点:将有源器件、光波导光路采用不同的工艺设备,分别选择各自最合适的材料、最合适的器件形式;大多光电混合集成器件在研究初期就可以得到满足实用化条件的性能。 第七章 1.根据能带结构,制作集成光学器件的半导体材料主要可以分为哪两类,举例说明? 分为间接带隙半导体材料(Si,Ge) 直接带隙半导体材料(GaAs,InP,GaN,) 2.光波导用的聚合物材料具有哪些优点,存在哪些不足? 优点:价格低,制作简单; 材料可以淀积在半导体衬底上,便于实现混合光电集成; 聚合物光波导具有较低的传输损耗,与光纤的耦合损耗低; 可以有效利用折射率变化获得强度和相位调制; 可以根据需要,通过调节有机材料的组分以实现电光、热光等特性。缺点:机械强度和稳定性差,易被污染而且不易清洗。3.集成光学器件对材料有哪些要求? (1)材料要易于形成质量良好的光波导,且形成的光波导能满足器件功能的要求。(2)集成性能好(3)经济性 大作业 丁武文 2008010646 精85 折射微光学元件: 1.折射微透镜: 椭圆微透镜的制备及在半导体激光器(LD)光束整形中的应用[1] 基础: LD发射光束具有以下两个特点:(2)x与y方向上的光束发散角不同;(2)光斑是椭圆形的。传统的耦合技术是将LD基片与光纤端面直接相连, 称为平接连接法。由于LD和光纤之间数值孔径的巨大差异,平接连接的耦合效率只能达到10%。目前已有几种提高LD和光纤之间耦合效率的方法,这些方法可分为两类。第一类是将光纤一端做成半球形或圆锥形,相当于一个透镜。LD和透镜话光纤的耦合效率是2.5dB~6.4dB。另一类是利用梯度折射率光纤,光纤中不同部位的折射率不同,使得光纤像一个自聚焦透镜。使用这种方法的耦合效率大约是0.84 dB~3dB,工作距离低于4 500 μm。这里提到的方法是用椭圆微透镜耦合的方案。利用椭圆微透镜具有双焦距的特性,同时对LD光束进行准直、整形,使发散光束成为适合光纤传输的圆光束,提高了耦合效率。 微透镜的设计及制备: 按需滴定法成形是使用脉冲式点胶机将PMMA溶液按照所需体积滴在玻璃基板上,溶液是光学级纯度的PMMA溶于MMA单体所得的混合预聚溶液,实验装置如图1 所示。 在实验前对作为基板的石英玻璃板进行预处理: 先将石英基板放在超声波清洗器中用蒸馏水清洗10 min,晾干后再用分析纯的无水乙醇在超声波清洗器中清洗10 min。将清洗干净的石英基板放在含氮气氛的真空干燥箱中烘干使基板对水的接触角为10°,对PMMA溶液基本不浸润。然后在基板上用MMA溶液按所设计的透镜大小做一些椭圆形的区域,该区域对PMMA溶液完全浸润(如图2所示)。我们将溶液滴在这些椭圆形区域上,液滴在表面张力的作用下形成椭圆形的微透镜。在滴定完成后,样品应立即放入一个小密闭容器中以减小MMA单体的挥发和透镜的收缩率。然后放入烘箱,升温至100 ℃,这时PMMA和MMA单体快速聚合,等聚合完全后将炉温升到180 ℃,透镜处于熔融状态,但又具有很高的粘度,能够保持住形状,在表面张力的作用下微透镜表面还可进行自修复形成椭圆形微透镜。 所得椭圆透镜的相关参数之间的关系公式为 Di24h2Ri……(1)8hRfii…………(2) n1fF#ii……………(3)Di其中fi为椭圆透镜焦距,包括X方向fx和Y方向fy;Ri为椭圆透镜曲率半径,包括X方向Rx和Y方向Ry;;Di为椭圆透镜直径,包括X方向Dx和Y方向Dy;F#i为椭圆透镜数值孔径,包括X方向F#x和Y方向F#y;;h为椭圆透镜矢高;n为材料折射率。 对于按需滴定法,当针头型号、气泵压力、脉冲时间决定之后,每次滴下的液滴的量也就固定。另外,在其他条件不改变的情况下,聚合物溶液与基板的接触角由溶液的粘度决定,而溶液的粘度又由浓度来改变。由此可知,浓度固定时,接触角就固定。所以由简单的几何关系就可知,对于成份相同的溶液,粘度和针头的型号就决定了单个液滴的形状(包括直径、矢高和曲率半径)。 实验中,通过摸索调整溶液粘度和压力大小及脉冲时间,就可以得到所需椭圆微透镜的两个焦距。实验中选用28号针头,其内径为0.15 mm,外径为0.35 mm;溶液浓度为4 mol/L。 使用微透镜阵列的耦合: 我们分别测量了传统的平接连接法和本文所介绍的微透镜耦合法的耦合效率和对不同轴的容忍性。由于LD的发散角和光纤的数值孔径都会影响到耦合效率和对不同轴的容忍性,所以我们在实验中使用了同样的LD和光纤来比较两者的耦合。测得1.55 μm的LD发出的光束在接触面处的垂直和水平发散角分别是39.3°和20.2°,光纤芯径为8.6 μm,折射率差为0.42%,数值孔径为0.096。 平接连接法中, 光束从LD直接进入光纤中。微透镜耦合法中, 在两者之间增加了一个椭圆微透镜, LD、微透镜和光纤被固定在高精度多轴定位平台上, 其在X、Y、Z方向移动精度上0.1 μm,θX、θY方向上转动精度是3″。激光光束经过一段一米长的SMF传至能量计上来测量其光能分布。利用红外感应卡(当被红外线照射时可以放射出可见光)来帮助调整定位。首先, 调整LD和光纤。对于平接连接法, LD发光面与光纤端面直接相连, 对于微透镜耦合法,LD与微透镜阵列背面(即石英基板一侧)相连。LD的驱动电流从9.0 mA调至18.0 mA, 测出激光输出能量。微透镜耦合方案的耦合效率是链接法的8倍。另外, 对不同轴的容忍性也是影响耦合效率的重要因素。不同轴包括水平错位、轴向错位和角度倾斜。与平接连接法相比, 微透镜耦合法对水平错位和轴向错位有很好的容忍性, 但对角度倾斜要求很高。 优缺点: LD与光纤之间使用微透镜耦合的方案与传统的平接连接法相比, 耦合效率大大提高, 并且对水平和轴向的对接精度要求显著降低,但是对角度倾斜要求很高。 微反射镜: 静电微反射镜的应用研究主要集中在光开关、投影仪和被动式空间光通信器件三个领域中。光开关和应用于投影仪的微反射镜研究起步较早, 空间光通信器件的研究是最近几年才发展起来的。 微反射棱镜[2]: 微反射镜的另一重要应用领域是空间光通信, 这方面角锥棱镜(Cube-corner Retroreflector)的结构方式应用最为普遍。东京科技大学对其在无线通信系统中的应用进行了系统分析。角锥棱镜的入射光束分布于三个镜面上, 仅仅在有效光阑半径内的入射光才能经过三镜面的依次反射产生与入射光平行的出射光, 且出射光与入射光光强呈中心对称。角锥棱镜具有三个相互正交的工作平面, 相比平面镜来说体积较大、结构复杂, 同时还对工艺精度尤其是镜面的相互垂直度要求高。由于其入、出射光平行, 能从原理上自动跟踪光源, 可望用于近距离网络通信、星际通信等领域, 尤其适用于随动通信系统间的通信。DARPA 计划所提出的智能尘埃中的被动光通信装置就采用了角锥棱镜系统。它被作为空间光通信的重要器件从本世纪初起进行了重点研究, 其重点是具有高垂直精度的微角锥棱镜结构及工艺。具有良好工艺性和精度可靠性的典型结构如图5所示,它们分别包含两个侧反射面和一个底反射面。底反射面由可动微反射镜组成, 它通过微反射镜的角度变化改变三个面的正交性, 进而改变反射光的平行性。侧面分别由铰支结构、插装结构装配而成, 前者结构较为复杂、工艺复杂;后者相反, 工艺复杂结构简单。两种结构的共同缺陷是距离应用有一定差距。 应用于被动空间光通信领域的微角锥棱镜是静电微反射镜方向具有挑战性的课题之一,研究的成功将为通信带来又一次革命。它的研究始于DARPA 计划和加利福尼亚大学伯克利分校传感器与执行器研究中心(Berkeley Sensor & ActuatorCenter)的Pister 和Kahn 教授智能尘埃计划的提出。 不足: 深入研究微反射镜的特性。现有微反射镜的设计主要倾向于机电特性而欠缺对光学性能的深入分析。为此, 需进一步研究不同光学面形状、尺寸参数和阵列参数对光学性能的影响, 克服衍射效应等带来的不利影响。折射率渐变微透镜: Spot-size converter(波导模态变换器)是光纤与光波导连接之间的一种常用的过渡结构,它可有效地提高不同类型的波导结构之间的耦合效率。目前,已有多种Spot-size converter 的报告,例如由高相对折射率差Δ的半导体材料制备的光波导采用了波导宽度和高度渐变型过渡区。 渐变折射率Spot-size converter[3]的设计: 取单模石英光纤的Δ为0.3%,芯直径为8μm,芯层折射率为1.4681(波长在1550nm处);Δ为0.6%的单模矩形光波导宽度为6μm,高度为6μm,芯层折射率为1.5343(波长在1550nm处)。采用光束传播法仿真软件(Beam PROP软件)计算的结果表明,若光波导不设置Spot-size converter结构,光纤与波导的端面耦合效率为78%。为了提高光纤与光波导器件的连接耦合效率,减少插入损耗,本文计算设计了两种平面Taper结构的Spot-size converter。 第一种波导Spot-size converter结构为图1所示的,波导侧边为线性渐变型Taper的结构,Taper的厚度与直波导的相同,为了6μm。其他结构参数为W1=8μm,W2=6μm、L为折射率线性渐变区长度。Taper波导区的Δ,由起始处的0.3%线性增加到0.6%。如图2所示。扫描改变L的大小,由BPM(beam propagation method)仿真计算Spot-size converter与单模石英光纤的端面耦合效率,结果示于图3中的曲线1.当L=300μm时,耦合效率达到90%;当L再 增大时,耦合效率基本不变。 设计的第二种结构如图4所示,波导厚度为6μm,Taper区的波导具有对称的抛物线渐变形侧边,Taper区波导宽度W是Z的函数,满足式 W=W2-W12Z+W1,Z0,L……(2)2L其中,W1=8μm,W2=6μm,Taper区波导相对折射率差Δ具有线性渐变分布,满足式 Z=0.3%+0.3,Z0,L……(3) L扫描L的大小,由BPM仿真计算端面耦合效率,结果如图3中的曲线2所示。当L=280μm时,耦合效率提高到91.3% 左右,L再增大,耦合效率基本保持不变。 从图3结果看出,采用折射率渐变区可使波导与光纤的端面祸合效率得到改善, 渐变区长度L 存在一个饱和距离, 既当渐变区长度大于这一距离时,祸合效率基本不变。采用饱和距离作为过渡区长度时, 藕合效率最大且Spot-size converter的尺寸较短, 有利于器件的集成型化。两种结构的比较表明,侧边抛物线渐变结构的效果要比侧边线性渐变结构的好。 优点: 高分子光波导由于具有良好的光学性能、易加工、价格低廉等优点,近年来成为研究热点。 衍射微光学元件: 二元光学: 二元光学元件(Binary Optical Elements ,简写BOE)是一种位相型的衍射光学元件。它以光的衍射效应为基本工作原理,采用对光学波面的分析来设计衍射位相轮廓。目前制作二元光学元件的方法主要有微电子工艺中的刻蚀法、镀膜法,高精度钻石车床程序控制切削法等。其中微电子工艺技术中的刻蚀法是目前采用的主要手段。由于实际制作出的位相轮廓,是以2 为量化倍数,与理想的连续位相轮廓的台阶形状近似,故被称为“二元光学元件”。二元光学元件的设计与制作: 二元光学器件的设计与制作过程是,首先根据使用要求(包括孔径、分辨率、焦距、波面特性等),经计算机的优化设计,确定表面的位相分布,按刻蚀次数设计成N 个振幅型掩膜,经光刻显影,离子蚀刻去胶后得到位相型二元光学元件,其典型工艺过程见图1。 图1 示出用蚀刻法进行形状制作的工序。在基板上涂敷光致抗蚀剂进行光掩模曝光和显影,复制图形。然后利用反应性离子蚀刻,除掉基板直至光程长深度为λ0/ 2 ,最后除掉残留的光致蚀剂。据此,能够制成2 级形状。但是,每道工序除掉基板的一半深度。与用反应性离子蚀刻法除掉基板的方法相反,也有沉积几分之一波长厚的薄膜的制造方法,图2 示出这种薄膜沉积法。 二元光学一词是美国林肯研究所的Veld2kamp 等人提出的,在最初的研究中只使用一次蚀刻法的工序,就形成二级(二元)形状,这就是二元形状的由来。 这样,在二元光学无元件的制作中,由于采用蚀刻法,所以适合于大批量生产。过去的折射型透镜的制作大多是靠工作人员的经验,而现在则用已确立的蚀刻工序实施的。另外,过去是组合许多透镜来构成非球面,以修正像差。而二元光学元件由于形状可以自由设计,所以用一个元件就能实现像差修正,这是其优点。 应用: 矫正视力缺陷,制成双焦隐形眼镜[4] 二元光学双焦透镜,用于眼科病人矫正视力非常有效。医生将病人的被白内障致混浊的眼球水晶体用冷冻法去除后,配上二元光学透镜,使入射光聚焦在两点上,一个将图像直接聚焦在视网膜上;另一个在其稍后。由大脑选择它认为是最清晰的一个,而放弃另外一个。 菲涅尔透镜: 菲涅尔透镜提高太阳能利用率的研究[5] 太阳能能源清洁无污染,但是太阳能光伏发电的成本高达普通煤电成本的6至8倍,如此高的成本很难使其得到普遍推广。因此, 提高太阳能的利用效率、降低成本是 目前太阳能光伏发电的主要研究方向。其中,降低太阳能电池发电成本的有效途径之一是用聚光太阳能电池来减少给定功率所需的电池面积,并用比较便宜的聚光器来部分代替昂贵的太阳能电池。在这种系统中,太阳能电池的费用只占系统总费用的一小部分,所以可以采用工艺先进、效率更高而价格较贵的电池来提高整个系统的性能。 在太阳能利用中的聚光器要求①具有较好的光学性能,反射率或透射率一般要在以上②具有足够的刚度和强度,保证聚光器能够在风载、雪载、自重等负荷下正常工作③具有良好的抗疲劳能力,以保证机械结构在反复交变工作条件下的寿命④具有良好的抗沙尘和冰雹等能力,以保证电站在沙漠、高寒等恶劣条件下正常工作,同时抵卸非正常气候的破坏⑤具有良好的抗腐蚀能力,要有抗紫外、防盐雾和酸雨等性能⑥具有良好的运动性,以使结构本身的运动能耗降到最低⑦具有良好的保养、维护和运输性能。 菲涅尔透镜的结构和特点: 菲涅尔透镜是由平凸透镜演变而来的, 是一面刻有一系列同心棱形槽的轻薄光学塑料片,如图1所示其每个环带都相当于一个独立的折射面, 这些棱形环带都能使入射光线会聚到一个共同的焦点上因此, 消球差是菲涅尔透镜的固有特点普通的菲涅尔透镜是具有正光焦度的平面型透镜, 其中一个面为棱形槽面, 另一个面是平面这种透镜结构简单, 加工方便。另一种形式为弯月型, 即它的基面为曲面, 其优点是为消像差增加了自由度, 对提高成像质量有利, 但工艺较复杂菲涅尔透镜的棱形槽一般为每毫米2到8个槽, 精密型的可达到每毫米20个槽左右。这样, 菲涅尔透镜便完全有可能同以衍射极限为分辨力的一般透镜相比拟通常, 菲涅尔透镜在整个直径范围内的厚度基本相同,所以使用它可以节省材料, 减轻重量, 还可减少光吸收作用。 与传统的光学玻璃透镜相比, 菲涅尔透镜用于太阳能电池聚光的优点是①体积小, 重量轻, 价格便宜, 用很少的原料便可得到较大口径的透镜②加工方便, 不易脆裂, “ 光学记忆力”好③透光率高, 实际上可达到以上考虑了反射损失和制造缺陷的影响④适当设计齿的角度, 如采用变焦距技术, 可使电池上的光强分布合理, 这是其它聚光镜难以做到的⑤透镜本身就是电池外罩的一部分, 可以保护电池, 聚光束被包括在一个封闭的罩子里, 可防止意外烧伤人体和灼伤眼睛, 防止可燃物碎片落入聚光器引起火灾⑥散热效果好, 采用菲涅尔透镜的聚光系统的散热器位于电池外罩的阴影里,不会被太阳直射, 便于散热电池温度低, 效率也就高⑦保养清扫方便, 电池无需清扫, 如采用齿面向电池的透镜, 上面的积尘也很容易清除⑧有一定的强度和韧性, 能经得起砂、石的打击。 优点与不足: 菲涅尔透镜作为折射式聚光器可明显提高太阳能的利用率, 但其聚光倍数会随光强的减弱而变小, 而且还会随太阳视场角的增大明显减小, 主要是透镜表面存在反射损失。因此, 若把透镜应用到聚光太阳能系统, 为使光线能垂直入射, 跟踪技术一直是该领域的研究重点。 菲尼尔透镜应用2: 热释电红外传感器应用与车流量检测系统[6] 使用热释电红外传感器时, 其表面必须罩上一块菲涅尔透镜。所谓的菲涅尔透镜就是一种特殊设计的、由塑料制成的光学透镜组, 是根据菲涅耳原理制成的。它把红外光线分成可见区和盲区, 具有聚焦的功能;其与热释电元件配合, 可以提高传感器的灵敏度, 扩大监视范围。菲涅耳透镜有折射式形式, 它的聚焦作用是增加灵敏度, 使进入检测区的移动物体能以温度变化的形式影响红外传感器, 这样红外传感器就能产生变化的电信号。当传感器加上菲涅尔透镜后, 其检测距离大约可以增加到原来的五倍。 优缺点:与普通透镜相比,菲涅尔透镜加工方便,重量轻,价格低廉。折衍混合系统: 液体可变焦折衍混合系统的研究[7] 液体变焦透镜技术及其发展: 微光学系统中使用的光学组件的典型尺寸为几十至几百微米,在这个尺度下,液体的行为强烈地受表面张力的影响,表面张力已经超过重力等其它力而成为主导力。目前已经提出了很多种操纵微小液滴的方法用于改变液体透镜的焦距,包括利用结构化表面、热毛细管作用、电化学效应、介电电泳和介质上的电润湿(EWOD)、通过机械结构直接改变液滴表面曲率等,其中最后两种方法以直接用电控制离散液滴表面张力的EWOD法和通过机械结构直接改变液滴表面曲率法受到日益关注。 举例说明: 电润湿法液体变焦透镜 介质上电润湿是从电润湿I’0](Eleetrowetting,Ew)发展而来的。1936年,Aleksandr Froumkine利用电场来改变处于金属表面上的小水滴的形状,并成功的推动液滴在平板上运动,这种现象便被称为电润湿,它是通过在液滴和电极之间施加电场,来改变液一固表面的张力系数,从而改变接触角的大小。然而,对于这种液滴与电极直接接触的结构,接触角的改变量很小,而且易产生气泡,稳定性差。近年来研究发现在液滴与电极间插入一层薄的绝缘介质层后仍然可以用电控制液滴的接触角,从而被称为介质上的电润湿(Eleetrowettingonnieleetrie,EwOD)。改变液滴接触角所需的静电场是通过在液滴和平板电极问施加一定电压来完成的,平板电极内嵌于绝缘衬底,并且距液体与固体的交界面有一定距离。利用介质上电润湿,可以制作出由微小液滴组成的变焦透镜,其基本结构如图3.1所示。当小液滴置于疏水绝缘层上时,在表面张力的作用下,液滴与疏水绝缘层之间的初始接触角为钝角,液面曲率大。入射平行光线经过液滴时发生折射而会聚于一点如图2.1(a),此时液滴形成的透镜的焦距短。当在液滴与电极间施加一定电压时,由于EWOD效应,液滴的接触角将减小,液面的曲率也随之减小,入射光线经液滴后将会聚于较远的点,透镜焦距增大如图2.1(b)。在液滴接触角未饱和的情况下,所加电压越高,EWOD效应将越明显,液滴接触角及液面曲率越小,透镜焦距越大,从而达到通过改变控制电压来调节透镜焦距的目的。 利用EWOD效应,通过外加电压来调节液面的曲率,就可以实现对透镜焦距的控制。与其它结构相比,这类透镜具有功耗低、失真小、寿命长、可调范围大等突出优点,越来越受到人们的青睐。目前,国外已有许多单位在研究这类透镜,而且进展很快,有的已经产品化了,例如Philips公司于2004年3月发布了一款名为FluldFocus的可用于拍照手机等便携设备的液体变焦透镜。 与传统的固体变焦透镜相比,液体可变焦透镜具有功耗低、失真小、寿命长、可调范围大等突出优点,越来越受到人们的青睐。 液体变焦透镜存在的问题: 但是上述的液体变焦单透镜仍然为传统的折射光学系统,不可避免的存在色差问题。如果用传统的双胶或三片镜片来消除色差仍然会有体积大,结构复杂的弊端,如果将变焦光学组件的尺寸降为几十至几百微米时由于液体的行为强烈地受表面张力的影响,表面张力已经超过重力等其它力而成为主导力。此时不同液体的接触面曲率就容易发生变化,不容易控制,这不适合双胶或三片镜片的形式来消除色差。因此普通的液体可变焦单透镜在变焦的同时要做到消除色差并不容易。 液体变焦透镜作为光电子器件中的新兴部件,其巨大的优点正受到各行各业的广泛注意,业界专家还表示,液体透镜很有可能会全面取代传统光学镜头。 但是传统的液体变焦透镜无论是电湿润式的还是机械式的,都往往会有色差现象,而且在变焦的同时要做到消除色差并不容易。随着二元光学技术的发展,人们越来越多地采用二元光学技术来改进传统的折射光学元件(如折衍混合系统),以提高它们的性能,并实现普通光学元件无法实现的特殊功能。 本文提出两种液体可变焦折衍混合透镜,如图4.1所示,一种为二元面在基底为平面的折射面上的可变焦混合透镜(图4.1(a)),另一种为二元面附着在基底为曲面的折射面上的可变焦混合透镜(图4.1(b))。如图所示。 设计模型A: 液体可变焦折衍混合光学系统由传统的液体折射透镜系统和二元透镜系统组成。由于BOE的色散特性与材料的无关性和负向性就非常有利于消色差,这也是BOE在成像领域受到青眯的主要原因。这种以液体作为折射系统的材料,结合衍射面的可变焦单透镜变焦非常具有可行性。 该模型A将二元面附着在基底为平面的折射面上,当基底另一侧表面曲率发生变化时,不影响二元面结构,如图4.2所示。为了设计该光学系统,我们设λd为设计中心波长,λF和λC为消色差波长,整个光学系统的焦距为F。 该模型的光路示意图如图4.3所示。 该光学系统的成像过程可以视为物点M经过液体折射透镜第一次成像于O点,再经过衍射透镜进行第二次成像于O’点。图中Pm为第m带外边缘,AB的长度d定义为刻蚀深度,有 dnp1 其中np为衍射面的折射率。 折射元件的色差是由光学材料的材料色散引起的,而BOE的色差是有微结构衍射的波长依赖性引起的,其色散特性和材料特性正好相反。 对于液体可变焦折衍混合透镜来说,对焦距的改变起决定作用的是其折射部分。衍射部分主要负责消除色差,其对于焦距的变化量很小。液体变焦透镜在成像时要得到合适的透镜焦距,并不需要像传统透镜那样通过透镜自身的镜头沿光轴方向转动。液滴和油滴表面曲率的改变才是液体透镜实现变焦的关键所在,如两种液体间接触面的形状在电压作用下会发生改变,从而实现变焦。由于考虑薄透镜,因此焦距变化公式为: fref'R n()1由于普通的液体变焦透镜在基底曲率变化的同时不可避免地会存在色差现象,因此将衍射面附着在液体变焦透镜的其中一个折射面上,形成液体可变焦折衍混合系统。因为该混合透镜模型衍射部分的焦距为寿,则其总的系统焦距则为: FFfdifRfdif[n()1] 上式即为该液体折衍混合系统模型系统焦距与其基地半径的变化关系。由于衍射部分的焦距fdif远大于折射部分焦距fref,因此整个折衍混合系统焦距F仍然可以看作与半径R呈线性关系。衍射部分由于色散特性的负向性,其对整个折衍混合系统很好地起到了消除色差的作用,但随着基底半径R的变化增大,色差也不可避免地会逐渐增大,因此在实际应用中往往使得半径R在一定范围内变化,从而使色差最小。 设计模型B 在光学系统中,为提高象质和简化系统,经常使用非球面。但非球面的加工、测试困难,成本高,重复性差,精度不能保证。而对于衍射光学元件,引人复杂的非球面相位分布,并不增加加工难度,也不影响加工精度,所以利用BOE,在不影响精度和加工难度的情况下,增加了设计自由度,这对光学系统的设计非常有利。BOE的这一特点在准单色光系统中特别有用,利用BOE可精确的引入任意的非常大的非球面自由度。而在宽波段场合,BOE的非球面度随波长的不同而不同,因而引入过大的非球面度会引入很大的色像差,因而在宽波段场合,通常可利用BOE引入少量的非球面度,以校正系统的色像差。 一般来说,BOE在HOS中的作用与其使用的场合有关。对单色光、准单色光场合,BOE的主要作用是提供非球面自由度,它有很强的色差校正功能,而且利用BOE消色差不会增加系统的绝对光焦度,因此,此模型把衍射面附着在基底为非球面的折射面上,其结构如图4.5所示。为了设计该光学系统,我们同样设λd为设计中心波长,λF和λC为消色差波长,整个液体可变焦折衍混合光学系统的焦距为F’。 由图中可以看出,不同于模型A,此模型的二元面附着在一个曲面上。因此随着基底的曲率变化,衍射面曲率也发生。在此模型中,假设其衍射面的刻蚀深度变化很小。 设计模型B的折射部分: 假设仍然将该模型视为薄透镜,液体材料的折射率随波长不同而不同,设为n(λ),R为该模型基底的曲率半径。其在波长为λ的情况下,同样满足下列焦距公式: fref'R n()1该液体折射透镜的焦距fref’同样随着基底的曲率半径R和基底材料折射率n(λ)的变化而变化。在不同的波长下,该液体折射透镜的焦距不同,即同样存在着色差。 设计模型B的衍射部分: 该模型的成像过程仍然可以视为两步,首先物点M’经过液体折射透镜第一次成像于O点,再经过衍射透镜进行第二次成像于O’点,只不过此模型的衍射面附着在曲面上,因此当变焦时,衍射面的结构随着基底曲率的变化而变化。其成像过程如图4.6所示。 折衍混合系统应用2: 折_衍混合红外物镜的超宽温消热差研究[8]: 保证光学系统在较宽的温度范围内正常工作的技术被称为消热差技术。根据仪器的特点和使用场合的不同,消热差技术一般可分三类:机械主动式、机械被动式、光学被动式。利用基于二元光学元件的折/衍混合系统,实现光学被动式消热差设计。 采用传统折射光学系统只能通过改变结构参数、曲率及使用不同的光学材料来校正像差,一般至少需要三种红外材料,使得系统结构复杂,系统所需透镜数量增加,光学效率也不高。由于红外系统的空间是有限的,如果能减轻重量,减小体积是非常有实际意义的。折/衍混合成像系统充分利用了传统光学元件和衍射光学元件各自的优点,有效的简化光学系统结构、减轻重量、缩小体积和改善成像质量,实现许多传统成像光学所不能达到的目标,是对传统成像光学的重大变革。 微光学系统: 自由空间微光学系统: 微光学平台[9]: 近年来, UCLA 的科研人员将表面微机械工艺制作的微型铰链与自由空间集成光学结合研制完成了一种可实现片上光学处理的微光学平台, 引起广泛关注。自由空间集成光学较光波导方法有如下优点: 高的空间带宽、无干扰的光学路径、三维光学互连、光学信号处理(例如傅立叶光学)的可能性。但是其制作要比波导器件困难得多, 因为大多数单独制作的光学元件都是平躺在基片表面, 而光路处理却恰恰要求它们直立起来。 解决元件直立问题的办法是使用表面微机械铰链和弹簧锁, 这一技术为自由空间集成光学开辟了一个全新的空间, 采用该技术可使三维微光学元件集成在同一硅片上。这里硅基片相当于一个微型光学平台, 微透镜、反射镜、光栅和其它光学元件首先在掩模设计阶段进行预对准, 之后投入制作, 其精确调整和定位由集成在片上的微制动器和微型定位器来实现, 例如旋转或移动工作台;最后再将有源器件集成在芯片上, 一个完整的光学系统就制作成了, 如图13 所示。 微光学平台是微光机电系统技术应用的一个典型例子,它主要用于光学测量和实验。传统的光学系统平台体积大,系统中的元件是先分开制造然后组装的,装配量很大,成本提高。而微光学平台体积小,系统中的元件可集成加工在单一芯片上,对准精度高,可成批生产,成本低。这些优点使微光学平台相对于传统的光学系统有很大的优势。所以,该方面的研究是微光机电系统研究的最基本部分。研究包括各种铰链(图a)、微反射镜(图b)、微衍射透镜(图c)、微折射透镜(d)、光束分离器和光栅等。上面图13为美国加州大学洛杉矶分校提出的微光学平台样机。该微光学平台由微透镜、分束器、反射镜和光栅等元件通过铰链组装技术集成在一个芯片上。 堆叠式: 光栅光谱仪[9]: 图9所示是通过MEMS技术加工得到的光栅光谱仪。它是通过表面硅和体硅混合工艺加工而成。其原理是,输入光束通过由铝膜形成的光栅后,经过三次反射,不同波长的光束分别反射到光电二极管阵列的特定位置上,分别检测出特定波长的光束。 平面型微光学系统: 为实现光路集成,像电路一样,具有二维平面的集成和三维空间集成,光器件就要波导化、阵列化,充分利用现有集成电路的微加工工艺。 近些年发展起来的平面光波导光路(PLC),就是希望实现像电路印刷版一样的平面光子回路的大规模集成,为二维平面集成。PLC具有成本低、便于批量生产、易于集成的诸多优点,被认为是光通信系统产业的救星。分离光器件向光波导的集成器件发展是一种必然趋势。 LiNbO3光波导调制器[10,11,12]: 光纤通信系统的调制器主要是LiNbO3光波导调制器。LiNbO3光波导调制器是利用电光效应对光波的相位、强度或偏振态进行调制的器件。对高速系统而言,最常见的LiNbO3光调制器是Mach-Zehnder干涉仪(MZI)型行波电极强度光调制器,图1.2是其结构示意图。这种调制器采用了MZI的波导结构和行波电极结构,不仅可获得很高的工作速度,而且调制信号的频率啁啾非常小。 根据晶体的电光效应,人们提出了外调制器, 由最初的体调制器发展到行波调制器,由相位调制器到强度调制器。目前研究的多为行波调制器。由于难以检测光相位, 故采用M ach2Zehnder 强度调制器的结构。迄今为止, 已提出了多种结构的行波调制器, 如共面波导,非对称共面微带结构的行波调制器。行波调制器的主要参数调制带宽受限于光波与微波的速度失配, 这源于铌酸锂的介电常数太高, 导致调制器的微波等效折射率远大于光波的折射率。为了获得较宽的调制带宽, 许多旨在降低调制器的等效折射率的新结构就被提出来。这些方案在获得宽带宽和低的驱动电压的同时, 特性阻抗却远小于508 , 这是由于它们在提高速度匹配的同时调制器的电容大大增加了。 微光机电系统(MOMES)[13]: MOMES加速度传感器: 随着MOEMS技术的发展,为了解决现有的MEMS加速度传感器普遍存在的精度较低的问题,因此利用光学测量精度高的优势与MEMS技术相结合的MOEMS加速度传感器的研究成为了一个重要的发展方向,与前文所述的各种原理的MEMS加速度传感器相比,MOEMS的加速度传感器具有抗干扰能力强,适宜于强电磁干扰及强腐蚀环境,灵敏度高,体积小重量轻,适合于航空、航天及狭窄空间的应用,并且成本相对较低等诸多优点。但是目前MOEMs的加速度传感器大多数都还处于实验室研究阶段,国内外对MOEMS加速度传感器的研究主要有以下一些类型: 1.光纤Fabry-Perot(F-P)腔的MOEMS加速度传感器: 光纤F一P腔的MOEMS加速度传感器是利用加速度传感质量块的一个端面与固定的光纤端面平行形成F一P腔,其结构如图1.12所示,通过干法刻蚀或湿法腐蚀工艺在硅基底上刻蚀出传感质量块和悬臂梁结构,传感质量块的一个端面与光纤的端面在加速度敏感轴方向上相互平行,形成一个F一P腔,光纤固定在硅基底上制做出的V形槽内。光纤同时作为光信号的出射和接收端,宽谱光源入射的光通过光纤端面进入F一P腔,光在质量块和光纤端面之间多次反射,形成多光束千涉,干涉信号同样由光纤端面接收输出到探测器。如图所示,当外界加速度作用时,传感质量块会沿垂直于光纤端面的方向移动,由于质量块移动引起F一P腔的腔长的变化导致F一P反射谱漂移。通过探测输出光谱的漂移,就能反映出加速度的变化。 目前这种结构的MOEMs加速度传感器实际分辨率可达1mg,但是光纤F一P腔的MOEMS加速度传感器对质量块反射端面与光纤端面的平行度和反射率要求都非常高,F一P腔的装调难度大,并且在质量块振动过程中很难保证其平行度。另外,F一P腔的腔长变化范围有限,因此这种MOEMS加速度传感器测量的动态范围很小,一般不会超过±2g,限制了它的实际应用。 2.微结构光栅的MOEMS加速度传感器 这种类型的MOEMS加速度传感器是利用MEMS加工工艺,在同一基底上加工出可动光栅和固定光栅两种结构,如图1.13所示1301。在一个基底上通过双面刻蚀制做出传感质量块和可动光栅一体的微结构,该结构包括了四个折叠的悬臂梁、传感质量块以及一组可动光栅组成,而固定光栅则制做在固定基底上。光源照射在光栅上,这样一组可动光栅和固定光栅形成发射相位光栅。当垂直于质量块的表面方向上的加速度作用到质量块上时,质量块会带动可动光栅发生上下移动,形成明暗相间的衍射条纹。当可动光栅与固定光栅的高度差发生变化时,由光栅反射形成的衍射条纹各级衍射极大的位置将发生变化,这样探测器上所探测到光强就会发生变化,从而达到测量加速度大小的目的。 衍射光栅式的MOEMS加速计体积很小,整个结构在同一基底上制做完成,有很高的集成度,而且在理论上有这很高的分辨率,可以达到声g量级。但是,为了获得较高的分辨率,就必须提高光栅周期数,即在有限的尺寸下减小光栅间距,但是光栅间距的减小给加工工艺提出了更高的要求。由于传感质量块的厚度较大,因此需要在反面质量块的制做过程中采用深度反应离子束刻蚀,这样的设备非常昂贵,而且深反离子刻蚀的过程中需对正面制作好的光栅结构进行保护,由于光栅线条很细,因此在最后的结构释放时由于保护层残余应力的作用,很容易造成微光栅结构的变形和断裂,制作难度非常大,成品率很低。普通的设备和工艺很难满足该结构的加工要求。 3.光波导光强检测的MOEMS加速度传感器 这种结构的加速度传感器是将光纤、光波导和MEMS技术集成在一起,传感质量块和悬臂梁的结构依然是采用双面的体硅刻蚀方法制做而成,四个直角悬臂梁分布在质最块的两侧,在质量块的表面集成了由Si3N4和SiO2构成的直线光波导结构作为传感器件。如图1.14a)所示。在周围的固定硅基底上,传感质量块上直线光波导的两端也分别集成了输入和输出光波导,传输光通过光纤导入和接收。 当Z轴方向上的加速度作用到传感结构上时,质量块会带动传感的光波导沿Z轴方向移动,这时,传感光波导和输入输出波导端面就会方向相对位移,使输入波导祸合进入传感光波导的光强发生变化。同样,由传感光波导祸合到输出波导的光强也会发生相应的变化。通过探测输出光纤的光强就能反映出传感质量块所受Z轴方向上加速度的大小,如图1一14b)所示。该结构的MOEMS加速度传感器采用了硅基底与光波导一体化的结构,并且四个直角悬臂梁接收使得其自然谐振频率比普通悬臂梁结构要高,但是在实用化过程中,输入和输出端的光纤和基底光波导之间的插入损耗、以及光波导本身的传输损耗都是需要解决的问题,而且由于光波导端面尺寸的限制,传感质量块上集成的光波导在Z轴方向上能移动距离非常有限,这使得该结构的MOEMS加速度传感器测量范围和精度都很难做高。 参考文献: 1.李同海,吴国俊等。椭圆微透镜的制备及在LD光束整形中的应用。科学技术与工程,2005;24(5): 23-25 2.任大海,杜杰等。静电微反射镜的发展与应用。激光杂志,2006;27(6):3-5 3.高仁喜,陈抱雪等。聚合物波导折射率渐变型Spot一size converter 设计。上海理工大学学报,2005;27(6):517-519 4.孙炳全,丘坤霞,盖志涛。二元光学元件及其应用。抚顺石油学院学报,1998;18(2):75-78 5.姚叙红,朱林泉等。菲涅尔透镜提高太阳能利用率的研究。红外,2009;30-34 6.王捷,艾红。热释电红外传感器应用与车流量检测系统。自动化仪表,2010;72-74 7.鲍赟,“液体可变焦折衍混合光学系统的研究”硕士论文,中国科学院研究生院,2007。8.邹百英,“折_衍混合红外物镜的超宽温消热差研究”硕士论文,哈尔滨工业大学,2008。9.张培玉,微光机电系统技术的研究与应用(下)。《电子产品世界》,2001;66-67。 10.徐坤,周光涛等。基于L iNbO3光波导调制器高速光码型调制技术的比较。北京邮电大学学报,2004;27(4):50-54。 11.徐小云,陈树强等。脊波导结构L iNbO3调制器的分析与设计。通信学报,1999;20(6):26-31。 12.龙祖利。用于空间光通信的宽带LiNbO3行波调制器。测控技术,2006;25(2):71-72。13.吴宇,“微纳光纤环MOEMS加速度传感器理论与应用研究”,博士论文,浙江大学,2008。 对课上题的解答。第五篇:微光学器件总结