电流互感器铁心剩磁总结(5篇)

时间:2019-05-15 09:37:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《电流互感器铁心剩磁总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《电流互感器铁心剩磁总结》。

第一篇:电流互感器铁心剩磁总结

电流互感器铁心剩磁总结 电流互感器剩磁的定义

饱和磁通sat:电流互感器二次匝链磁通的最高值,对应于铁心材料的磁饱和(完全饱和 状态)。

剩磁通r:铁心在切断励磁电流3min之后剩余的二次匝链磁通值,此励磁电流应大到足 以产生饱和磁通sat。

剩磁系数KR:剩磁通与饱和磁通之比值,用百分数表示。

动态剩磁dr:互感器的一次绕组断电以后,铁心中的磁通将从断电这一时刻开始逐渐衰减,这个衰减过程中的磁通称为动态剩磁。

动态剩磁衰减规律为

drxetT2

式中:x——断电瞬间铁心中的磁通,Wb2.铁磁材料磁滞回线及剩磁

2.1磁滞回线及剩磁的形成过程

磁滞回线。(解释说明:铁磁材料的剩磁与电流互感器的剩磁通定义不一样。)

对于同一铁磁材料,选择不同的磁场强度反复磁化时,可得出不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得的曲线称为基本磁化曲线,或平均磁化曲线。

从图2系列磁化曲线可以看出,对同一铁磁材料,取低的磁化强度(对应低磁密)反复磁化时,铁磁材料的剩磁也越小(可以认为做伏安特性铁心的剩磁大致对应于磁滞回线上的剩磁)。

软磁性材料的磁滞回线狭窄,近似与基本磁化曲线相重合,所以进行磁路计算时常用基本磁化曲线代替磁滞回线使计算得以简化。

对于互感器做伏安特性时,由于硅钢片铁心磁通远未饱和,铁心会产生剩磁也很小,而且实践证明硅钢片的剩磁不会明显影响保护级的伏安特性及额定电流下的误差,微晶铁心的剩磁也不影响测量级的误差。另根据硅钢片的矫顽力一般约为100/4π A/m,查硅钢片磁化曲线可得对应磁密为1590Gs, 也即矫顽力对应的剩磁为1590Gs(比较低),由于硅钢片铁心工作磁密远未饱和,所以做伏安特性的铁心剩磁也很小。

计量用CT多采用超微晶材料制造,由于矫顽力很小,只需要很小的工作电流(例如额定工作电流)就可以去除剩磁,可以不考虑剩磁的影响。

图1 基本磁化曲线

2.2 铁磁材料的磁滞回线

1)软磁性材料的磁滞回线狭长(见图2a),剩磁和矫顽力都较小,磁滞损耗小,磁导率高,适用于制作各种电机、电器的铁心。软磁材料包括纯铁、铸钢、电工钢及坡莫合金等。

2)硬磁(永磁)性材料,这种材料的磁滞回线面积大((见图2b),磁化后不易退磁,适宜作永、磁体。硬磁性材料包括铬、钨、钴、镍等合金。

图2 磁滞回线

注:摘自《电路及磁路》

2.3 影响剩磁的因素

电流互感器剩磁的大小除受电流互感器铁心材料及结构影响外,还与以下四个因素有关。1)短路电流开断时间

系统发生短路故障后,保护装置和断路器相继动作,从而断开电流互感器的一次短路电流。剩磁取决于短路电流开断瞬间铁心中的磁通。如果短路电流在不同时间开断,磁通会沿不同的励磁曲线达到不同的剩磁点,剩磁大小不同。2)一次短路电流及其非周期分量

一次短路电流由周期分量和非周期分量两部分构成。非周期性分量对电流互感器i0特性的影响最为严重,它的大小取决于Im和α,即Imcos的值越大,φ随i0的变化越快,剩磁越大。

3)一次回路时间常数

一次回路时间常数τ决定了非周期分量衰减的快慢。τ越大,非周期分量衰减越慢,铁心磁通累积时间越长,容易引起饱和,从而导致较大的剩磁。4)二次负载的功率因数及阻抗值

断路器一般在短路电流过零点时断开,铁心中的剩磁与二次负载的功率因数及阻抗值有关。对于纯电感负载(功率因数cos0),短路电流开断后基本不存在剩磁;对于纯电阻负载(cos1),铁心中会存在较大剩磁(对于二次短接可以理解为纯二次绕组电阻负载)。一般地,实际运行的电流互感器的二次负载功率因数很高,如静态和数字继电器为电阻性负载,短路电

[5]流断开后,剩磁可能接近峰值。

以上四因素主要影响一次电流开断瞬间电流互感器铁心中的磁通。CT剩磁统计

系统发生短路故障后,往往会导致电流互感器存在较大的剩磁,电流互感器剩磁大小取决于一次电流开断瞬间铁心中的磁通。在短路故障时,磁通由稳态周期性短路电流、暂态非周期分量及二次回路阻抗决定,当一次电流在互感器处于饱和时断路器跳闸产生的剩磁可能最大。

运行中的电流互感器普遍存在剩磁,剩磁对电流互感器的危害较大,且剩磁一旦产生,不会自动消失,在正常运行条件下将长期存在。剩磁的存在使电流互感器在励磁曲线上的起始工作点发生了变化,加重了铁心的饱和程度及饱和时间,是产生不平衡电流和导致差动保护误动的重要原因,对系统保护装置动作的可靠性有很大影响。

表1是IEEE Std C37.110-1996《Guide for the application of current transforer used for protective relaying purpose》列举的对230kV 系统141组电流互感器的调查结果,表明运行中的电流互感器剩磁分布不均,不易确定典型值(离散性比较大),剩磁系数最高可达80%。

注1:剩磁系数大剩磁也大。

4.降低剩磁的方法

1)对于测量用互感器,采用磁导率高、剩磁系数小的优质铁心材料,如: 非晶合金、坡莫合金等,非晶合金铁心剩磁系数一般小于50%,坡莫合金铁心剩磁系数更低。2)采用PR、TPY、TPZ级互感器,其铁心开小气隙,剩磁系数小于10% 3)对于不适于采用PR、TPY、TPZ级互感器的场合,在选用互感器时应考虑剩磁带来的影响,适当提高准确限值系数或额定电流比,在每次系统大扰动后选择时机对互感器进行退磁。

5.退磁方法

a)闭路退磁法退磁:

在二次绕组上接一个相当于额定负荷10-20倍的电阻(考虑足够的容量),然后通过检定装置一次回路对一次绕组通以工频电流,由0增至1.2倍的额定电流,然后均匀缓慢地降至0。b)开路退磁法退磁

对于具有两个或两个以上的二次绕组的电流互感器进行退磁时,其中一个二次绕组接退磁电阻,其余的二次绕组应短路。参考文献

[1]

GB 20840.2-2014 互感器第2部分:电流互感器的补充技术要求 [2]

GB/T 22071.1-2008互感器试验导则第1部分: 电流互感器 [3]

JJG 1021-2007 电力互感器检定规程 [4]

李军,胥昌龙,曹宣艳,张华等。电流互感器饱和铁心的剩磁在额定工况下的状态分析。

电测与仪表,2014-1,51(2),14-18.[5]

梁仕斌,文华,曹敏等。铁心剩磁对电流互感器性能的影响.继电器,2007,35(22):

27-32.[6]

崔迎宾,谭震宇等。电流互感器剩磁影响因素和发生规律的仿真分析.电力系统自动化,2007-12-10,34(23):87-91.[7]

李长荣,宋喜军,李俊芳等.PR级剩磁对保护级电流互感器性能影响及PR级技术参数计

算。变压器,2013-5,50(5):5-8.

第二篇:使用电流互感器七大注意事项

使用电流互感器七大注意事项

电流互感器的使用主要注意下面七个方面:

1)电流互感器的接线应遵守串联原则即一次绕阻应与被测电路串联而二次绕阻则与所有仪表负载串联。

2)按被测电流大小选择合适的变化否则误差将增大。同时二次侧一端必须接地以防绝缘一旦损坏时一次侧高压窜入二次低压侧造成人身和设备事故

3)二次侧绝对不允许开路因一旦开路一次侧电流I1全部成为磁化电流引起φm和E2骤增造成铁心过度饱和磁化发热严重乃至烧毁线圈;同时磁路过度饱和磁化后使误差增大。电流互感器在正常工作时二次侧近似于短路若突然使其开路则励磁电动势由数值很小的值骤变为很大的值铁芯中的磁通呈现严重饱和的平顶波因此二次侧绕组将在磁通过零时感应出很高的尖顶波其值可达到数千甚至上万伏危机工作人员的安全及仪表的绝缘性能。

另外二次侧开路使E2达几百伏一旦触及造成触电事故。因此电流互感器二次侧都备有短路开关防止一次侧开路。如图l中K0在使用过程中二次侧一旦开路应马上撤掉电路负载然后再停车处理。一切处理好后方可再用。

4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等装置的需要在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有28个二次绕阻的电流互感器。对于大电流接地系统一般按三相配置;对于小电流接地系统依具体要求按二相或三相配置

5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如若有两组电流互感器且位置允许时应设在断路器两侧使断路器处于交叉保护范围之中

6)为了防止支柱式电流互感器套管闪络造成母线故障电流互感器通常布置在断路器的出线或变压器侧。

7)为了减轻发电机内部故障时的损伤用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障用于测量仪表的电流互感器宜装在发电机中性点侧.消息来源于中国电气之家(25dq)。

第三篇:全光纤电流互感器小结

全光纤电流互感器学习小结

一、全光纤电流互感器的基本结构:

1、全光纤电流互感器结构根据功能可以分为:光纤传感器,光学传输单元,合并单元三部分组成。光纤传感器部分由1/4波片,感应光纤和反射镜组成,通过熔接形成一个无源传感器件,这部分在高压一次设备侧。在复合绝缘子中布置了保偏光纤,在互感器的底座装有偏振器和调制器两个光学元件,调制信号由合并单元提供,无需外部供电。光纤传感器和合并单元之间采用标准的单模通信光纤。

1、全光纤电流互感器结构示意图

2、以ALSTON全光纤CT为例对其结构进行介绍,其电流互感器就地端子箱如下图,其中主要包括偏振器,调制器,温度传感器,其端子箱主要作用有接收合并单元提供的调制信号,光纤温度测量给合并单元用于计算温度补偿,以及实现单模通信光纤与保偏光纤的熔接。

2、互感器本体及端子箱

3、NXCT合并单元前面板上有三个指示灯和一个数字通讯RS232接口: 指示灯工作状态如下: Power:电源正常时绿色常亮;

Maintenance Required:正常运行时熄灭,轻微故障时橙色常亮;

Data Invalid:正常运行时熄灭,传输数据无效时红色常亮(相当于严重故障)。

3、NXCT光电单元前面板

4、NXCT合并单元背板结构如图4所示 其中各个接口的作用如下:

(1):连接一次侧,给测量回路提供光源,同时接收电流信息的接口;(2):将合并单元测量的电流量经TDM总线给需要的控制保护设备;共6路TDM,每路包含该合并单元测量的全部电流;

(3):两个合并单元之间的连接光纤,可以同步测量的电流量,使输出的TDM总线中含两个机柜测量的电流。

(4):给合并单元提供两路供电电源接线端子;(5):合并单元连接至调制器的端子排;

(6):IDL温度测量,用于温度补偿的,只有IDL采用的是光纤传输,其它电流量用的是电缆传输;

(7):合并单元电流模拟量输出端子或装置报警输出。

4、NXCT光电单元背板

5、NXCT合并单元特性如下图所示:

5、NXCT合并单元特性

同里站的数字输出端口含有6路独立的数字接口。

二、全光纤电流互感器的原理:

1、理论基础:

法拉第磁光效应(Faraday Magneto-optioal offect):

当线偏振光在介质中传播时,若在平行于光的传播方向上加一磁场,则光振方向将发生偏转,偏转角度与磁感应强度和光穿越介质的长度的乘积成正比,偏转方向取决于介质性质和磁场。这种现象称为法拉第效应或磁致旋光效应。

萨格纳克干涉原理测量(Sagnac interferometer):

两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动。通过干涉条纹的移动变化可测量光程微小的改变量,从而测得与此有关的其他物理量(如电流)。

安培环路定理(Ampere circuital theorem):

沿任何一个区域边界对磁场矢量进行积分,其数值等于通过这个区域边界内的电流的总和,这个定理与区域的形状,距离和材料无关。按照安培定理,相邻导体产生的漏磁场(干扰磁场)的任何闭环矢量积分为零。也即。临近导体的干扰对全光纤互感器无任何影响。

2、工作原理:

如全光纤互感器结构示意图1所示,光源发出的光经偏振器起偏成两束相互垂直的线偏光,这两束正交模式的光经过1/4波片后分别变成左旋和右旋模式的圆偏光进入传感光纤,受到导体中电流产生的磁场作用,左右旋圆偏光以不同的速度传播,从而引起光波相位的变化,光在传感器端的镜面反应后,这两束圆偏光的偏振模式互换,通过传感光纤再次受到磁场作用,从而使受到作用的效果加倍。这两束圆偏光经过波片后恢复为线偏振光,并在偏振器处发生干涉,通过测量干涉光强检测出相位差,而相位差与导体中的磁场强度成正比,而磁场强度与电流强度成正比,从而可以得到被测电流的大小。

传感器输出光强: Pd=loss×0.5×Po×【1+cos(φf+φ)】

式中loss是光路损耗;Po是光源输出光强;φ是调制相位;φf是Farady相位; Farady相位: φf=4NVI 式中N为传感光纤的匝数;V是费尔德常数;I是导体中的电流。

三、同里站(直流部分)全光纤电流互感器的使用:

同里换流站阀厅直流极线、400kV母线、中性线及直流线路出口极线、直流滤波器高压侧、直流滤波器不平衡电流测量等光CT采用的是ALSTON型号为NXCT纯光纤电流互感器。

6、同里站极I全光纤电流互感器接线图

其中阀厅内为悬吊式或自立式、直流场线路出口处为自立式。同里站直流场极线用光CT,阀厅用光CT,直流滤波器高压侧光CT均为每点位配置三套,对应3个合并单元,每个合并单元提供6路独立的TDM协议光接口输出,每路TDM信号包含该合并单元接入的所有测点数据,对于极线出口处的800kV光CT(IDL),还有一套用于谐波测量,对应1个独立的合并单元,提供6路独立的TDM协议光接口输出(只包含IDL)。

直流滤波器高压电容器不平衡光CT每点位配置3套,对应另外3个合并单元,每个合并单元提供6路独立的TDM协议光接口输出(包含直流滤波器三个测点不平衡电流)。

四、NXCT自检功能:

NXCT全光纤电流互感器含有全自检功能,能够提供设备的在线监测功能,通过数字通讯RS232接口将电流互感器的运行情况:如光源强度,光纤通讯状况,光电单元功耗,系统温度等参数发送到后台,并提供报警和查询功能。

7、全光纤电流互感器的诊断界面

五、全光纤电流互感器的优点:

由于全光纤电流互感器具有绝缘无油,无SF6或其他气体,腔内无任何机械装置;无二次开路的危险;无铁心剩磁的问题。下表为各类电流互感器的比较:

8、各类电流互感器的比较

第四篇:带电流互感器三相四线制电度表测量三相电路实训报告(精)

三相四线制电度表安装接线电路实训报告

一、摘要部分:

1、三相四线制电度表安装接线电路实施过程: 1)配齐电器元件并检测元件质量。

2)在电工电拖技能操作木板上安装接线

3)可靠连接电度表和电流互感器保护接地线。4)元器件布置合理接线牢固可靠,美观。5)自检后指导教师检查。

2、实训三相四线制电度表安装接线电路的结果:当所测量线路的电流过大超过了电度表额定的测量电流,则通过电流互感器降低测量电流二次侧供电度表测量,读数时用电度表表盘读书乘以电流互感器电流比即可。

一、工作原理分析部分:

三相四线制电度表与电流互感器相互使用目前在工地中较为常见,主要是通过导线穿过电流互感器的圆圈,利用电磁场的关系转换导线通过电流互感器二次侧输出的电流,以供电度表测量(电度表的测量量程不满足要求的情况之下采用)。电流互感器工作时二次侧严禁开路二次侧不使用时应短接,读数时应用电度表的度盘数乘以电流互感器的电流比。

二、安装接线方案、要点: 常用工具有:螺钉旋具、尖嘴钳、剥线钳。我一般遵守以下几点原则:先主后次、从上到下、水平垂直、先左后右,主要要点:条理

清晰、线头不外露、接头稳固、线路美观、线路走最短、减小相互跨接。

实训小结:三相四线制电度表通过电流互感器连接目前在工地中较为常用,在接线时要注意区分电流互感器的工作线与保护线。工作线是接至电度表电流线圈,保护线接至PE端。

三、带电流互感器的三相四线制电度表测量三相电能电路图 图10带电流互感器的三相四线制电度表接线 a)接线外形图b)接线图

配电系统图

第五篇:峰值电流模式控制总结

nansir总结集之电流控制篇

峰值电流模式控制总结

PWM(Peak Current-mode Control PWM)峰值电流模式控制简称电流模式控制。它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。在70年代后期才从学术上作深入地建模研究。直至80年代初期,nansir总结集之电流控制篇

②虽然电源的L-C滤波电路为二阶电路,但增加了电流内环控制后,只有当误差电压发生变化时,才会导致电感电流发生变化。即误差电压决定电感电流上升的程度,进而决定功率开关的占空比。因此,可看作是一个电流源,电感电流与负载电流之间有了一定的约束关系,使电感电流不再是独立变量,整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积。在小信号分析时,这种电路可以忽略电感的存在。因此,在整流器的输出端,增益和相移是由并联的输出电容和负载电阻确定的。这样,电路最多只有900相移和20分贝/十倍频而非40分贝/十倍频的增益衰减。

③输入电压的调整可与电压模式控制的输入电压前馈技术相妣美; ④简单自动的磁通平衡功能;

⑤瞬时峰值电流限流功能,即内在固有的逐个脉冲限流功能; ⑥自动均流并联功能。

2峰值电流型控制存在的问题

下面主要讨论峰值电流型控制存在的问题及利用斜坡补偿克服所存在问题的方法,并给出斜坡补偿的实施方案。2.1开环不稳定性

在不考虑外环电压环的情况下,当恒频电流型变换器的占空比大于50%时,就存在内环电流环工作不稳定的问题。然而有些变换器(如双管正激变换器)它本身工作的脉冲占空比就不能大于50%,因此不存在问题。而有些变换器的脉冲占空比不大于50%时,它的输入将会受到许多限制,如果在内环加一个斜坡补偿信号,则变换器可以在任何脉冲占空比情况下正常工作。下面介绍斜坡补偿工作原理。

图2表示了由误差电压Ve控制的电流型变换器的波形,通过一个拢动电流△I加至电感电流IL,当占空比<0.5时,从图2(a)所示可以看出这个拢动ΔI将随时间的变化而减小;但当占空比>0.5时,这个拢动将随时间增加而增加,如图2(b)所示。这可用数学表达式表示:

ΔI1=-ΔI0(m2/m1)(1)

电流控制模式分析

nansir总结集之电流控制篇

进一步可引入斜率为m的斜坡信号,如图2(c)所示。这个斜坡电压既可加至电流波形上,也可以从误差电压中减去。

图2电流型变换器的开环不稳定性

(a)D<0.5(b)D>0.5(c)D>0.5并加斜坡补偿

图3 局部放大图 由 几 何 关 系 可 知

i0acceabmabm1 i1bfbdabm2abm

式 中 : m为 补 偿 信 号 上 升 斜 率 ;

电流控制模式分析

nansir总结集之电流控制篇

m1为 电 感 检 测 电 流 上 升 率 ;

m2为 电 感 检 测 电 流 下 降 率。

所 以,经 过 一 个 开 关 周 期 后,输 出 电 感 中 电 流 的 变 化 为 ΔI1=ΔI0(m-m2)/(m1-m)(2)

要 系 统 稳 定,偏 移 电 流 量 必 须 趋近于 零,即

limin0

n故 系 统 稳 定 的 充 要 条 件 是

mm21

m1m因 为 在 稳 定 条 件 下,D· m1=-(1- D)m2,消 去 m1,整 理 后,峰 值 电 流 控 制 系 统 稳 定 充 要 条 件 为

m2D13 m22D

由 式(3)可 知,当 没 有 斜 率 补 偿 时,即 m=0,必 须 要 求 占 空 比 D < 0.5,这 就 是 理 论 上 不 加 补 偿 时,占 空 比 D>0.5时 系 统 将 不 稳 定 ;

在100%占空比下求解这个方程(3)有: m>(-1/2)/m2 ………………………………(4)

为了保证电流环路稳定工作,应使斜坡补偿信号的斜率大于电流波形下降斜率m2的1/2。对图1所示的Buck型变换器,m2等于(VO/L)RS。所以补偿波形的幅度A应按下式计算: A>T*RS(VO/L)………………………………(5)

从而保证变换器的占空比大于50%时变换器能稳定工作。在 控 制 工 程 实 际 中,补 偿 斜 率 m一 般 取 为 m=(0.7~ 0.8)m2,这 样 既 保 证 了 系 统 符 合 稳 定 条 件,又 保 证 了 系 统 动 态 指 标。2.2次谐波振荡

对电流型控制而言,内环电流环峰值增益是个很重要的问题,这个峰值增益在开环频率一半的地方,由于调制器的相移可能在电压反馈环开关频率一半的地方产生振荡,这种不稳定性叫做次谐波振荡。

电流控制模式分析

nansir总结集之电流控制篇

2.3 峰值电流检测与平均电流检测

在电流型变换器中由平均电感电流产生一个误差电压,这个平均电感电流可用一个电流源来代替,并可以降低系统的一个阶次。减小峰值电感电流与平均电流的误差电流模式控制是一种固定时钟开启、峰值电流关断的控制方法。因为峰值电流(流过功率开关或电感上)在实际电路中容易进行采样,而且在逻辑上与平均电感电流大小变化相一致。但是,电感电流与输出平均电流之间存在一定的误差,峰值电感电流的大小不能与平均电感电流大小一一对应,因为在占空比不同的情况下,相同的峰值电感电流可以对应不同的平均电感电流,如图4所示。

而平均电感电流是唯一决定输出电压大小的因素。与消除次谐波振荡的方法类似,利用斜波补偿可以去除不同占空比对平均电感电流大小的影响,使得所控制的峰值电感电流最后收敛于平均电感电流,如图5所示。在数学上可以证明,将电感电流下斜坡斜率的至少一半以上斜率加在实际检测电流的上斜坡上,可以去除不同占空比对平均电感电流大小的扰动作用,使得所控制的峰值电感电流最后收敛于平均电感电流。因而合成波形信号UΣ要有斜坡补偿信号与实际电感电流信号两部分合成构成。当外加补偿斜坡信号的斜率增加到一定程度,峰值电流模式控制就会转化为电压模式控制。因为若将斜坡补偿信号完全用振荡电路的三角波代替,就成为电压模式控制,只不过此时的电流信号可以认为是一种电流前馈信号,见图1所示。当输出电流减小,峰值电流模式控制就从原理上趋向于变为电压模式控制。当处于空载状态,输出电流为零并且斜坡补偿信号幅值比较大的话,峰值电流模式控制就实际上变为电压模式控制了。

图4不同占空比时,相同峰值电感电流对应的平均电感电流

图5利用斜波补偿消除不同占空比对平均电感电流的影响

电流控制模式分析

nansir总结集之电流控制篇

2.4 小纹波电流

从性能的角度总希望纹波电流要小,首先它可以使输出滤波电容的容量减小,并在轻载时的电流连续工作模式下输出纹波小。虽然对电流检测电路的小斜坡补偿量,在许多情况下可以得到小的纹波电流,但将由于随机和同步噪声信号的引入而致使脉冲宽度摆动。并且斜坡补偿加到电流波形上将会产生一个更稳定的开关点,为达到这个目的,相对于电感电流这个补偿量m应大于m2,并且这对次谐波稳定是有必要的。但任何斜坡补偿大于m=-(1/2)m2将使变换器的特性偏离理想电流型变换器而更像一个电压型变换器。

2.5 电流型控制不大适合于半桥型开关电源。

这是因为在半桥式电路中,通过桥臂2只电容的放电维持变压器初级绕组的伏-秒平衡;当电流型控制通过改变占空比而纠正伏-秒不平衡时,会导致这2只电容放电不平衡,使电容分压偏离中心点,然而电流型控制在此情况下试图进一步改变占空比,使电容分压更加偏离中心点,形成恶性循环。电流型控制的斜波补偿实例

3.1 3842补偿实例

美国UNITRODE公司生产的电流型PWM控制芯片UC1842/43,具有外电路简单,成本较低等优点。关于它的电性能与典型应用这里不再赘述,只简单介绍一下进行斜波补偿的方法。图6说明了UC1842/43的2种斜波补偿方法:

nansir总结集之电流控制篇

(a)斜波补偿加至2端

(b)斜波补偿加至3端 图6 利用UC1824/43的2种斜波补偿方法

3.2 UC1846的斜坡补偿

UC1846是一种采用斜坡补偿的电流型集成控制芯片,它具有恒频PWM电流型控制所需的控制电路和相关电路。图7(a)和图7(b)表示采用UC1846实施斜坡补偿的两种电路原理图。在

nansir总结集之电流控制篇

(b)斜坡补偿信号直接和误差信号相加

——开关频率固定(这种情况下R1/R2固定),并且误差放大器增益固定;

——计算所需斜坡补偿量时要把电压误差放大器,电流误差放大器的增益都考虑进去。在任何一种情况下,一旦R2的值确定后,负载对CT的影响也可以确定。

电流控制模式分析

下载电流互感器铁心剩磁总结(5篇)word格式文档
下载电流互感器铁心剩磁总结(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    短路电流的十个问题的总结

    短路电流的十个问题的总结 一)为什么计算最大短路电流?为什么计算最小短路电流? 目的:测试对于短路计算意义的理解 答案:计算最大短路计算用以校验配电元件(如断路器)分段能力;计算......

    电流和电路知识点总结[精选]

    电是我们生活中必不可少的,那你在学习电流和电路会怎么总结知识点呢?下面是小编为大家收集整理的电流和电路知识点总结,欢迎阅读。电荷1.带了电(荷):摩擦过的物体有了吸引物体的......

    九年级物理《电流和电路》知识总结

    九年级物理《电流和电路》知识总结 电流是摸不着,看不着的,电流的强弱只有间接地通过电流效应的大小来判断。课本是通过“流过手电筒的电流和流过汽车灯的电流,强弱是不一样的......

    探究电流与电压、电阻关系实验总结

    探究电流与电压、电阻的关系实验讲析 物理实验六大步骤分析 一,清楚实验目标(题目、提出问题):探究理解:1,为什么要探究电流与电压、电阻的关系? 电压时产生电流的原因,可能电压越......

    初三物理8.2 电流的磁场知识点总结

    8.2 电流的磁场知识点 1. 物体能够吸引、 、等物质的性质叫做 。具有 2. 磁体上磁性 的部分叫做磁极。条形磁铁 磁性最弱。 3. 同名磁极之间相互 ,异名磁极之间相互 。 4. 生力的......

    高二物理三相交变电流知识点总结

    高二物理三相交变电流知识点总结 三相交变电流在高中的物理考试中考察得并不多,但是对于物理三相交变电流知识点大家千万不要放弃,希望大家可以取得优异的成绩。 1、三相交变......

    最新人教版九年级物理第15章电流和电路知识点总结.

    第十五章 电流和电路 知识点 第 1节 两种电荷 一、电荷: 1、物体有了吸引轻小物体的性质,我们就说物体带了电荷;换句话说,带电体 具有吸引轻小物体的性质。 2、用摩擦的方法......

    高二物理上学期期末考电路和电流知识点总结范文

    高二物理上学期期末考电路和电流知识点总结 高中物理是高中理科(自然科学)基础科目之一,小编准备了高二物理上学期期末考电路和电流知识点,具体请看以下内容。 一、两种电荷......